现代控制理论考试题及答案

答案及评分标准

一,

填空(3分每空,共15分)

1.输出变量 2.变量的个数最少 3.⎥⎦⎤

⎢⎣⎡2001 4. 其状态空间最小实现为

u x x ⎥⎥⎥⎦⎤

⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100001100010 ; u x y 2102

121

+⎥⎦

⎢⎣

⎡= 5. 0,021==x x

二,选择题(3分每题,共12分) 1.B 2.D 3.B 4.C

三,判断题(3分每题,共12分)

1.

2. √

3.

4. √

四,简答题(共23分)

1.(5分) 解 判定系统112

21223x x x x x x =-+⎧⎨=--⎩在原点的稳定性。

解 21

1

4523

I A λλλλλ+--=

=+++,两个特征根均具有负实部,

(3分) 系统大范围一致渐近稳定。(2分) 无大范围扣一分,无一致渐近扣一分。

2. (5分)11b ab b -⎛⎫

⎪--⎝⎭

能控性矩阵为 (2分)

1 rank 2

11det 1b ab b b ab b -⎛⎫

= ⎪--⎝⎭

-⎛⎫⇔ ⎪

--⎝⎭

210b ab =-+-≠ (5分)

3.(8分)在零初始条件下进行拉式变换得:

)()(2)()()(2)(3)(223S U S SU S U S S Y S SY S Y S S Y S ++=+++

1

231

2)()()(232+++++=

=∴S S S S S S U S Y S G (4分)

[]X

Y U X X 121100321100010.

=⎥⎥⎥⎦⎤

⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∴ (8分)

4.(5分)解:

[]B C

S G A SI --=1

)( (2分)

2

34

2

+--=

S S S (5分) 五,计算题

1. 1210c u ⎡⎤=⎢⎥⎣⎦,1

112201c u -⎡⎤=⎢⎥-⎣⎦

能控性矩阵满秩,所以系统能化成能控标准型。 (2分)

[][][]1111221122010101c p u -⎡⎤

===-⎢⎥-⎣⎦

[

][]1111212

2

2

2

1100p p A ⎡⎤==-=⎢⎥⎣⎦

1

12

211

12

211,11P P --⎡⎤⎡⎤

==⎢⎥⎢⎥-⎣⎦⎣⎦

(10分) 能控标准型为u x x ⎥⎦⎤

⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010..

(12分) 2. 解:11][)(---==A SI L e t At φ (2分)

⎥⎦

⎢⎣⎡+-+---=-==----------t t t

t t t t

t At

e e e

e e e e e A SI L e t 3232323211

326623][)(φ (8分) ∴系统零初态响应为 X(t)=0,34121)(32320)

(≥⎥

⎢⎣⎡-+-+-=-----⎰t e e e e d Bu e

t t t t t t A τττ (12分) 3. 解:因为能观性矩阵满秩,所以系统可观,可以设计状态观测器。 (2分)

令122E E E E ⎡⎤

⎢⎥=⎢⎥⎢⎥⎣⎦

, 代入系统得

()123120()011100101s

E sI A EC s

E s E --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--=---

⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝

⎭⎝⎭⎝⎭

123120

11101

s E E s E s ++=+--++32211132233122222s s s E s E s E E E s E =+++++++--- 322)223()3(32121213+--+-++++=E E E S E E S E S (7分)

理想特征多项式为

133)1()(233*+++=+=S S S S S F

列方程,比较系数求得

001E ⎡⎤

⎢⎥=⎢⎥⎢⎥⎣⎦

(10分)

全维状态观测器为

[]ˆˆx

A EC x Bu Ey =-++ (12分) 12020

ˆ01100,00111x u y --⎡⎤⎡

⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢

⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣

(14分)

试题

一,填空

1.输出方程是描述系统 和状态变量之间关系的方程。 2.状态变量的特点是 和完整性。

3.矩阵⎥⎦

⎤⎢⎣

⎡-=3210A 的对角形为 。

4.已知系统u u u

y y 222++=+ ,试求其状态空间最小实现 。 5.系统状态方程为:

21221x x x x x

+-== ,则系统的平衡状态为 。

二.选择题

1. 系统状态方程为[]x

y u x x

102150

02=⎥⎦

⎢⎣⎡+⎥⎦⎤⎢⎣

⎡--= ,则下列说法正确的事( )

A .系统即能控又能观测 B. 系统能控但不能观测

C. 系统即不能能控又不能观测

D. 系统不能控但能观测

2. 李雅普诺夫第二方法所涉及的稳定性理论中,任意一个系统的李雅普诺夫函数的选择是( )的。

A.根据李雅普诺夫方程求解出来

B.唯一

C.格式固定

D.不唯一 3. 状态转移矩阵))(3221t t t t -Φ-Φ(与的积是( )。

A.)(31t t +Φ

B. )(31t t -Φ

C. )(13t t -Φ

D. )(31t t --Φ 4.线性系统为

[]X y u X X 320201700020003=⎥⎥

⎥⎦⎤

⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=

它的状态( )既完全可控,又完全可观测。

A.1x

B. 2x

C. 3x

D. 以上均不是

三,判断题

1. 传递函数不仅适应于线性定常系统,也适应于时变系统.(

)

2. 系统状态方程为u

x x ⎥

⎤⎢⎣⎡+⎥⎦

⎤⎢⎣⎡--=113201 ,则系统是能控的。( ) 3. 对偶的两个系统传递函数和特征值均相同。(

)

4. 状态反馈不改变系统的能控性,但可能改变系统的能观性。( )

四,简答题

1. 判定系统112

21223x x x x x x =-+⎧⎨=--⎩在原点的稳定性。

2. 求使系统能控的参数a 、b 的关系式。

3.建立输入-输出高阶微分方程的状态空间表达式。

322y y y y u u u +++=++

4. 计算状态空间表达式的传递函数。

五,计算题

1. 已知系统 u x x ⎥⎦⎤

⎢⎣⎡+⎥

⎦⎤⎢⎣⎡=110011 试将其化为能控标准型。

2. 线性定常系统方程为

)0(115610=⎥⎦

⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=x u x x

当u(t)=1(t)时,求x(t).

3给定系统的状态空间表达式为

[]12020110,1001011--⎡⎤⎡⎤

⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦

x x u y x

设计一个具有特征值为 1

1 1---,,的全维状态观测器

1101a b x x u

⎛⎫⎛⎫

=+ ⎪ ⎪--⎝⎭⎝⎭

()011,10231x x u y x

⎛⎫⎛⎫

=+= ⎪ ⎪--⎝⎭⎝⎭

现代控制理论试卷答案3套

现代控制理论试卷 1 一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1)用独立变量描述的系统状态向量的维数是唯一。() (2)线性定常系统经过非奇异线性变换后,系统的能观性不变。() (3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。() (4)状态反馈不改变被控系统的能控性和能观测性。() (5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。() 二、(12分)已知系统 1001 010,(0)0 0121 x x x ⎛⎫⎛⎫ ⎪ ⎪ == ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭ ,求() x t. 三、(12分) 考虑由下式确定的系统: 2 s+2 (s)= 43 W s s ++ ,求其状态空间实现的能 控标准型和对角线标准型。 四、(9分)已知系统[] 210 020,011 003 x x y ⎡⎤ ⎢⎥ == ⎢⎥ ⎢⎥ - ⎣⎦ ,判定该系统是否完全能观?

五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性. []x y u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--= 六、(17分)已知子系统 1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥ -⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤ =+=⎢⎥⎢⎥-⎣⎦⎣⎦ 求出串联后系统的状态模型和传递函数. 七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤ ⎢⎥⎢⎥=-+⎢⎥⎢⎥ ⎢⎥⎢⎥-⎣⎦⎣⎦ 为完全能控时,待定参数的取值范围。 八、(8分)已知非线性系统 ⎩⎨⎧ --=+-=21122 11sin 2x a x x x x x 试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。

现代控制理论试题(详细答案)-现控题目

现代控制理论试题B 卷及答案 一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤ =+=⎢ ⎥⎢⎥-⎣⎦⎣⎦ 能控的状态变量个数是,能观测的状态变量个数是cvcvx 。 2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个) 解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。状态变量个数是2。…..(4分) 2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分) 1223 3131 835x x x x x x x u y x ===--+= …..….…….(1分) 写成 010*********x x u ⎡⎤⎡⎤ ⎢⎥⎢⎥=+⎢⎥⎢⎥ ⎢⎥⎢⎥--⎣⎦⎣⎦ …..….…….(1分) []100y x = …..….…….(1分) 二、1给出线性定常系统(1)()(), ()()x k Ax k Bu k y k Cx k +=+=能控的定义。(3分) 2已知系统[]210 020,011003x x y x ⎡⎤ ⎢⎥==⎢⎥ ⎢⎥-⎣⎦ ,判定该系统是否完全能 观?(5分) 解 1.答:若存在控制向量序列(),(1), ,(1)u k u k u k N ++-,时系统从第k 步的

状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。…..….…….(3分) 2. [][]320300020012 110-=⎥⎥ ⎥⎦ ⎤ ⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥ ⎥⎦ ⎤ ⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦ ⎤ ⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分) 三、已知系统1、2的传递函数分别为 2122211 (),()3232 s s g s g s s s s s -+==++-+ 求两系统串联后系统的最小实现。(8分) 解 112(1)(1)11 ()()()(1)(2)(1)(2)4 s s s s g s g s g s s s s s s -+++== ⋅=++--- …..….…….(5分) 最小实现为 []010,10401x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥⎣⎦⎣⎦ …..….…….(3分) 四、将下列状态方程u x x ⎥ ⎦ ⎤ ⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=11 4321 化为能控标准形。(8分)

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案 一、1 系统[]210,01021x x u y x ? ??? =+=????-???? &能控的状态变量个数是cvcvx ,能观测的状态变量个数是。 2试从高阶微分方程385y y y u ++=&&&&&求得系统的状态方程和输出方 程(4分/个) 解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。状态变量个数是2。…..(4分) 2.选取状态变量1x y =,2x y =&,3x y =&&,可得 …..….……. (1分) 1223 3131 835x x x x x x x u y x ===--+=&&& …..….…….(1分) 写成 010*********x x u ???? ????=+????????--???? & …..….…….(1分) []100y x = …..….…….(1分) 二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。 (3分) 2已知系统[]210 020,011003x x y x ?? ??==?? ??-?? &,判定该系统是否完 全能观?(5分)

解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-L ,时系统从第 k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于 0的有限数,那么就称此系统在第k 步上是能控的。若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。…..….…….(3分) 2. [][]320300020012 110-=?? ?? ? ?????-=CA ………..……….(1分) [][]940300020012 3202=?? ?? ? ?????--=CA ……..……….(1分) ????? ?????-=??????????=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2 分) 三、已知系统1、2的传递函数分别为 2122211 (),()3232 s s g s g s s s s s -+==++-+ 求两系统串联后系统的最小实现。(8分) 解 112(1)(1)11 ()()()(1)(2)(1)(2)4 s s s s g s g s g s s s s s s -+++== ?=++--- …..….……. (5分) 最小实现为

现代控制理论试卷及答案

现代控制理论试卷 一、简答题(对或错,10分) (1)描述系统的状态方程不是唯一的。 (2)用独立变量描述的系统状态向量的维数不是唯一的。 (3)对单输入单输出系统,如果1 ()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。 (4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。 (5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。 (6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。 (8)线性定常系统经过非奇异线性变换后,系统的可控性不变。 (9)用状态反馈进行系统极点配置可能会改变系统的可观测性。 (10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。 对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。 二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。(15分) 1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤ =+⎢⎥⎢⎥⎢⎥⎢⎥--⎣ ⎦⎣⎦⎣⎦⎣⎦ 12(0)0,(),0(0)1t x u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥ ⎣⎦ ⎣⎦ 三、设系统的传递函数为 ()10 ()(1)(2) y s u s s s s =++。试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。(15分) 四、已知系统传递函数 2()2 ()43 Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。(15分) 五、已知系统的动态方程为[]211010a x x u y b x ⎧⎡⎤⎡⎤ =+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩ ,试确定a ,b 值,使系统完全可控、完 全可观。(15分) 六、确定下述系统的平衡状态,并用李雅普诺夫稳定性理论判别其稳定性。(15分)

现代控制理论试卷及答案-总结

、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一 〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数. 〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现. 〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的. 〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和 矩阵A的特征值都具有负实部是一致的. 〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态 反馈使其稳定. 〔×〕 6. 对一个系统,只能选取一组状态变量; 〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输 入和输出无关; 〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的; 〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该 系统在任意平衡状态处都是稳定的; 〔×〕 10. 状态反馈不改变系统的能控性和能观性. 二、已知下图电路,以电源电压 u为输入量,求以电感中的电流和 电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输 出量的输出方程.〔10 分〕

解:〔1〕由电路原理得: 二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网 2 2 络的状态方程和输出方程,并绘制状态变量图. 解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量. 以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令: i L = x 1 , u c = x 2 ,由基尔霍夫电压定律可得电压方程为: • • y y 2 1 = - x x 21 + u 三、 〔每小题 10 分共 40 分〕基础题 〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕 Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1 + -1 …………4 分 不妨令 X (s)1 = 1 , X (s)2 = - 1 …………2 分 于是有 又 Y(s) U(s) = 1+ X (s)1 U(s)+ X (s) 2U(s) ,所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有 y = u + x + x …………2 分 1 2 最终的对角规 X 型实现为 则系统的一个最小实现为: =「|2 0 ]+「| 1 ] | u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」 U (s) s - 2 U (s) s + 1 从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:

现代控制理论试题与答案

现代控制理论 1.经典-现代控制区别: 经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程. 2.实现-描述 由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的. 3.对偶原理 系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置 4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定 第一章控制系统的状态空间表达式 1.状态方程:由系统状态变量构成的一阶微分方程组 2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式 3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述 4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为0 5.非奇异变换:x=Tz,z=T-1x;z=T-1A Tz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一 6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量 第二章控制系统状态空间表达式的解 1.状态转移矩阵:eAt,记作Φ(t) 2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ 第三章线性控制系统的能控能观性 1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控 2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b 3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的 4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为0 5.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型 6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的. 第五章线性定常系统综合 1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵 2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵 3.从输出到状态矢量导数x的反馈:A+GC 4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵 动态补偿器:引入一个动态子系统来改善系统性能 5.(1)状态反馈不改变受控系统的能控性 (2)输出反馈不改变受控系统的能控性和能观性 6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控

现代控制理论试题与答案

现代控制理论试题与答案 《现代控制理论参考答案》第一章答案1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式。解:系统的模拟结构图如下:系统的状态方程如 下:令,则所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。以电压为输入量,求以电感中的电流和电容上的电压 作为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。解:由图,令,输出量有电路原理可知:既得写成矢量矩阵形式为:1- 4两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。解:系统的状态空间表达式如下所示:1 -5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。解:令,则有相应的模拟结构图如下:1-6 (2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式‘画出其模拟结构图求 系统的传递函数解:(2)1-8求下列矩阵的特征矢量(3)解:A 的特征方程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和 W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-2

现代控制理论期末试题及答案

现代控制理论期末试题及答案 一、选择题 1. 以下哪项不是现代控制理论的基本特征? A. 多变量控制 B. 非线性控制 C. 自适应控制 D. 单变量控制 答案:D. 单变量控制 2. PID控制器中,P代表的是什么? A. 比例 B. 积分 C. 微分 D. 参数 答案:A. 比例 3. 动态系统的状态方程通常是以什么形式表示的? A. 微分方程 B. 代数方程

C. 积分方程 D. 线性方程 答案:A. 微分方程 4. 控制系统的稳定性可以通过什么分析方法来判断? A. 傅里叶变换 B. 拉普拉斯变换 C. 巴特沃斯准则 D. 极点分布 答案:C. 巴特沃斯准则 5. 控制系统的性能可以通过什么指标来评估? A. 驰豫时间 B. 超调量 C. 峰值时间 D. 准确度 答案:A. 驰豫时间 二、问答题 1. 说明PID控制器的原理和作用。

答:PID控制器是一种常用的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)组成。比例环节根据控制误差的大小来产生控制量,积分环节用于累积控制误差并增加控制量,微分环节用于预测控制误差的变化趋势并调整控制量。PID控制器的作用是通过调整上述三个环节的权重和参数,使得控制系统能够尽可能快速地响应控制信号,并且保持控制精度和稳定性。 2. 什么是状态空间法?简要描述其主要思想。 答:状态空间法是用于描述动态系统的一种方法。其主要思想是将系统的状态表示为一组变量的集合,通过对这些变量的微分方程建模来描述系统的动态行为。状态空间模型包括状态方程和输出方程,其中状态方程描述了系统状态的变化规律,输出方程描述了系统输出与状态之间的关系。通过求解状态方程和输出方程,可以得到系统的状态响应和输出响应,进而对系统进行分析和设计。 三、计算题 1. 给定一个具有状态方程和输出方程如下的系统,求解其状态和输出的完整响应。 状态方程: \[\dot{x} = Ax + Bu\] \[y = Cx + Du\] 其中,矩阵A为 \[A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}\]

现代控制理论基础题库(带答案)

现代控制理论基础题库 1、已知某系统的传递函数为:,以下状态空间描述正确的是(C) 2、控制理论的发展阶段为(A)。 A、经典控制理论、现代控制理论和鲁棒控制理论 B、经典控制理论、现代控制理论 C、经典控制理论、鲁棒控制理论 D、现代控制理论 3、下面关于线性定常系统的非奇异线性变换说法错误的是(C) A、对于线性定常系统,非奇异线性变换不改变系统的传递函数矩阵 B、对于线性定常系统,非奇异线性变换不改变系统的特征多项式

C、对于线性定常系统,非奇异线性变换不改变系统的状态空间描述 D、对于线性定常系统,非奇异线性变换不改变系统的特征值 4、状态方程是什么方程(B) A、高阶微分方程 B、一阶微分方程 C、代数方程 D、高阶差分方程 5、现代控制理论在整个控制理论发展中起到了什么作用?A A、承上启下 B、总结 C、开拓 D、引领 6、能完全描述系统动态行为的数学模型是(B) A、差分方程 B、状态空间表达式 C、微分方程 D、传递函数 7、输出方程是(C) A、一阶微分方程 B、高阶微分方程 C、代数方程 D、高阶差分方程 8、若某一系统的状态空间描述为:(单选) 则与其对应的传递函数为(B)

9、以下叙述错误的是(C) A、系统的状态空间模型包括状态方程和输出方程 B、状态空间模型不仅可以描述时不变系统,还可以描述时变系统 C、一个给定的系统只存在一组动态方程 D、状态空间模型存在多种等效的标准型 10、以下叙述正确的是(A) A、状态空间模型(A,B,C)的极点等于矩阵A的特征根 B、状态空间模型中,系统的输出是由微分方程决定的 C、如果系统存在多个状态,则系统可建立对角矩阵形式的状态空间模型 D、给定系统的状态微分方程,总能够求出状态的数学表达式。 11、某弹簧-质量-阻尼器机械位移系统如下图所示,图中,K为弹簧的弹性系数,M为质量块的质量,f为阻尼器的阻尼系数,y为质量块M的位移,也是系统的输出量。为建立其状态空间表达式,以下状态变量的选择方式正确的是(D)(单选)

(完整版)现代控制理论试卷答案与解析

现代控制理论试卷作业 一.图为R-L-C电路,设u为控制量,电感L上的支路电流 11 1212 22 121212 010 Y x U R R R R Y x R R R R R R ⎡⎤⎡⎤ ⎡⎤⎡⎤ ⎢⎥⎢⎥ =+ ⎢⎥⎢⎥ ⎢⎥⎢⎥ - ⎣⎦⎣⎦ +++ ⎢⎥⎢⎥ ⎣⎦⎣⎦ 和电容C上的电压 2 x为状态变 量,电容C上的电压 2 x为输出量,试求:网络的状态方程和输出方程(注意指明参考方向)。 解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。 以电感L上的电流和电容两端的电压为状态变量,即令: 12 , L c i x u x ==,由基尔霍夫电压定律可得电压方程为: 2221 R C x x L x •• +-= 1121 ()0 R x C x L x u •• ++-= 从上述两式可解出 1 x • , 2 x • ,即可得到状态空间表达式如下: 12 112 1 2 12 () () R R x R R L R x R R C • • ⎡ - ⎡⎤⎢+ ⎢⎥⎢ = ⎢⎥⎢ - ⎣⎦⎢ + ⎣ 12 1 1212 2 1212 ()() 11 ()() R R x R R L R R L u x R R C R R C ⎤⎡⎤ ⎥⎢⎥ ++ ⎡⎤ ⎥⎢⎥ + ⎢⎥ ⎥⎢⎥ ⎣⎦ -⎥⎢⎥ ++ ⎦⎣⎦ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 2 1 y y = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + - 2 1 1 2 1 2 1 1 R R R R R R R ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ 2 1 x x +u R R R ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + 2 1 2 二、考虑下列系统:

现代控制理论试题(详细答案)

现代控制理论试题 B 卷及答案 2 1 cvcvx , 一、 1 系统 x 2 xu, y 0 1 x 能控的状态变量个数是 0 1 能观测的状态变量个数是 cvcvx 。 2 试从高阶微分方程 y 3y 8 y 5u 求得系统的状态方程和输出方 程(4 分/ 个) 解 1 . 能控的状态变量个数是 2,能观测的状态变量个数是 1。状态变量个数是 2。⋯ .. (4 分) 2.选取状态变量 x 1 y , x 2 y , x 3 y ,可得 ⋯ .. ⋯ . ⋯⋯ . (1 分) x 1 x 2 x 2 x 3 ⋯.. ⋯. ⋯⋯ . (1 分) x 3 8x 1 3x 3 5u y x 1 写成 0 1 0 0 x 0 0 1 x 0 u ⋯.. ⋯. ⋯⋯ . (1 分) 8 0 3 5 y 1 0 0 x ⋯.. ⋯. ⋯⋯ . (1 分) 二、 1 给出线性定常系统 x( k 1) Ax( k) Bu( k), y(k) Cx (k) 能控的定义。 (3 分) 2 1 0 2 已知系统 x 0 2 0 x, y 0 1 1 x ,判定该系统是否完 0 0 3 全能观? (5 分)

解 1 .答:若存在控制向量序列 u (k ), u(k 1), , u(k N 1) ,时系统从第 k 步的状态 x(k) 开始,在第 N 步达到零状态,即 x( N ) 0 ,其中 N 是大于 0 的有限数,那么就称此系统在第k 步上是能控的。若对每一个 k ,系 统的所有状态都是能控的,就称系统是状态完全能控的,简称能 控。⋯ .. ⋯. ⋯⋯ . (3 分) 2. 2 1 0 CA 0110 2 0 0 2 3⋯⋯⋯.. ⋯⋯⋯. 0 0 3 (1 分) 2 1 0 CA20230 2 0 0 4 9 ⋯⋯.. ⋯⋯⋯.(1分) 0 0 3 C 0 1 1 U O CA 0 2 3 ⋯⋯⋯⋯⋯⋯ .. ⋯⋯⋯ . (1 分) CA20 4 9 rankU O 2 n ,所以该系统不完全能观⋯⋯ .. ⋯. ⋯⋯ .(2 分) 三、已知系统 1、 2 的传递函数分别为 g1 (s) s2 1 , g2 s 1 3s 2 ( s) 3s 2 s2s2 求两系统串联后系统的最小实现。(8 分)解 g(s) g1 ( s 1)(s 1) s 1 s 1 (s)g1( s) 1)(s 2) ( s 1)(s 2) s2 4 ( s ⋯.. ⋯.⋯⋯. (5 分) 最小实现为

(完整word版)现代控制理论试题(详细答案)

现代控制理论试题 B 卷及答案 2 1 0 cvcvx , 一、 1 系统 x 2 x u, y 0 1 x 能控的状态变量个数是 0 1 能观测的状态变量个数是 cvcvx 。 2 试从高阶微分方程 y 3y 8 y 5u 求得系统的状态方程和输出方 程(4 分/ 个) 解 1 . 能控的状态变量个数是 2,能观测的状态变量个数是 1。状态变量个数是 2。⋯ .. (4 分) 2.选取状态变量 x 1 y , x 2 y , x 3 y ,可得 ⋯ .. ⋯ . ⋯⋯ . (1 分) x 1 x 2 x 2 x 3 ⋯.. ⋯. ⋯⋯ . (1 分) x 3 8x 1 3x 3 5u y x 1 写成 0 1 0 0 x 0 0 1 x 0 u ⋯.. ⋯. ⋯⋯ . (1 分) 8 0 3 5 y 1 0 0 x ⋯.. ⋯. ⋯⋯ . (1 分) 二、 1 给出线性定常系统 x( k 1) Ax(k ) Bu (k), y(k) Cx (k) 能控的定义。 (3 分) 2 1 0 2 已知系统 x 0 2 0 x, y 0 1 1 x ,判定该系统是否完 0 0 3 全能观? (5 分)

解 1 .答:若存在控制向量序列u (k ), u(k 1), , u( k N 1) ,时系统从第k 步的状态x( k)开始,在第 N 步达到零状态,即x( N ) 0 ,其中N是大于0 的有限数,那么就称此系统在第k 步上是能控的。若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能 控。⋯ .. ⋯. ⋯⋯ . (3 分) 2. 2 1 0 CA 0110 2 0 0 2 3 ⋯⋯⋯.. ⋯⋯⋯. 0 0 3 (1 分) 2 1 0 CA2 0230 2 0 0 4 9⋯⋯..⋯⋯⋯.(1分) 0 0 3 C 0 1 1 U O CA 0 2 3 ⋯⋯⋯⋯⋯⋯..⋯⋯⋯.(1分) CA 2 0 4 9 rankU O 2 n ,所以该系统不完全能观⋯⋯..⋯.⋯⋯.(2 分) 三、已知系统 1、 2 的传递函数分别为 g1 (s) s2 1 , g2 s 1 3s 2 ( s) 3s 2 s2 s2 求两系统串联后系统的最小实现。(8 分)解 g(s) g1 ( s 1)(s 1) s 1 s 1 (s)g1( s) 1)(s 2) ( s 1)(s 2) s2 4 ( s ⋯.. ⋯.⋯⋯. (5分) 最小实现为

相关文档
最新文档