导数压轴题处理专题讲解

导数压轴题处理专题讲解
导数压轴题处理专题讲解

导数压轴题处理专题讲解(上)

专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理)

例1. 已知(1)讨论的单调性

(2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m

(2)证明:若,则对任意x ,x ,x x ,有

例3. 设函数. (1)当(为自然对数的底数)时,求的最小值;

(2)讨论函数零点的个数;

(3)若对任意恒成立,求的取值范围.

()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212

,0,,4x x f x f x x x ?∈+∞-≥-()2

1(1)ln 2

f x x ax a x =

-+-1a >()f x 5a <12∈(0,)+∞1≠21212

()()

1f x f x x x ->--()ln ,m

f x x m R x

=+

∈m e =e ()f x ()'()3

x

g x f x =

-()()

0,

1f b f a b a b a

->><-m

例4. 已知函数(1)讨论函数的单调性

(2)对任意的

,有

,求k 的取值范围

例5. 已知函数,是否存在,对任意x ,x ,x x ,

恒成立?若存在,求之;若不存在,说明理由。

例6. 已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线的斜率为3.

(1)求实数a 的值;

(2)若2

()f x kx ≤对任意0x >成立,求实数k 的取值范围;(3)当1n m >>*

(,)m n N ∈时,m n

>.()1ln x f x x

-=

()y f x =)2

12,,x x e ?∈+∞?121212

()()f x f x k

x x x x ->-()2

1ln (2)2

f x x a x a x =-+-a R ∈12∈(0,)+∞1≠21212

()()

f x f x a x x ->-

专题二 分离参数与分类讨论处理恒成立(含洛必达法则)

例1. 已知函数ln ()=

1a x b

f x x x

++,曲线=()y f x 在点(1(1))f ,处的切线方程为23=0x y +-.(1)求a 、b 的值;

(2)如果当0x >,且1x ≠时,ln ()1x k

f x x x

>

+-,求k 的取值范围.例2. 设函数2

()=1x f x e x ax ---. (1)若0a =,求()f x 的单调区间;(2)当0x ≥时,()0f x ≥,求a 的取值范围.

例3. 已知函数2

()(1)x f x x e ax =--.

(1)若()f x 在1x =-时有极值,求函数()f x 的解析式;(2)当1x ≥时,()0f x ≥,求a 的取值范围.(3)当0x ≥时,()0f x ≥,求a 的取值范围.

例4. 设函数()1x f x e -=-. (1)证明:当1x >-时,()1

x f x x ≥+;(2)设当0x ≥时,()1

x

f x ax ≤

+,求a 的取值范围.例5. 设函数sin ()=

2cos x

f x x

+.

(1)求()f x 的单调区间;

(2)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.

例6. 已知函数()=

11

x x

f x e x λ-+-+(1)证明:当0λ=时间,()0

f x ≥(2)若当0x ≥时,()0f x ≥,求实数λ的取值范围。

例7. 已知函数()()

2()=ln 1f x x a x x ++-,其中R a ∈(1)讨论函数()f x 的极值点个数,并说明理由(2)若()0,0x f x ?>≥成立,求a 取值范围。

例8. 已知函数()2

11()=ln .022f x ax x ax a ??++->

???

(1)求证02a <≤时,()f x 在1

+2??∞????

,上是增函数

(2)若对任意的()1,2a ∈,总存在01,2x ??∈+∞????

使不等式()

20()1f x m a >-成立,求实数m 的取值范围

例9. 已知函数2

()=(2)e (1)x f x x a x -+-有两个零点.求a 的取值范围;

例10. 已知函数()=(1)ln (1)f x x x a x +--.

(1)当4=a 时,求曲线()y f x =在()1,(1)f 处的切线方程;(2)若当()1,∈+∞x 时,()0f x >,求a 的取值范围.

专题三 导数与零点问题(如何取点)

例1. 已知函数22()().

x

x f x a e

a e x =+--(1)讨论()f x 单调性;

(2)若()f x 有两个零点,求a 的取值范围;

例2. 已知函数()()()

2

21x f x x e a x =-+-有两个零点.求a 的取值范围;

例3. 设函数()2=ln x

f x e

a x -.讨论()f x 的导函数()f x '的零点的个数;

例4. 已知函数()()21x f x x e ax =-+有两个零点. (2) 求a 的取值范围

例5. 已知函数2

12

().x m f x e x m x =-

--当m<0时,试讨论y=f(x)的零点的个数;

例6. 设函数11

l n ()l n l n ()x

f x x x x =

-+++,是否存在实数a ,使得关于x 的不等式()a f x ≥的解集为0+∞(,)

?若不存在,试说明理由。例7. 已知函数22

21()-(+)2.x x f x a e a x e x x =++当02a <≤时,证明()f x 必有两个零

例8. 已知函数()

()n f x a x a R =∈(1)求()f x 的单调区间

(2)求函数()f x 的零点个数,并证明你的结论

例9. 设常数00,a λ>>,函数2

()l n ,x f x a x x λ

=-+对于任意给定的正数,a λ证明存在

实数0x ,当0x x >时,0()f x >

例10. 已知函数().

ln x a x x f +=(1)当1=a 时,求曲线()x f y =在点()()1,1f 处的切线方程;(2)求()x f 的单调区间;

(3)若函数()x f 没有零点,求a 的取值范围.

例11. 已知函数()()x

e a x x

f +=,其中e 是自然对数的底数,R a ∈.

(1)求函数()x f 的单调区间;

(2)当1

例12. 已知函数()().01

ln ≠+

=a x

x a x f (1)求函数()x f 的单调区间;

(2)若()}[]{

c b x f x ,0=≤()

c b <其中,求a 的取值范围,并说明[]().1,0,?c b 分析()}[]{

c b x f x ,0=≤的形式类似不等式的解集,问题即转化为研究方程的根,即转化为研究函数的零点范围.

例13. 已知函数2

()(2)ln 22f x x a x a x a =--+++,其中2a ≤

(1)求函数()f x 的单调区间;

(2)若函数()f x 在(0,2]上有且只有一个零点,求实数a 的取值范围。

例14. 已知关于x 的函数()(0)x

ax a

f x a e

-=

≠,(1)当1a =-时,求函数()f x 的极值;

(2)若函数()()1F x f x =+没有零点,求实数a 的取值范围。

例15. 已知函数

(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 值;(2)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围。

例16. 已知函数()f x a x =,()

a R ∈(1)求函数()f x 的单调区间;

(2)试求函数()y f x =的零点个数,并证明。

专题四 隐零点问题整体代换

例1. 设函数()=2

x

f x e ax --(1)求()f x 的单调区间

(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '--+> ,求k 的最大值

例2. 已知函数()ln f x ax x x =+的图像在点x e =(e 为自然对数的底数)处的切线斜率为3(1)求实数a 的值(2)若k Z ∈,且()1

f x k x <

-对任意1x >恒成立,求k 的最大值

例3. 若对于任意0x >,2ln 10x

xe

kx x ---≥恒成立,求k 的取值范围。

例4. 已知函数()()=ln x

f x e x m -+.

(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(2)当2m ≤时,证明()0f x >.

例5. 已知函数()32213

f x x x ax =

+++在()1,0-上有两个极值点1x 、2x ,且12x x <. (1)求实数a 的取值范围;(2)证明:()21112

f x >

. 例6. 已知a R ∈,函数()2

=x

f x e ax +;()

g x 是()f x 的导函数.

(1)当1

2

a =-

时,求函数()f x 的单调区间;(2)当0a >时,求证:存在唯一的01,02x a ??

∈-

???

,使得()00g x =;(3)若存在实数,a b ,使得()f x b ≥恒成立,求a b -的最小值.

例7. 已知函数满足满足. (1)求的解析式及单调区间;(2)若,求的最大值.例8. 已知函数()()2

2

2ln 22f x x a x x ax a a =-++--+,其中0>a .

(1)设()g x 是()f x 的导函数,讨论()g x 的单调性;

(2)证明:存在()0,1∈a ,使得()0≥f x 在区间()1,+∞内恒成立,且()0=f x 在区间

()1,+∞内有唯一解.

例9. 已知函数()2

2

=2ln 2f x x x ax a -+-+,其中0>a ,设()g x 是()f x 的导函数.

(1)讨论()g x 的单调性;

(2)证明:存在()0,1∈a ,使得()0≥f x 恒成立,且()0=f x 在区间()1,+∞内有唯一解.

()f x 121()(1)(0)2

x f x f e f x x -'=-+()f x 2

1()2

f x x ax b ≥

++(1)a b +

QQ 群 545423319

例10. 已知函数()2=

ln 12a f x x x x -++,()=21x a

g x ae ax a x

++--,其中a R ∈. (1)若2a =,求()f x 的极值点;(2)试讨论()f x 的单调性;

(3)若0a >,()0,x ?∈+∞,恒有()()g x f x '≥,求a 的最小值.

例11. 已知函数()2

1=ln 2

f x x ax x -

+,a R ∈. (1)求函数()f x 的单调区间;

(2)是否存在实数a ,使得函数()f x 的极值大于0?若存在,则求出a 的取值范围;若不存在,请说明理由.

例12. 设函数()2ln x

f x e

a x =-.

(1)讨论()f x 的导函数()f x '的零点的个数;

(2)证明:当0a >时()2

2ln f x a a a

≥+.

例13. 设函数

2)(--=ax e x f x

. (1)求函数)(x f 的单调区间;

(2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。

例14. 设函数

)ln()(m x e x f x +-=. (1)若x =0是)(x f 的极值点,求m >0,并讨论)(x f 的单调性;(2)当m ≤2时,求证:)(x f >0.

例15. 已知函数+3()=e

x m

f x x -,()()ln 12

g x x =++.

(1)若曲线()y f x =在点()()

00f ,处的切线斜率为1,求实数m 的值;(2)当1m ≥时,证明:()3()f x g x x >-.

例16. 已知函数12

1ln )(2

+++

=x ax x x f . (1)当2-=a 时,求)(x f 的极值点;

(2)当0=a 时,证明:对任意的x >0,不等式x xe ≥)(x f 恒成立。

专题五 极值点偏移

例1. 已知函数,若正实数,满足,

求证:

例2. 已知函数,正实数,满足,求证:

.()2

2ln f x x x x =++1x 2x ()()12+=4f x f x 122x x +≥()2

ln f x x x x =++1x 2x ()()12120f x f x x x ++

=12x x +≥

例3. 已知函数.

(1)求函数的单调区间和极值;

(2)已知函数的图像与的图像关于直线对称,证明:当时,

(3)如果,且,证明:.

例4. 已知函数有两个零点.

(1)求的取值范围;

(2)设,是的两个零点,证明:.

例5. 已知函数的图像与直线交于不同的两点,,求证:.()e x

f x x -=()f x ()

g x ()f x 1x =1x >()()f x g x >12x x ≠()()12f x f x =122x x +>()()()2

2e 1x

f x x a x =-+-a 1x 2x ()f x 122x x +<()ln f x x x =y m =()11,A x y ()22,B x y 122

1e x x <

例6. 已知函数和,若存在两个实数,,且,满足

,,

(1)求证:;(2)求证:.

例7. 已知函数有两个不同的零点,,其极值点为.

(1)求的取值范围;(2)求证:;(3)求证:;(4)求证:.

()ln f x x =()g x ax =1x 2x 12x x ≠()()11f x g x =()()22f x g x =122e x x +>212e x x >()e x

f x ax =-1x 2x 0x a 1202x x x +<122x x +>121x x <

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

导数压轴处理套路与大招(上)

导数压轴题处理套路 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 - 微信公众号:中学数学研讨部落 说明:题目全来自网络和QQ群友分享,在此一并谢过

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知 (1)讨论的单调性 (2)设,求证: 例2. 已知函数,。 (1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有。 例3. 设函数 . (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

函数与导数压轴题方法归纳与总结

函数与导数压轴题方法归纳与总结 题型与方法 题型一 切线问题 例1 (二轮复习资料p6例2) 归纳总结: 题型二 利用导数研究函数的单调性 例2 已知函数f (x )=ln x -a x . (1)求f (x )的单调区间; (2)若f (x )在[1,e]上的最小值为3 2,求a 的值; (3)若f (x )

归纳总结: 题型三 已知函数的单调性求参数的围 例 3.已知函数()1 ln sin g x x x θ=+?在[)1,+∞上为增函数, 且()0,θπ∈, ()1 ln ,m f x mx x m R x -=--∈ (1)求θ的值. (2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值围. 归纳总结:

题型四 已知不等式成立求参数的围 例4..设f (x )=a x +x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (3)如果对任意的s ,t ∈????12,2都有f (s )≥g (t )成立,数a 的取值围. 归纳总结: 跟踪1.已知()ln 1 m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题) (1) 求y=f(x)的单调区间;

(2) 若任意实数x ∈1,1e ?? ???? ,使得对任意的t ∈[1,2]上恒有32()2f x t t at ≥--成立,数a 的取值围。 跟踪2. 设f (x )=-13x 3+12 x 2+2ax .(加强版练习题) (1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值围; (2)当0

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

导数压轴题的几种处理方法

等号两边无法求导的导数恒成立求参数范围几种处理方法常见导数恒成立求参数范围问题有以下常见处理方法: 1、求导之后,将参数分离出来,构造新函数,计算 1+ ln x 例:已知函数 f (x ) = . (Ⅰ)若函数在区间 (a , a + 12) (其中 a > 0 )上存在极值,求实数 a 的取值范围; (Ⅱ)如果当 x ≥ 1 时,不等式 f (x ) ≥ k 恒成立,求实数 k 的取值范围; x +1 解:(Ⅰ)因为 f (x ) = 1+ ln x , x > 0 ,则 ' = - ln x , … 1 分 x f (x ) x 当 0 < x < 1 时, ' > 0 ;当 x > 1 时, ' . 所以 f (x ) 在(0,1)上单调递 f (x ) f (x ) < 0 增 ; 在 (1, +∞) 上 单 调 递 减 , 所 以 函 数 f (x ) 在 x = 1 处 取 得 极 大 值 . … 2 分 因为函数 f (x ) 在区间 (a , a + 1 ) (其中 a > 0 )上存在极值, 2 ?a < 1 1 所以 ?? 1 , 解得 < a < 1. … 4 分 ?a + > 1 2 2 ? (Ⅱ)不等式 f (x ) ≥ k ,即为 (x +1)(1+ ln x ) ≥ k , 记 g (x ) = (x +1)(1+ ln x ) , x +1 x x 所以 ' ' x - ln x … 6 分 [(x +1)(1+ ln x )] x - (x +1)(1+ ln x ) g (x ) = x 2 = x 2 , 令 h (x ) = x - ln x , 则 h '(x ) = 1 - 1x , x ≥ 1,∴ h '(x ) ≥ 0. ∴ h (x ) 在 [1, +∞) 上单调递增,∴[h (x )]min = h (1) = 1 > 0 ,从而 g '(x ) > 0 故 g (x ) 在 [1, +∞) 上也单调递增,∴[g (x )]min = g (1) = 2 ,所以 k ≤ 2 …8 分 2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围

专题01 导数与函数的最(极)值(训练篇A)-用思维导图突破导数压轴题

专题01 导数与函数的最(极)值(训练篇A ) -用思维导图突破导数压轴题 《挑战压轴题?高中数学?精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者 上海市特级教师文卫星 A 组: 1.(2017年山东理第15题)若函数()x e f x ( 2.71828e =L 是自然对数的底数)在 ()f x 的 定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序 号为_______. ①()2x f x -= ②()3x f x -= ③3 ()f x x = ④2 ()2f x x =+ 解析:① ()2x f x -=,有()()2 x x e e f x =在R 上单调递增 ②()3x f x -=,有()()3 x x e e f x =在R 上单调递减 ③ 3 ()f x x =,有 () x e f x 的导函数为 2(3) x e x x +,有 ()()() ()3 22'33x x x e f x e x x e x x =+=?+,因此在(),3-∞-上,函数()x e f x 单调递减; ④2()2f x x =+,有()x e f x 的导函数为22 (22)[(1)1]0x x e x x e x ++=++>在R 上单调 递增. 综上所述,具有M 性质的函数的序号是(1)(4). 2.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 解 由题可得12121()(2)(1)[(2)1]x x x f x x a e x ax e x a x a e ---'=+++-=+++-. 因为(2)0f '-=,所以1a =-,21 ()(1)x f x x x e -=--,故21()(2)x f x x x e -'=+-. 令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1) -单调递减,所以()f x 极小值(1)f =11 (111)1e -=--=-,故选A. 3.(2015年四川文第理15题)已知函数,2)(x x f =2()g x x ax =+,R a ?.对于不相等的

破解导数问题常用到的4种方法

第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题 以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x) g(x) ”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题. 类型一构造y=f(x)±g(x)型可导函数 [例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有() A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0) C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0) [解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A. [答案] A [题后悟通] 当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题. 类型二构造f(x)·g(x)型可导函数 [例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是() A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3) C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3) [解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0?F(x)>0的解集为(-3,0)∪(3,+∞),故选A. [答案] A [题后悟通] 当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题. 类型三构造f(x) g(x) 型可导函数

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

重庆市中山外国语学校导数压轴题的几种处理方法 (1)

等号两边无法求导的导数恒成立求参数范围几种处理方法 常见导数恒成立求参数范围问题有以下常见处理方法: 1、求导之后,将参数分离出来,构造新函数,计算 例:已知函数1ln ()x f x x += . (Ⅰ)若函数在区间1 (,)2 a a +(其中0a >)上存在极值,求实数a 的取值范围; (Ⅱ)如果当1x ≥时,不等式()1k f x x ≥+恒成立,求实数k 的取值范围; 解:(Ⅰ)因为1ln ()x f x x += ,0x > ,则ln ()x f x x '=-, … 1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以()f x 在(0,1)上单调递 增;在(1,)+∞上单调递减, 所以函数()f x 在1x =处取得极大值. … 2分 因为函数()f x 在区间1 (,)2 a a +(其中0a >)上存在极值, 所以1 ,112 a a ?? 解得1 1.2a << … 4分 (Ⅱ)不等式()1k f x x ≥+,即为(1)(1ln ),x x k x ++≥ 记(1)(1ln )(),x x g x x ++= 所以22 [(1)(1ln )](1)(1ln )ln (),x x x x x x x g x x x '++-++-'= = … 6分 令()ln ,h x x x =-则1 ()1h x x '=-,1,()0.x h x '≥∴≥ ()h x ∴在[1,)+∞上单调递增,min [()](1)10h x h ∴==>,从而()0g x '> 故()g x 在[1,)+∞上也单调递增,min [()](1)2g x g ∴==,所以2k ≤ …8分 2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围 例题:设 ,其中 . (1)若有极值,求的取值范围; (2)若当 , 恒成立,求的取值范围.

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

导数压轴题训练

导数 压轴题训练 1.(2014 ). 22.(2014 )..已知常数0a >,函数()()2ln 12 x f x ax x =+- +. (1)讨论()f x 在区间()0,+∞上的单调性; (2)若 ()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值围. 【答案】(1)详见解析 【解析】解:(1)对函数 ()f x 求导可得 ()()24 '12a f x ax x =-++()()()()2 224112a x ax ax x +-+=++()()() 22 4112ax a ax x --=++,因为 ()() 2 120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a ≤时, ()()21'0a a f x x -=?=± ,则函数 ()f x 在区间()210, a a ?? - ? ?? 单调递减,在()21a a ?? - ?+∞??? 单调递增的. (2) 解:(1)对函数()f x 求导可得 ()()2 4 '12a f x ax x =-++()()()()2 224112a x ax ax x +-+=++()()() 224112ax a ax x --=++,因为 ()() 2 120ax x ++>,所以当10a -≤时,即1a ≥时,()'0f x ≥恒成立,则函数()f x 在()0,+∞单调递增,当1a <时, ()()21'0a a f x x a -=?=± ,则函数 ()f x 在区间()210, a a a ?? - ? ??? 单调递减,在()21a a ? -?+∞??? 单调递增的.

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

2020高考文科复习:导数压轴题(含解析)

2020高考文科复习:导数压轴题 1.(2019?新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点; (2)()0f x =有且仅有两个实根,且两个实根互为倒数. 2.(2019?天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e <<, ()i 证明()f x 恰有两个零点; ()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.

3.(2019?新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 4.(2019?北京)已知函数321()4 f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟; (Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值.

5.(2018?北京)设函数2()[(41)43]x f x ax a x a e =-+++. (Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 6.(2018?北京)设函数2()[(31)32]x f x ax a x a e =-+++. (Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.

历年导数压轴经典题目

历年导数压轴经典题目 证题中常用的不等式: ① ln 1(0)x x x ≤-> ②≤ln +1(1)x x x ≤>-() ③ 1x e x ≥+ ④ 1x e x -≥- ⑤ ln 1(1)12x x x x -<>+ ⑥ 22ln 11(0)22x x x x <-> ⑦ 1≥e^x (1-x ) 1.已知函数 321 ()3 f x x ax bx =++,且'(1)0f -= (1) 试用含a 的代数式表示b,并求()f x 的单调区间; (2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x , 1()f x ),N(2x ,2()f x ), P(, ()m f m ), 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势, 并解释以下问题: (I )若对任意的m ∈(t, x 2),线段MP 与曲线f(x)均有异于M,P 的公共点,试确定t 的最小值,并证明你 的结论; (II )若存在点Q(n ,f(n)), x ≤n< m ,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值 范围(不必给出求解过程) 2. 本小题满分14分)已知函数 ,,且 是函数 的极值点。 (Ⅰ)求实数的值; (Ⅱ)若方程有两个不相等的实数根,求实数 的取值范围; (Ⅲ)若直线是函数 的图象在点处的切线,且直线与函数 的图象相切于点,,求实数的取值范围。 1 x x +

3. 已知函数()() ()()201,10.x f x ax bx c e f f =++==且 (I )若()f x 在区间[]0,1上单调递减,求实数a 的取值范围; (II )当a=0时,是否存在实数m 使不等式()224141x f x xe mx x x +≥+≥-++对任意 x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由 4. 已知:二次函数()g x 是偶函数,且(1)0g =,对,()1x R g x x ?∈≥-有恒成立,令 1 ()()ln ,()2 f x g x m x m R =++∈ (I )求()g x 的表达式; (II )当0m 0,使f(x)0成立,求m 的最大值; (III )设12,()()(1),m H x f x m x <<=-+证明:对12,[1,]x x m ?∈,恒有 12|()()| 1.H x H x -< 5. 已知函数()(a x ax x f ln -=>)().2 8,0+=x x x g (I )求证();ln 1a x f +≥ (II )若对任意的??????∈32,211x ,总存在唯一的?? ????∈e e x ,1 22(e 为自然对数的底数),使得 ()()21x f x g =,求实数a 的取值范围. 6. 已知函数2 ()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t (II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交 点?若存在,求出m 的取值范围;若不存在,说明理由。 7. 已知函数()x f x e kx =-,x ∈R

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

相关文档
最新文档