平面向量在解析几何中的应用

平面向量在解析几何中的应用
平面向量在解析几何中的应用

平面向量在解析几何中的应用

-----高三专题复习课教学案例

福建省福州格致中学宋建辉

一、引言:

平面向量是高中数学的新增内容,也是新高考的一个亮点。正因为如此,在2004年3月25日在校教学公开周中开设了《平面向量在解析几何中的应用》高三专题复习公开课,以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识。

二、背景:

向量知识在许多国家的中学数学教材中,早就成了一个基本的教学内容。在我国全面实施新课程后,向量虽然已进入中学,但仍处于起步的阶段。向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。但实际情况是很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题,学生应用向量的意识不强。鉴于这种情况,结合我校开展的构建“探究-合作”型教学模式研究的课题,开设本节《平面向量在解析几何中的应用》高三专题复习公开课,通过问题的探究、合作解决,旨在进一步探索“探究-合作”型教学模式,使学生树立并增强应用向量的意识。

在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。正因为如此,本节课这样设计:

1、教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中”。因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性。

2、通过例

3、例4两个问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。

三、问题:

例1、勾股定理的证明:即在直角三角形ABC 中∠C=900,求证:222

AB AC BC =+ 证明:因为AC ⊥BC 所以0AC BC ?=u u u r u u u r

又AB AC CB =+u u u r u u u r u u u r ,两边平方得: 222222AB AC AC CB CB AC CB =+?+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r

即222AB AC BC =+ 评注:对照老教材,勾股定理推导变得简单,回避了许多细节的讨论,优势不言

而喻。类似的命题还很多。

例2、利用向量知识来推导点到直线的距离公式。

已知点P 坐标( x 0,y 0 ),直线l 的方程为 Ax+By+C=0,P 到直线l 的距离是d ,则

证明:当0B ≠时,在直线l 上任取一点,不妨取1(0,)C P B -

,直线l 的法向量(,)n A B =r ,由向量的射影长知识得点P 到直线l 的距离等于向量1PP u u u r 在向量n r 方向上的射影长度d ,1PP u u u r =(00(,)C x y B

+, 100(,)n C d PP x y B n ∴=?=+=r u u u r r 当B=0时,可直接有图形证明(略)。

评注:比较传统证明方法,避免了复杂的构图过程,应用向量来证,简单易懂,

充分体现了向量的工具性和优越性。

四、问题的解决:

例3、(2000年全国高考题)椭圆14

92

2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。

解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ)

21PF F ∠Θ为钝角

123cos ,2sin )3cos ,2sin )PF PF θθθθ?=

-?-u u u r u u u u r ( =9cos

2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5

53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为

钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。

例4、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求

22

PA PB +的最大值和最小值。

分析:因为O 为AB 的中点,所以2,PA PB PO +=u u u r u u u r u u u u r 故可利用向量把问题转化为求向量OP u u u r 的最值。

解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=u u u r u u u r

0,1OA OB OA OB ∴+=?=-u u u r u u u r u u u r u u u r 又由中点公式得2PA PB PO +=u u u r u u u r u u u r 所以222()2PA PB PA PB PA PB +=+-?u u u r u u u r u u u r u u u r u u u r u u u r

=2(2)2()()PO OA OP OB OP --?-u u u r u u u r u u u r u u u r u u u r =224222(

PO OA OB OP OP -?-+?u u u r u u u r u u u r u u u r u u u r u =

222OP +u u u r 又因为{3,4}OC =u u u r 点P 在圆(x-3)2+(y-4)2=4上所以5,2,OC CP ==u u u r u u u r 且OP OC CP =+u u u r u u u r u u u r 所以OC CP OP OC CP OC CP -≤=+≤+u u u r u u u r u u u r u u u r u u u r u u u r u u u r

即37OP ≤≤u u u r 故2222022100PA PB OP ≤+=+≤u u u r u u u r u u u r 所以22PA PB +的最大值为100,最小值为20。

点评:有些解几问题虽然没有直接用向量作为已知条件出现,但如果运用向量知识来解决,也会显得自然、简便,而且易入手。

例5、(2003年天津高考题)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足)(++=λ,[)∞∈+,

0λ,则P 的轨迹一定通过△ABC 的( )

(A )外心 (B )内心 (C )重心 (D )垂心 分析:因为||||

AB AC AB AC AB AC u u u r u u u r u u u r u u u r u u u r u u u r 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||

AB AC AB AC +u u u r u u u r u u u r u u u r 是与∠ABC 的角平分线(射线)同向的一个向量,又()AB AC OP OA AP AB AC

λ-==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。

反思:根据本题的结论,我们不难得到求一个角的平分线所在的直线方程的步骤;

(1) 由顶点坐标(含线段端点)或直线方程求得角两边的方向向量12v v u r u u r 、;

(2) 求出角平分线的方向向量1212

v v v v v =+u r u u r r u r u u r (3) 由点斜式或点向式得出角平分线方程。{直线的点向式方程:过P (00,x y ),

其方向向量为(,)v a b r ,其方程为00x x y y a b

--=} 应用:(1999年全国高考题)如图,给出定点A(a,0) (a>0)和直线l :x=-1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C ,求C 点的轨迹方程,并讨论方程表示的曲线类型与a 值的关系

解:设B(-1,t),则(1,),AB a t =--u u u r

从而直线AB 的方程为:01x a y a t --=--①

(,0),(1,),(1,0)OA a OB t OC OA OB OA OB ==-=+=+=u u u r u u u r Q u u u r u u u r r u u u r u u u r 则直线

v 故直线OC y t = ② 由①、②消去t 得:22(1)2(1)0(0)a x ax a y x a --++=≤<

点评:从上述方法看出较原参考答案要简单,且容易理解。

五、反思与讨论:

反思:由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。那么如何树立应用向量的意识,从本节课案例得到以下启发:

第一、如何树立应用向量的意识,在教学中应先从学生熟悉的平面几何问题入手,让学生体会向量的工具性。

第二、如何树立应用向量的意识,应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识。

第三、如何树立应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性。

最后,如何树立应用向量的意识,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。

探讨:例4、(2003年天津)已知常数0>a ,向量)0,1(),0(==i a c ,,经过原点O 以i c λ+为方向向量的直线与经过定点),0(a A 以c i λ2-为方向向量的直线相交于点P ,其中R ∈λ.试问:是否存在两个定点F E 、,使得PF PE +为定值,若存在,求出F E 、的坐标;若不存在,说明理由.

(本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.) 解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,

使得点P 到两定点距离的和为定值.

∵i =(1,0),c=(0,a ), ∴c+λi =(λ,a ),i -2λc=(1,-2λa ). 因此,直线OP 和AP 的方程分别为 ax y =λ 和 ax a y λ2-=-.

消去参数λ,得点),(y x P 的坐标满足方程222)(x a a y y -=-.

整理得 .1)2()2(812

22=-+a a y x ……① 因为,0>a 所以得:

(i )当2

2=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ii )当2

20<

(iii )当2

2>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))2

1(21,0(2--a a F 为合乎题意的两个定点. 点评:本题以平面向量为载体,考查求轨迹的方法、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力。去掉平面向量的背景,我们不难看到,本题即为下题:在△OAP 中,O (0,0)、A (0,a )为两个定点,另两边OP 与AP 的斜率分别是(0),2a

a λλλ≠-,求P 的轨迹。

而课本上有一道习题(数学第二册(上)第96页练习题4):

三角形ABC 的两个顶点A 、B 的坐标分别是(-6,0)、(6,0),边AC 、BC 所在直线的斜率之积等于49-

,求顶点C 的轨迹方程。通过本例可见高考题目与课本的密切关系。

人教版高中数学必修四 2.5平面向量应用举例

一、选择题 1.已知作用在A 点的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1)且A (1,1),则合力F =F 1+F 2+F 3的终点坐标为( ) A .(9,1) B .(1,9) C .(9,0) D .(0,9) 解析:F =F 1+F 2+F 3=(8,0). 又因为起点坐标为(1,1),所以终点坐标为(9,1). 答案:A 2.初速度为v 0,发射角为θ,若要使炮弹在水平方向的速度为1 2v 0,则发射角θ应为( ) A .15° B .30° C .45° D .60° 解析:炮弹的水平速度为v =v 0·cos θ=12v 0?cos θ=12?θ=60°. 答案:D 3.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,则AD +BE +CF =( ) A .0 B .0 C .AB D .AC 解析:设AB =a ,AC =b , 则AD =12a +1 2 b , BE =BA +12AC =-a +1 2b , CF =CA +1 2AB =-b +1 2a . ∴AD +BE +CF =0. 答案:B 4.在△ABC 中,D 为BC 边的中点,已知AB =a ,AC =b ,则下列向量中与AD 同向的是( ) A.a +b |a +b | B.a |a |+b |b | C.a -b |a -b | D.a |a |-a |b | 解析:AD =12AB +12AC =1 2(a +b ),而a +b |a +b | 是与a +b 同方向的单位向量.

答案:A 二、填空题 5.平面上有三个点A (-2,y ),B (0,y 2),C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方 程为________. 解析:AB =(2,-y 2),BC =(x ,y 2 ). ∵AB ⊥BC ,∴A AB ·BC =2x -1 4y 2=0,即y 2=8x . 答案:y 2=8x 6.已知A ,B 是圆心为C ,半径为5的圆上的两点,且|AB |=5,则AC · CB =________. 解析:由弦长|AB |=5,可知∠ACB =60°, AC ·CB =-CA ·CB =-|CA ||CB |cos ∠ACB =-5 2. 答案:-5 2 7.质量m =2.0 kg 的物体,在4 N 的水平力作用下,由静止开始在光滑水平面上运动了3 s ,则水平力在3 s 内对物体所做的功为________. 解析:水平力在3 s 内对物体所做的功:F·s =F ·12at 2=12F ·F m t 2=12m F 2t 2=12×1 2×42×32 =36(J). 答案:36 J 8.设坐标原点为O ,已知过点(0,12)的直线交函数y =1 2x 2的图像于A 、B 两点,则OA · OB 的值为________. 解析:由题意知直线的斜率存在,可设为k ,则直线方程为y =kx +12,与y =1 2x 2联立 得12x 2=kx +1 2 , ∴x 2-2kx -1=0,∴x 1x 2=-1,x 1+x 2=2k , y 1y 2=(kx 1+12)(kx 2+12) =k 2x 1x 2+14+k (x 1+x 2) 2 =-k 2+k 2+1 4 =14 , ∴OA · OB =x 1x 2+y 1y 2=-1+14=-3 4.

平面向量在解析几何中的应用

平面向量在解析几何中的应用 -----高三专题复习课教学案例 福建省福州格致中学宋建辉 一、引言: 平面向量是高中数学的新增内容,也是新高考的一个亮点。正因为如此,在2004年3月25日在校教学公开周中开设了《平面向量在解析几何中的应用》高三专题复习公开课,以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识。 二、背景: 向量知识在许多国家的中学数学教材中,早就成了一个基本的教学内容。在我国全面实施新课程后,向量虽然已进入中学,但仍处于起步的阶段。向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。但实际情况是很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题,学生应用向量的意识不强。鉴于这种情况,结合我校开展的构建“探究-合作”型教学模式研究的课题,开设本节《平面向量在解析几何中的应用》高三专题复习公开课,通过问题的探究、合作解决,旨在进一步探索“探究-合作”型教学模式,使学生树立并增强应用向量的意识。 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。正因为如此,本节课这样设计: 1、教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中”。因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性。 2、通过例 3、例4两个问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 三、问题:

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

平面向量及解析几何

六、平面向量 考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2、掌握向量的加法和减法。3、掌握实数与向量的积,理解两个向量共线的充要条件。4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。 1、已知向量与不共线,且0||||≠=,则下列结论中正确的是 A .向量-+与垂直 B .向量-与垂直 C .向量b a +与a 垂直 D .向量b a b a -+与共线 2.已知在△ABC 中,?=?=?,则O 为△ABC 的 A .内心 B .外心 C .重心 D .垂心 3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC = ,则AD 用b a ,表 示为 。 4、已知21,e e 是两个不共线的向量,而→→→ →→ → +=-+=2121232)2 51(e e b e k e k a 与是两个共线 向量,则实数k = . 5、设→ i 、→ j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且 →→+=j i 24,→ →+=j i 43,则△OAB 的面积等于 : A .15 B .10 C .7.5 D .5 6、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 , 将向量按逆时针方向旋转90°得到向量,则向量的坐标是 . 7、已知)3,2(),1,(==k ,则下列k 值中能使△ABC 是直角三角形的值是 A . 2 3 B .21- C .-5 D .31- 8、在锐角三角形ABC 中,已知ABC ?==,1||,4||的面积为3,则=∠BAC ,?的值为 . 9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量与的位置关系是 A. 平行 B. 垂直 C. 相交但不垂直 D. 无法判断 10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围

北京四中数学必修四平面向量应用举例基础版

平面向量应用举例 编稿:丁会敏 审稿:王静伟 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?=a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法:

高考数学平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22 PA PB +的最大值和最小值。 分析:因为O 为AB 的中点,所以2,PA PB PO += 故可利用向量把问题转化为求向量OP 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=

平面向量应用举例

平面向量应用举例 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?= a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法: (1)斜率相等问题:常用向量平行的性质. (2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程. (3)定比分点问题:转化为三点共线及向量共线的等式条件. (4)夹角问题:利用公式cos |||| θ?= a b a b . 要点三:向量在物理中的应用 (1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象. (2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积. (3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论. 【典型例题】 类型一:向量在平面几何中的应用

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

专题:平面向量常见题型与解题指导

平面向量常见题型与解题指导 一、考点回顾 1、本章框图 2、高考要求 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。 2、掌握向量的加法和减法的运算法则及运算律。 3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。 4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。 7、掌握正、余弦定理,并能初步运用它们解斜三角形。 8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。 3、热点分析 对本章内容的考查主要分以下三类: 1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题. 2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主. 3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质. 在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。 4、复习建议 由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。 在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。 在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

第4讲 平面向量应用举例

第4讲 平面向量应用举例 一、选择题 1.△ABC 的三个内角成等差数列,且(AB → +AC →)·BC →=0,则△ABC 一定是( ). A .等腰直角三角形 B .非等腰直角三角形 C .等边三角形 D .钝角三角形 解析 △ABC 中BC 边的中线又是BC 边的高,故△ABC 为等腰三角形,又A ,B ,C 成等差数列,故B =π3 . 答案 C 2. 半圆的直径AB =4,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 的中点,则(PA →+PB →)·PC →的值是( ) A .-2 B .-1 C .2 D .无法确定,与C 点位置有关 解析 (PA →+PB →)·PC →=2PO →·PC →=-2. 答案 A 3. 函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →= ( ). A .4 B .6 C .1 D .2 解析 由条件可得B (3,1),A (2,0), ∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 B 4.在△ABC 中,∠BAC =60°,AB =2,AC =1,E ,F 为边BC 的三等分点,则

AE →·AF →=( ). A.53 B.54 C.109 D.158 解析 法一 依题意,不妨设BE →=12 E C →,B F →=2FC →, 则有AE →-AB →=12(AC →-AE →),即AE →=23AB →+13 AC →; AF →-AB →=2(AC →-AF →),即AF →=13AB →+23 AC →. 所以AE →·AF →=? ????23AB →+13AC →·? ?? ??13AB →+23AC → =19(2AB →+AC →)·(AB →+2AC →) =19(2AB →2+2AC →2+5AB →·AC →) =19(2×22+2×12+5×2×1×cos 60°)=53,选A. 法二 由∠BAC =60°,AB =2,AC =1可得∠ACB =90°, 如图建立直角坐标系,则A (0,1),E ? ????-233,0,F ? ?? ??-33,0, ∴AE →·AF →=? ????-233,-1·? ????-33,-1=? ????-233·? ????-33+(-1)·(-1)=23+1=53,选A. 答案 A 5.如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M , N 两点,且AM →=xAB →,AN →=yAC → ,则x ·y x +y 的值为( ).

平面向量与解析几何交汇的综合问题

平面向量与解析几何交汇的综合问题 设计立意及思路 向量具有代数与几何形式的双重身份,故它是联系多项知识的媒介,成为中学数学知识的一个交汇点,数学高考重视能力立意,在知识网络的交汇点上设计试题,因此,解析几何与平面向量的融合交汇是新课程高考命题改革的发展方向和创新的必然趋势。而学生普遍感到不适应,因此,我们在解析几何复习时应适时融合平面向量的基础,渗透平面向量的基本方法。本专题就以下两方面对平面向量与圆锥曲线交汇综合的问题进行复习;1、以向量为载体,求轨迹方程为命题切入点,综合考查学生平面向量的加法与减法及其几何意义,平面向量的数量积及其几何意义,圆锥曲线的定义。2、以向量作为工具考查圆锥曲线的标准方程和几何性质,直线与圆锥曲线位置关系,曲线和方程的关系等解析几何的基本思想方法和综合解 题能力。 我们先来分析一下解析几何高考的命题趋势: (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上, 分值约为30分左右,占总分值的20%左右。 (2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型: ①求曲线方程(类型确定、类型未定); ②直线与圆锥曲线的交点问题(含切线问题); ③与曲线有关的最(极)值问题; ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直); ⑤探求曲线方程中几何量及参数间的数量特征; (3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助 于数形结合的思想,就能快速准确的得到答案。 (4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。 在近年高考中,对直线与圆内容的考查主要分两部分: (1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下 几类:

平面向量的应用举例

平面向量应用举例 课型:新课 设计人: 设计时间:2011.3.2 使用时间: 学习目标: 1.通过应用举例,学会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题 2.通过本节的学习,体验向量在解决几何和物理问题中的工具作用,增强积极主动的探究意识,培养创新精神。 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几 何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问 题加以解决. 学习过程: 例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.已知:平行四边形ABCD . 求证:2 2 2 2 2 2 AC BD AB BC CD DA +=+++. 利用向量的方法解决平面几何问题的“三步曲”? (1) 建立平面几何与向量的联系, (2) 通过向量运算,研究几何元素之间的关系, (3) 把运算结果“翻译”成几何关系。 变式训练:ABC ?中,D 、E 、F 分别是AB 、BC 、CA 的中点,BF 与CD 交于点O ,设,.AB a AC b == (1)证明A 、O 、E 三点共线; (2)用,.a b 表示向量AO 。 例2,如图,平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗? 例3.如图,一条河的两岸平行,河的宽度500d =m ,一艘船从A 处出发到河对岸.已知船的速度|v 1|=10km/h ,水流的速度|v 2|=2km/h ,问行驶航程最短时,所用的时间是多少(精确到 0.1min)? 变式训练:两个粒子A 、B 从同一源发射出来,在某一时刻,它们的位移分别为(4,3),(2,10)A B s s ==, (1)写出此时粒子B 相对粒子A 的位移s; (2)计算s 在A s 方向上的投影。 当堂检测 1.已知0 60,3,2===?C b a ABC 中,,求边长c 。 2.在平行四边形ABCD 中,已知AD=1,AB=2,对角线BD=2,求对角线AC 的长。 3.在平面上的三个力321,,F F F 作用于一点且处于平衡状态, 2121,2 2 6,1F F N F N F 与+= =的夹角为o 45, 求:(1)3F 的大小;(2)1F 与3F 夹角的大小。 课后练习与提高 一、选择题 1.给出下面四个结论: ① 若线段AC=AB+BC ,则向量AC AB BC =+; ② 若向量AC AB BC =+,则线段AC=AB+BC ; ③ 若向量AB 与BC 共线,则线段AC=AB+BC; ④ 若向量AB 与BC 反向共线,则 BC AB BC AB +=+.其中正确的结论有 ( ) A. 0个 B.1个 C.2个 D.3个 2.河水的流速为2s m ,一艘小船想以垂直于河岸方向10s m 的 速度驶向对岸,则小船的静止速度大小为 ( ) A.10s m B. 262s m C. 64s m D.12s m 3.在ABC ?中,若)()(CB CA CB CA -?+=0,则ABC ?为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定 二、填空题 4.已知ABC ?两边的向量21,e AC e AB ==,则BC 边上的中线向量AM 用1e 、2e 表示为 5.已知10321321=++=++OP OP OP ,OP OP OP ,则1OP 、 2OP 、3OP 两两夹角是 反思总结:

高中数学-2.5《平面向量应用举例》教学设计

2.5《平面向量应用举例》教学设计 【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神. 【导入新课】 回顾提问: (1)若O 为ABC ?重心,则OA +OB +OC =0. (2)水渠横断面是四边形ABCD ,DC =12 AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来. 新授课阶段 探究一:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例. 教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及 数量积表示出来: 例如,向量数量积对应着几何中的长度.如图: 平行四边行 ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+(平移) ,DB AB AD a b =-=-,2 22||AD b AD ==(长度).向量AD ,AB 的夹角为DAB ∠.因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果 “翻译”成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用 例1 证明:平行四边形两条对角线的平方和等于四条边的平方和. 已知:平行四边形ABCD .

平面向量与解析几何文科

优质资料 欢迎下载 (A) . |a|2|b|2 -(Oi)2 (B) |a|2|b|2 (Oi)2 平面向量与解析几何 1、 设向量a,b 满足|;|=2「5』=(2,1),且a 与b 的方向相反,则a 的坐标为 ___________ . 2、 若平面向量a , b 满足a +b =1, a +b 平行于x 轴,b = (2,-1),则a= . 3、 设a 、b 、c 是单位向量,且a ? b = 0,贝U a_c ?b_c 的最小值为() 于(A)2 (B) .3 (c) ,2 (D)1 a=b=2 , a ,2b*a-b=—2,贝U a 与 b 的夹角为 a 、b 、c 满足 |a |=| b|=|c|,a b = c ,则:a, b ^= = 1,「| 1 ,且以向量a 、3为邻边平行四边形的面积为 则a 和3的夹角0取值范围是___。 9、已知向量a = (1,2), A 7 7 A e-,) 9 3 12、 在 ABC 中,M 是BC 的中点,AM=1点P 在AMh 且满足 PA 二2PM 4 4 4 等于(A 一 (B ) — (C ) —— (D) 9 3 3 (A ) -2 (B ) (C ) -1 (D) 1-2 4、已知向量a = (2,1) a - b = 10 , | a + b | = 5、、2,则 | b | = (B ) ,10 (A ) ,5 5、设向量 a 、bc 满足 | a |=| b |=1, a b =- (C ) 5 (D ) 25 ,

平面向量应用举例#精选.

平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 [展示投影] 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 [展示投影]例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

平面向量的应用举例

平面向量的应用举例 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

2.5平面向量的应用举例 班级学号姓名 .一选择题 1.已知A、B、C为三个不共线的点,P为△ABC所在平面内一点,若 + + +,则点P与△ABC的位置关系是 () A、点P在△ABC内部 B、点P在△ABC外部 C、点P在直线AB上 D、点P在AC边上 2.已知三点A(1,2),B(4,1),C(0,-1)则△ABC的形状为 () A、正三角形 B、钝角三角形 C、等腰直角三角形 D、等腰锐角三角形 3.当两人提起重量为|G|的旅行包时,夹角为θ,两人用力都为|F|,若 |F|=|G|,则θ的值为() A、300 B、600 C、900 D、1200 4.某人顺风匀速行走速度大小为a,方向与风速相同,此时风速大小为v,则此人实际感到的风速为 () A、v-a B、a-v C、v+a D、v 二、填空题 5.一艘船以5km/h的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h。 6.两个粒子a,b从同一粒子源发射出来,在某一时刻,以粒子源为原点,它 们的位移分别为S a =(3,-4),S b =(4,3),(1)此时粒子b相对于粒子a 的位移; (2)求S在S a 方向上的投影。 三、解答题 7.如图,点P是线段AB上的一点,且AP︰PB=m︰n,点O是直线AB外一点,设OA =a,OB =b,试用,,, m n a b的运算式表示向量OP.

8.如图,△ABC 中,D ,E 分别是BC ,AC 的中点,设AD 与BE 相交于G ,求证:AG ︰GD=BG ︰GE=2︰1. G E D C B A 9.如图, O 是△ABC 外任一点,若1 ()3 OG OA OB OC =++,求证:G 是△ABC 重心(即三条边上中线的交点). 10.一只渔船在航行中遇险,发出求救警报,在遇险地西南方向10mile 处有一只货船收到警报立即侦察,发现遇险渔船沿南偏东750,以9mile/h 的速度向前航行,货船以21mile/h 的速度前往营救,并在最短时间内与渔船靠近,求货的位移。

相关文档
最新文档