因式分解的一般步骤

因式分解的一般步骤
因式分解的一般步骤

因式分解

因式分解(factorization)

因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

⑴提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式:a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项

能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/

b ac=k bd=n

c /-----\

d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式

=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,

x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立

因式分解的十二种方法

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:

1、提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x^3 -2x^2 -x(2003淮安市中考题)

x^3 -2x^2 -x=x(x^2 -2x-1)

2、应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a^2 +4ab+4b^2 (2003南通市中考题)

解:a^2 +4ab+4b^2 =(a+2b)

3、分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到

a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m^2 +5n-mn-5m

解:m^2+5n-mn-5m= m^2-5m -mn+5n

= (m^2 -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、十字相乘法

对于mx^2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x^2 -19x-6

分析:

1 -3

7 2

2-21=-19

解:7x^2 -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x^2 +3x-40

解x^2 +3x-40

=x^2+3x+2.25-42.25

=(x+1.5)^2-(6.5)^2

=(x+8)(x-5)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x^4 -x^3 -6x^2 -x+2

解: 2x^4 -x^3 -6x^2 -x+2 =2x^4-2x^2-2(2x^2)-x^3+x-2x+2 =2x^2 (x^2-1)- 2(2x^2)- x(x^2-1)-2(x-1)

=(x^2-1)(2x^2-x)-2(2x^2)- 2(x-1)

=x(x^2-1)(2x-1)-2(2x^2+x-1)

=x(x+1)(x-1)(2x-1)-2(2x-1)(x+1)

=(2x-1)(x+1)[x(x-1)-2]

=(2x-1)(x+1)(x^2-x-2)

=(2x-1)(x+1)(x-2)(x+1) 或=(2x-1)(x-2)(x+1)^2

8、求根法

令多项式f(x)=0,求出其根为x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )

例8、分解因式2x^4 +7x^3 -2x^2 -13x+6

解:令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0

通过综合除法可知,f(x)=0根为1/2 ,-3,-2,1

则2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、图像法

令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点

x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=

f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )

例9、因式分解x^3 +2x^2 -5x-6

解:令y= x^3 +2x^2 -5x-6

作出其图像,与x轴交点为-3,-1,2

则x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2)

10、主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a (b-c)+b (c-a)+c (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)

=(b-c) [a -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、利用特殊值法

将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x^3 +9x^2 +23x+15

解:令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5),验证后的确如此。

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x^4 -x^3 -5x^2 -6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x^4 -x^3 -5x^2 -6x-4=(x^2 +ax+b)(x^2 +cx+d)

= x^4 +(a+c)x^3 +(ac+b+d)x^2 +(ad+bc)x+bd

所以解得

则x^4 -x^3 -5x^2 -6x-4 =(x +x+1)(x -2x-4)

初学因式分解的“四个注意”

因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既

可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。

因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a -b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?

如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,

即a=c,△abc为等腰三角形。

例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn +18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2[3(x-1)-4p]=2p(x-1)2(3x-4p-3)的错误。

例4 在实数范围内把x4-5x2-6分解因式。

解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的

第九讲 因式分解 (添拆项与最值)

第八讲 因式分解(添拆项与最值) 知识点回顾: 1、因式分解:因式分解就是把一个多项式变为几个整式的积的形式。 2、因式分解的方法: (1)提公因式法,即ma+mb+mc=m(a+b+c); (2)运用公式法,平方差公式: ()()b a b a b a -+=-2 2 ; 完全平方公式:222b ab a ++=()2 b a +和)(b a b ab a -= +-2 222 (3)十字相乘法:对于二次三项式2x Px q ++,若能找到两个数a 、b ,使, ,a b p a b q +=???=? 则就有22()()()x Px q x a b x ab x a x b ++=+++=++. 注:若q 为正,则a ,b 同号;若q 为负,则a ,b 异号; 立方和差公式: 典型例题: 例1(1)计算 29982 +2998×4+4= 。 (2)若442 -+x x 的值为0,则51232 -+x x 的值是________。 例2:分解因式: 2 2 288a axy a y x -+ 4a 2(x -y )+9b 2(y -x ) 例3:已知a –b = 1 ,252 2 =+b a 求ab 和a+b 的值。 例4 代数式2x 2+4x+5有最 值,是 ;﹣x 2 +3x 有最 值,是 例 5 题目:分解因式:x 2﹣120x +3456. 分析:由于常数项数值较大,则常采用将 x 2﹣120x 变形为差的平方的形式进行分解,这样简便易行. (1)x 2﹣140x +4875 (2)4x 2﹣4x ﹣575. 三、强化训练: 1、已知x +y =6,xy =4,则x 2 y +xy 2 的值为 . 2、分解因式: (2a -b )2-(a +b )2 -3ma 3+6ma 2-3ma a 2(m -n )+b 2 (n -m ) 4416n m - (8)4224817216b b a a +- 4、已知:a=2999,b=2995,求65522 2 -+-+-b a b ab a 的值。 5、利用因式分解计算 ?? ? ??-??? ??-??? ??-??? ??-??? ?? -2222211......511411311211n 6、已知a 为任意整数,且()2 2 13a a -+的值总可以被n 整除(n 为自然数,且n 不等于1),则n 的值为 。 7、已知x(x-1)-(y x -2 )=-2, xy y x -+2 2 2的值。 8、把下列各式分解因式: (1)4x 3﹣31x +15; (2)2a 2b 2+2a 2c 2+2b 2c 2﹣a 4﹣b 4﹣c 4; (3)x 5+x +1; (4)x 3+5x 2+3x ﹣9;

因式分解法(提公因式法、公式法)

因式分解法(提公因式 法、公式法) -CAL-FENGHAI.-(YICAI)-Company One1

【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是 正的,并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公 因式,这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【典例分析】 例1.分解下列因式: (1)2 2321084y x y x y x -+ (2)233272114a b c ab c abc --+

因式分解基础练习

因式分解基础练习公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

2 2y 2-xy -x 3因式分解练习题 (一)选择题 1、下列各式的变形中,是因式分解的为( ) A 、bx ax b a x -=-)( B 、222)1)(1(1y x x y x ++-=+- C 、)1)(1(12-+=-x x x D 、c b a x c bx ax ++=++)( 2、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是( ) A 、46-b B 、64b - C 、46+b D 、46--b 3、下列各式是完全平方式的是( ) A 、41 2+-x x B 、21x + C 、1++xy x D 、122-+x x 4、把)2()2(2a m a m -+-分解因式是( ) A 、 ))(2(2m m a +- B 、 ))(2(2m m a -- C 、m(a-2)(m-1) D 、m(a-2)(m+1) 5、下列多项式中,含有因式)1(+y 的是( ) A 、2232x xy y -- B 、22)1()1(--+y y C 、)1()1(22--+y y D 、1)1(2)1(2++++y y 6、分解因式14-x 得( ) A 、)1)(1(22-+x x B 、22)1()1(-+x x C 、)1)(1)(1(2++-x x x D 、3)1)(1(+-x x 7、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( ) A 、1,3-==c b B 、2,6=-=c b C 、4,6-=-=c b D 、6,4-=-=c b 8、c b a 、、是△ABC 的三边且bc ac ab c b a ++=++222,则△ABC 的形状是 ( ) A 、直角三角形 B 、等腰三角形 C 、等腰直角三角形 D 、等边三角形 (二)分解因式(每题10分,共60分) (1) 2m(a-b)-3n(b-a) (2)

因式分解分类练习经典全面

因式分解练习题(提取公因式) 专项训练一:确定下列各多项式的公因式。 1、ay ax + 2、36mx my - 3、2410a ab + 4、2155a a + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 8、()()2 x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。 1、22____()R r R r ππ+=+ 2、222(______)R r πππ+= 3、2222121211 ___()22 gt gt t t +=+ 4、2215255(_______)a ab a += 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()2 2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。 1、nx ny - 2、2a ab + 3、3246x x - 4、282m n mn + 5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+ 8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+ 11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 14、432163256x x x --+ 专项训练五:把下列各式分解因式。 1、()()x a b y a b +-+ 2、5()2()x x y y x y -+- 3、6()4()q p q p p q +-+ 4、()()()()m n P q m n p q ++-+- 5、2()()a a b a b -+- 6、2()()x x y y x y --- 7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+ 9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+---

活用配方法分解因式

活用配方法分解因式 陈怀东 配方法是数学中极其重要的一个方法。在代数式中,利用添项的方法,给原多项式配上适当的部分,使添项后的多项式的一部分成为一个完全平方式,这种方法叫做配方法。 配方法的难点是配方,要求学生必须熟练掌握公式2 22b ab a +±,判断什么是:“a ”或“b ”,或“ab ”,怎样从ab a 22、这两项去找出“b ”,或“从22b a 、这两项去找出ab 2”,或“从ab 2去找出2a 和2 b ”。同学们要熟练掌握这些基本方法,从而做到心中有数,配方有路可循。 应用配方法分解因式,常能将多项式配成2 2N M -的形式并应用开方差公式分解。 例1 分解因式8612942 2+++-b a b a 分析 第一、三项,第二、四项分别结合后再配以恰当的常数分别构成完全平方公式,进而两者又构成一平方差,因此拆常数项198-=即可。 解:原式)169()9124(2 2 +--++=b b a a ) 432)(232()13()32(2 2+-++=--+=b a b a b a 例2 分解因式4 2 2 4 n n m m ++ 分析 此式中各项均为平方式,可采用添项法将式中某一部分配方,构造平方差公式。 解:原式2 2 4 2 2 4 )2(n m n n m m -++= 2 2 22 )()(mn n m -+= ))((2 2 2 2 mn n m mn n m -+++= 例3 分解因式 )2)(2()(22+--+-n m mn t n m t 分析 将多项式中前两项t n m t )(22 +-进行配方,添上2 2 )()(n m n m +-+即可分组分解。 解:原式)2)(2()()()(22 2 2 +--+-+++-=n m mn n m n m t n m t ]4)(2)[()]([2 2 2 2 mn n m mn n m n m n m t --+++-+-= ) 2)(2() ()(] )()(2)[()(2 2 222mn m t mn n t mn n m n m t mn mn n m n m n m t --+-=+----=+?-+----= 例4 分解因式 42224)()()(b a b a b a -+-++ 分析:此题中只含b a +和b a -两个式子,可分别运用和差换元后再考虑配方。 解:设t b a s b a =-=+,,则 原式2242244224 )2(t s t t s s t t s s -++=++= )] )(()())][()(()()[() )(()()(222222222 222b a b a b a b a b a b a b a b a st t s st t s st t s -+--++-++-++=-+++=-+= )3)(3(2 2 2 2 b a b a ++=

因式分解一_提取公因式法和公式法_超经典

因式分解(一) ——提取公因式与运用公式法 【学习目标】(1)让学生了解什么是因式分解; (2)因式分解与整式的区别; (3)提公因式与公式法的技巧。 【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的, 并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式, 这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【经典例题】 例1、找出下列中的公因式: (1) a 2b ,5ab ,9b 的公因式 。 (2) -5a 2,10ab ,15ac 的公因式 。 (3) x 2y(x -y),2xy(y -x) 的公因式 。

因式分解基础习题

因式分解 提公因式法 提公因式法常用的变形:a -b =-(b -a), (a -b)n =??? (b -a)n (n 为偶数)-(b -a)n (n 为奇数). 例1: (1)ma+mb (2)4kx -8ky (3)5y 3+20y 2 (4)a 2b -2ab 2+ab 同步练习 (1)2a -4b; (2)ax 2+ax -4a; (3)3ab 2-3a 2b; (4)2x 3+2x 2-6x; (5)7x 2+7x+14; (6)-12a 2b+24ab 2; (7)xy -x 2y 2-x 3y 3; (8)27x 3+9x 2y.

例2: (1)a(x-3)+2b(x-3);(2)4(x+y)3-6(x+y)2同步练习 (1)x(a+b)+y(a+b) (2)3a(x-y)-(x-y) (3)6(p+q)2-12(q+p) (4)8(a-b)4+12(a-b)5 例3: (1)2-a=__________(a-2); (2)y-x=__________(x-y); (3)b+a=__________(a+b); (4)(b-a)2=__________(a-b)2; 同步练习 (1)a(x-y)+b(y-x); (2)6(m-n)3-12(n-m)2. (4)2(y-x)2+3(x-y) (5)mn(m-n)-m(n-m)2

(6)1.5(x-y)3+10(y-x)2

平方差公式法平方差公式:a2-b2=(a+b)(a-b) 例1:把下列各式分解因式: (1)x2-16; (2)9 m 2-4n2;(3)9a2- 1 4 b2. 同步练习 (1)a2b2-m2 (2)25-16x2; (3)a2-81 (4)36-x2 (5)1-16b2 (6)m 2-9n2 (7)0.25q2-121p2 (8)169x2-4y2

一元二次方程配方法-公式法-因式分解法

一元二次方程的根 一元二次方程的解也叫做一元二次方程的根 因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1:下面哪些数是方程0121022 =++x x 的根? —4、—3、—2、—1、0、1、2、3、4 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可. 复习 ()222 2b ab a b a ++=+ 2222)(b ab a b a +-=- 根据公式完成下面的练习: (1)()2 2____________8-→+-x x x (2)()2 2 ______3______129+→++x x x (3)()2 2____________+→++x px x (4) ()2 2 ____________6+→++x x x (5)()2 2____________5-→+-x x x (6) ()2 2 ____________9-→+-x x x 例2:解方程:2963=++x x 2532 =-x x 解:由已知,得:()232 =+x 解:方程两边同时除以3,得3 2352 =- x x 直接开平方,得:23±=+x 配方,得2 2 2 65326535??? ??+=?? ? ??+-x x 即23=+x ,23-=+x 即 3649652 =??? ? ? -x ,6765±=-x ,6765±=x 所以,方程的两根231+ -=x ,232--=x 所以,方程的两根267651=+= x ,3 167652-=-=x 像这种求出一元二次方程的根的方法叫做配方法。 练一练: (1)982=+x x (2)015122 =-+x x (3)044 12 =--x x (4) 03832=-+x x (5)08922 =+-x x (6) ()x x 822 =+

因式分解经典题与解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的_________. A、提取公因式B.平方差公式 C、两数和的完全平方公式D.两数差的完全平方公式 (2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解. 4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数围)的整数值a,并且将其进行因式分解. 5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.

《公式法因式分解》教学设计

《公式法因式分解》教学设计 永年县第八中学——胡平亮 一、教学内容:冀教版七年级数学第十一章公式法分解因式 二、教学目标: 知识与技能 1、经历逆用平方差公式的过程. 2、会运用平方差公式,并能运用公式进行简单的分解因式. 过程与方法 1、在逆用平方差公式的过程中,培养符号感和推理能力. 2、培养学生观察、归纳、概括的能力. 情感与价值观要求: 在分解过程中发现规律,并能用符号表示,从而体会数学的简捷美;让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战;勇于探索的精神和善于观察、大胆创新的思维品质。 三、教学重点: 利用平方差公式进行分解因式 四、教学难点: 领会因式分解的解题步骤和分解因式的彻底性。 五、教学准备: 深研课标和教材,分析学情,制作课件 六、教学过程; 一、知识回顾 1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? (1)、(2x-1)2=4x2-4x+1 否 (2)、 3x2+9xy-3x=3x(x+3y-1) 是 (3)、4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 否 2、把下列各式进行因式分解

(1). a3b3-a2b-ab (2)(3x+y)(3x-y) (3)、(x+5)(x-5) 利用一组整式的乘法运算复习平方差公式,为探究运用平方差公式进行分解因式打下基础。 二、导入新课: 你能把多项式:x2 -25、9x2 -y2分解因式吗? 利用一组运用平方差公式分解因式的习题,引导学生利用逆向思维去探究如何分解 a2- b2类的二次二项式。学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。 三、探究与交流 a2- b2=(a+b)(a-b) (1)用语言怎样叙述公式? (2)公式有什么结构特征? (3)公式中的字母a、b可以表示什么?引导学生观察平方差公式的结构特征, 学生在互动交流中,既形成了对知识的全面认识,又培养了观察、分析能力以及合作交流的能力。 判断:下列多项式能不能运用平方差公式分解因式? (1) m2-1 (2)4m2-9 (3)(3)4m2+9 (4)(4)x2-25y + (5) -x2-25y2 (6) -x2-25y2 通过这一组判断,使学生加深理解和掌握平方差公式的结构特征,既突出了重点,也培养了学生的应用意识。 四、体验新知: (A)通过自学例1: 分解因式(1)25-16x2 (2)9a2 -1/4b2 引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。 要让学生明确: (1)要先确定公式中的a和b; (2)学习规范的步骤书写。 (B)例2、分解因式9(m+n)2-(m-n)2

因式分解基础测试题含答案

因式分解基础测试题含答案 一、选择题 1.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+- 【答案】C 【解析】 【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()2 1x xy x x x y ++=++,故B 选项错误; C. ()()()2 x x y y y x x y -+-=- ,故C 选项正确; D. 244x x -+=(x-2)2,故D 选项错误, 故选C. 【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 2.下列各式中,由等式的左边到右边的变形是因式分解的是( ) A .(x +3)(x -3)=x 2-9 B .x 2+x -5=(x -2)(x +3)+1 C .a 2b +ab 2=ab(a +b) D .x 2+1=x 1()x x + 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A 、是整式的乘法,故A 错误; B 、没有把一个多项式转化成几个整式积的形式,故B 错误; C 、把一个多项式转化成了几个整式积的形式,故C 正确; D 、没有把一个多项式转化成几个整式积的形式,故D 错误; 故选:C . 【点睛】 本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 3.下列各式分解因式正确的是( ) A .22()()()(1)a b a b a b a b +-+=++- B .236(36)x xy x x x y --=-

青岛版九年级数学上册用因式分解法解一元二次方程练习题

4.4 用因式分解法解一元二次方程 一、填空题 1.如果两个因式的积是零,那么这两个因式至少有__________等于零;反之,如果两个因式中有__________等于零,那么它们之积是__________. 2.方程x 2-16=0,可将方程左边因式分解得方程__________,则有两个一元一次方程___________或 ___________,分别解得:x 1=_________,x 2=_________. 3.填写解方程3x(x+5)=5(x+5)的过程 解:3x(x+5)__________=0 (x+5)(__________)=0 x+5=__________或__________=0 ∴x 1=__________,x 2=__________ 4.用因式分解法解一元二次方程的关键是 (1)通过移项,将方程右边化为零 (2)将方程左边分解成两个__________次因式之积 (3)分别令每个因式等于零,得到两个一元一次方程 (4)分别解这两个__________,求得方程的解 5.x 2-(p+q)x ≠qp=0因式分解为____________. 6.用因式分解法解方程9=x 2-2x+1 (1)移项得__________; (2)方程左边化为两个平方差,右边为零得__________; (3)将方程左边分解成两个一次因式之积得__________; (4)分别解这两个一次方程得x 1=__________,x 2=__________. 二、选择题 1.方程x 2-x=0的根为 A.x=0 B.x=1 C.x 1=0,x 2=1 D.x 1=0,x 2=-1 2.方程x(x -1)=2的两根为 A.x 1=0,x 2=1 B.x 1=0,x 2=-1 C.x 1=1,x 2=-2 D.x 1=-1,x 2=2 3.用因式分解法解方程,下列方法中正确的是 A.(2x -2)(3x -4)=0 ∴2-2x=0或3x -4=0 B.(x+3)(x -1)=1 ∴x+3=0或x -1=1 C.(x -2)(x -3)=2×3 ∴x -2=2或x -3=3 D.x(x+2)=0 ∴x+2=0 4.方程ax(x -b)+(b -x)=0的根是 A.x 1=b,x 2=a B.x 1=b,x 2=a 1 C.x 1=a,x 2=b 1 D.x 1=a 2,x 2=b 2 5.已知a 2-5ab+6b 2=0,则a b b a 等于 21331D.2 31 321C.2 31B.3 21A.2或或

公式法因式分解知识点讲解及练习

公式法因式分解知识点讲解及练习 1.平 方 差公式: )b a )(b a (b a 22-+=- 因式分解 22)b a )(b a (b a -=-+ 整式乘法 2、分解因式的一般步骤为: (1)若多项式各项有公因式,则先提取公因式。 (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。 (3)每一个多项式都要分解到不能再分解为止。 3、分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分 解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目 的。例如:22a b a b -+-= 22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 4、原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。 5、有些多项式用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。 题型一 公式法因式分解 例 1将下列各式因式分解 225-36x 22916b a - 点评::能用平方差公式因式分解的多项式的特征:(1)有且只有两个平方项: (2)两个平方项异号。 知识梳理

巩 固1、计算 (1)22758258- (2)22429171- (3)223.59 2.54?-? 2、已知0001.03,100003=-=+b a b a ,求229a b -的值。 3、把多项式()()2 249b a b a --+分解因式 * 平方差公式中字母b a 、不仅可以表示数,而且也可以表示其他代数式。 例2判断下列各式是不是完全平方式 (1) 222y xy x ++ (2)2244y xy x ++ (3)226b ab a +- (5)222y x xy ++- (6)2242b ab a ++ (4) 412++x x

因式分解基础练习(1)

提公因式法 提公因式法常用的变形:a -b =-(b -a), (a -b)n =??? (b -a)n (n 为偶数)-(b -a)n (n 为奇数). 例1:【基础题型】 (1)ma+mb (2)4kx -8ky (3)5y 3+20y 2 (4)a 2b -2ab 2+ab 【巩固练习】 (1)2a -4b ; (2)ax 2+ax -4a ; (3)3ab 2-3a 2b ; (4)2x 3+2x 2-6x ; (5)7x 2+7x +14; (6)-12a 2b +24ab 2; (7)xy -x 2y 2-x 3y 3; (8)27x 3+9x 2y . 例2:【培优题型一】 (1)a (x -3)+2b (x -3); (2)4(x+y)3-6(x+y)2 【巩固练习】: (1)x (a+b )+y (a+b ) (2)3a (x -y )-(x -y ) (3)6(p+q )2-12(q+p ) (4)8(a-b)4+12(a-b)5 例3:【培优题型二】 (1)2-a =__________(a -2); (2)y -x =__________(x -y ); (3)b +a =__________(a +b ); (4)(b -a )2=__________(a -b )2; 【巩固练习】: (1)a (x -y )+b (y -x ); (2)6(m -n)3-12(n -m)2. (3)a (m -2)+b (2-m ) (4)2(y -x )2+3(x -y ) (5)mn (m -n )-m (n -m )2 (6)1.5(x -y )3+10(y -x )2 (7)m (m -n )(p -q )-n (n -m )(p -q ) (8)(b -a )2+a (a -b )+b (b -a )

配方法因式分解

配方法因式分解集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

§2.3运用配方法的因式分解法 【学习目标】 1. 理解掌握运用配方法进行因式分解; 2. 能根据具体情况灵活运用各种方法进行因式分 解。 【重点、难点】 1. 配方法的运用方法; 2. 根据具体情况灵活选择方法进行因式分解 【新课引入】 1. 把下列各多项式因式分解: 1)962-+x x ;2)2842--x x 小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A 2—B 2 的形式,然后要平方差公式继续分解。 【例题选讲】 例1. 把下列各多项式因式分解: 1)12366+--x y x ;2)422497y y x x +-;★3) ab b ax x 2222+--

例2.把下列各多项式因式分解: 1)362025422--+ab b a ;2)16)5(6)5(222--+-x x x x 说明:把一个多项式因式分解的基本步骤: 1) 如果多项式各项有公因式,那么先提取公 因式; 2) 如果多项式各项没有公因式,那么可以尝 试运用公式来分解; 3) 如果上述两种方法不能分解,那么可以尝 试分组或十字相乘法或配方法来分解; 4) 分解因式时,必须进行到每一个多项式因 式都不能再分解为止。 【巩固练习】 把下列各多项式因式分解: 1)18724--x x ;2)22484n mn mx x -+- 【小结】 把一个多项式因式分解的基本方法: 提取公因式法、公式法、分组分解法、十字相乘法和配方法 【课后练习】

因式分解与配方法练习题

分解因式 1、1522--x x ; 2、2 265y xy x +-. 3、3522--x x ; 4、3832-+x x . 5、91024+-x x ; 6、 22157x x ++ 7、 2384a a -+ 8、2 61110y y -- 9、2252310a b ab +- 10、222231710a b abxy x y -+ 11、 22 712x xy y -+ 12、 42718x x +- 13、 22483m mn n ++ 14、532 51520x x y xy -- 15、672+-x x ; 16、1232-+x x ; 17、652-+x x ; 18、9542--x x ; 19、823152+-x x ; 20、121124-+x x 21、6724+-x x ; 22、36524--x x ; 23、4 22416654y y x x +-; 24、633687b b a a --; 25、234456a a a --; 26、2224)3(x x --; 27、9)2(2 2--x x ; 28、 2222)332()123(++-++x x x x 29、60)(17)(222++-+x x x x ; 30、8)2(7)2(2 22-+-+x x x x ; 31、48)2(14)2(2++-+b a b a . 32、 2576x x +-)(2)(5)(723y x y x y x +-+-+;

33、120)8(22)8(222++++a a a a . 34、90)242)(32(2 2+-+-+x x x x . 35、653856234++-+x x x x . 36、655222-+-+-y x y xy x 37、 a 2-7a+6; 38、8x 2+6x -35; 39、18x 2-21x+5; 40、 20-9y -20y 2; 41、2x 2+3x+1; 42、2y 2+y -6; 43、6x 2-13x+6; 44、3a 2-7a -6; 45、6x 2-11x+3; 46、4m 2+8m+3; 47、10x 2-21x+2; 48、8m 2-22m+15; 49、4n 2+4n -15; 50、6a 2+a -35; 51、5x 2-8x -13; 52、4x 2+15x+9; 53、15x 2+x -2; 54、6y 2+19y+10; 55、7(x -1) 2+4(x -1)-20; 56、.=-+1032x x __________. 57.=--652m m (m +a )(m +b ). a =__________,b =__________. 58.=--3522 x x (x -3)(__________). 59.+2x ____=-22y (x -y )(__________). 60.22____)(____(_____)+=++a m n a . 61.当k =______时,多项式k x x -+732有一个因式为(__________).

45.3.2因式分解公式法(第1课时)

14.3.2公式法导学案(第1课时) 备课时间: 主备:张洪波 高永爱 审核:高永爱 使用时间: 【学习目标】 1.运用平方差公式分解因式,能说出平方差公式的特点. 2.会用提公因式法与平方差公式法分解因式. 3.会两次运用平方差公式分解因式,知道因式分解必须进行到不能分解为止. 【学习重难点】 学习重点:用平方差公式法进行因式分解. 学习难点:把多项式进行必要变形,灵活运用平方差公式分解因式 【自主学习】 1、对于等式x 2+x = x (x+1): 1) 如果从左到右看,是一种什么变形? 2) 什么叫因式分解?这种因式分解的方法叫什么? 3) 如果从右到左看,是一种什么变形? 4) 因式分解和整式乘法是两种互为_______的变形. 【合作探究】 探究一: 1.计算:(1)(x-1)(x+1)=_________;(2)(y+4)(y-4)=_______ 2.根据1题的结果分解因式:(1)21_____x -=;(2)216________y -= 3.你能将22a b -进行因式分解吗?你是如何思考的? 分析:要将22a b -进行因式分解,可以发现它_________公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的 ____________ 形式,所以用平方差公式可以写成如下 形式:

结论:多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法。 拓展延伸: 1.把一个单项式写成平方的形式: (1)24a =( )2;(2)40.16a =( )2;(3)221.21a b =( )2; 例1:分解因式:(1);249x -; (2)22()()x p x q +-+ (3).22221.1b b a - 结论:(1)中的_______(2)中的________和(3)中的________相当于平方差公式中的a ;(1)中的______(2)中的_________和(3)中的__________相当于平方差公式中的b ,这说明公式中的a 和b 可以表示一个数,也可以表示一个单项式,或是多项式,只要符合公式的特点( )()22-,就可以运用公式分解因式. 总结平方差公式的特点: ①左边是二项式,每项都是 的形式,两项的符号 . ②右边是两个多项式的 ,一个因式是两数的 ,另一个因式是这两数的 . 例2:因式分解:(1)44x y - ; (2)3a b ab -; 【尝试应用】 1.口答:①24x -=_________ ②29t -= ③21649____m -= ④2254______x -+= 2.因式分解: (1)22125 a b -; (2)2294a b -; (3)24x y y -;

配方法因式分解

配方法因式分解(总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

3 §2.3运用配方法的因式分解法 【学习目标】 1. 理解掌握运用配方法进行因式分解; 2. 能根据具体情况灵活运用各种方法进行因式分解。 【重点、难点】 1. 配方法的运用方法; 2. 根据具体情况灵活选择方法进行因式分解 【新课引入】 1. 把下列各多项式因式分解: 1)962-+x x ; 2)2842 --x x 小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A 2—B 2的形式,然后要平方差公式继续分解。 【例题选讲】 例1. 把下列各多项式因式分解: 1)12366+--x y x ; 2)422497y y x x +-; ★3)ab b ax x 2222+-- 例2. 把下列各多项式因式分解: 1)362025422--+ab b a ; 2)16)5(6)5(2 22--+-x x x x 说明:把一个多项式因式分解的基本步骤: 1) 如果多项式各项有公因式,那么先提取公因式; 2) 如果多项式各项没有公因式,那么可以尝试运用公式来分解; 3) 如果上述两种方法不能分解,那么可以尝试分组或十字相乘法或配方法来分解; 4) 分解因式时,必须进行到每一个多项式因式都不能再分解为止。 【巩固练习】

4 把下列各多项式因式分解: 1)18724--x x ; 2)2 2484n mn mx x -+- 【小结】 把一个多项式因式分解的基本方法: 提取公因式法、公式法、分组分解法、十字相乘法和配方法 【课后练习】 把下列各多项式因式分解: 1)y xy x x 621552-+-; 2 ) 432234ab b a b a b a --+; 3)142222---+xy y x y x

因式分解—公式法

14.3.2 公式法(平方差公式) 授课时间: 教学目标: 1.知识与技能:会应用平方差公式进行因式分解,发展学生推理能力。 2.过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。 3.情感、态度与价值观: 培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。 教学重点:掌握平方差公式的特点及运用平方差公式进行因式分解的方法。 教学难点:提取公因式与平方差公式结合进行因式分解的思路和方法。 教学过程: (一) 复习提问: 1. 讲评上节课作业,复习用提取公因式法分解因式。 2. 计算:(1)))((b a b a -+; (2))3)(3(-+a a ; (3))35)(35(y x y x -+; (4))43 1)(431(n m n m +-。 (设计意图:通过以上练习,复习用平方差公式进行整式的乘法计算,进一步引导学生理解整式的乘法与因式分解的关系) (二)讲解新课: 我们知道,整式乘法与因式分解相反,因此,利用这种关系,可以得到因式分解的方法,如果把乘法公式反过来,就可以用来把某些多项式分解因式, 这种分解因式的方法叫做运用公式法,今天我们学习公式中的一种。 板书“平方差公式”。 把乘法公式22))((b a b a b a -=-+,反过来,就得到))((22b a b a b a -+=-, 这就是说,两个数的平方差,等于这两个数的和与这两个数的差的积。 公式特征:二项式、差的形式、两项分别是平方数或平方式,符合此特征的二项式可用平方差公式进行因式分解,分解为这两个底数的和与这两个底数的差的积。解题的关键在于找出这两项的底数,相当于公式中的a 、b 。 如:把22925y x -进行因式分解,因为22)5(25x x =,22)3(9y y =,底数分别为x 5、y 3,则22925y x -分解为)35)(35(y x y x -+。 下面我们举例说明,如何利用平方差公式分解因式:

相关文档
最新文档