永磁涡流联轴器原理及应用

永磁涡流联轴器原理及应用
永磁涡流联轴器原理及应用

永磁涡流联轴器原理及应用

永磁涡流联轴器原理及应用。永磁联轴器它无需直接的机械联接,而是利用稀土永磁体之间的相互作用,利用磁场可穿透一定的空间距离和物质材料的特性,进行机械能量的传送。磁力联轴器的出现,彻底解决了某些机械装置中动密封存在的泄漏问题。这种产品广泛应用于化工、电镀、造纸、制药、食品、真空等行业的密封传动机械上。

磁性联轴器原理

磁力传动联轴器主要有2种结构:平面磁力传动联轴器和同轴磁力传动联轴器。磁体以轴向充磁,耦合磁极成轴向配置的叫平面磁力传动联轴器。磁体以径向充磁,耦合磁极成径向配置的叫同轴磁力传动联轴器,如图1所示。

现以同轴磁力传动联轴器为例,来说明其工作原理。磁力传动联轴器由外磁体、内磁体和隔离罩组成。内、外磁体均由沿径向磁化且充磁方向相反的永磁体组成,永磁体以不同极

性沿圆周方向交替排列,并固定在低碳钢钢圈上,形成磁断路连体。隔离罩采用非铁素体(因而是非磁性)的高电阻材料制造,一般用奥氏体不锈钢。在静止状态时,外磁体的N极(S极)与内磁体的S极(N极)相互吸引并成直线,此时转矩为零,如图3所示。当外磁体在动力机的带动下旋转时,刚开始内磁体由于摩擦力及被传动件阻力的作用,仍处于静止状态,这时外磁体相对内磁体开始偏移一定的角度,由于这个角度的存在,外磁体的N极(S极)对内磁体的S极(N极)有一个拉动作用,同时外磁体的N极(S极)对内磁体的前一个N极(S极)有一个推动作用,使内磁体有一个跟着旋转的趋势,这就是磁力联轴器的推拉磁路工作原理。当外磁体的N极(S极)刚好位于内磁体的2个极(S极和N极)之间时,产生的推拉力达到最大,如图4所示,从而带动内磁体旋转。在传动过程中,隔离罩将外磁体和内磁体隔开,磁力线是穿过隔离罩将外磁体的动力和运动传给内磁体的,从而实现了无接触的密封传动。

应用领域

磁力传动联轴器的成功应用之一是其与泵的结合——磁力泵。以前,它作为贵重的特殊产品迫不得已时才选用,现在它的应用领域很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入;饮食、生物、医药要保证介质的纯净卫生。磁力传动联轴器在这些领域找到了用武之地,可以说磁力泵是磁性材料的一大市场。

将磁力传动联轴器特别是永磁联轴器应用于阀门上,阀杆不穿过阀盖,省略了填料函,得名为全封闭无填料永磁传动阀。该阀门由于无填料函,可长期安全可靠地运行;阀杆与填料间无摩擦力矩,转动省力;负压操作无外界气体进入。截止阀、闸板阀、球阀、碟阀等一切工业阀门均可以改造成全封闭阀门。反应釜是化工厂广泛使用的一种混合反应设备,液体

的搅拌往往在压力下进行,反应物具有一定的温度和腐蚀性、挥发性,因此,转轴的密封成为反应釜的一个重要问题。带有搅拌器的反应设备应用磁力传动,除实现了绝对密封之外,尚可避免介质的氧化和冷凝。

国内外概况

随着磁性材料的发展以及新型磁性材料的出现,磁力传动联轴器传递的扭矩将愈来愈大,体积将愈来愈小,它的应用范围将愈来愈广,除了泵和反应釜以外,阀门、液压缸和气缸以及其他一些需解决动密封泄漏问题的场合都可应用。可以预计,磁力传动联轴器将会有一个非常广阔的市场前景。磁力传动联轴器在工业发达国家已形成专业标准,有定型产品在国际市场出售。

安徽沃弗电力科技有限公司是一家集科研、设计、生产、销售服务为一体的高新技术企业,凭借在永磁传动领域的专业水平和成熟的技术,在工业领域迅速崛起。安徽沃弗电力科技有限公司奉行“进取、求实、严谨、团结”的方针,不断开拓创新,以技术为核心,视质量为生命,奉用户为上帝,竭诚为您提供性价比最高的永磁产品,高质量的工程改造设计及无微不至的售后服务。

电涡流传感器的研究与探讨汇总

档案编号: 毕业设说明书题目:电涡流传感器的研究与探讨 系别:电气工程系 专业:生产过程自动化 班级: 姓名: 指导教师: (共18 页) 年月日

摘要:电涡流传感器是基于涡流效应的新型传感器。由于它具有结构简单、抗干扰能力强、测量精度高、非接触、响应速度快、不受油污等介质影响等优点,因而得到了广泛的应用。但目前的电涡流位移传感器存在着测量范围小,传感器存在非线性问题,这给传感器的应用造成了一定的影响。 本文首先通过对实验室所用的电涡流传感器实验模板的电路进行研究和优化,进而提高电路的抗干扰能力使测量结果的更加准确。其次针对电涡流位移传感器存在的测量范围小,传感器存在非线性问题的改善提出设想即:先对电涡流位移传感器用于位移检测的工作原理及应用进行分析,研究了线圈截面形状及参数变化对涡流传感器线性测量范围和灵敏度的影响;再从电路设计方面提高传感器的稳定性及抗干扰能力,从而为位移测量扩展量程打下基础;最后通过对电涡流传感器测位移实验进行分析处理得出电涡流传感器位移测量范围的扩展方法和改善电涡流传感器非线性问题的方法。 关键词:电涡流传感器; 位移测量; 非线性; 测量范围 Abstract: the eddy current sensor is a new type of sensor based on eddy current effect. Because it is simple in structure, strong anti-jamming capability, high accuracy, non-contact, fast response, not polluted advantages such media influence, and been widely used. But the current electricity eddy displacement sensor measurement range small, there exist nonlinear problem, the sensor to a sensor applications has caused some influence. This paper firstly eddy current sensor used in the laboratory experiment template circuit research and optimization, and improve the anti-interference ability of the circuit more accurate measurement results. Secondly according to the eddy current displacement sensor measurement range small, there exist nonlinear problem of sensor to improve it puts forward the idea of the eddy current is: first displacement detection sensors for displacement of the working principles and applications, research analyzed the coil cross-section

磁性联轴器的设计与仿真

径向充磁联轴器的设计与仿真 摘要 径向永磁联轴器利用稀土永磁体之间的相互作用,无需机械连接就能进行机械能量的传递,是一种新型联轴器。径向永磁联轴器主要由内、外转子组成,实现了无机械连接传动,解决了过载保护、主从动轴对中、软启动的问题,同时也解决了一些机械传动装置中密封性要求等问题,从根本上消除了传动泵密封处泄漏的问题,现已在化工机械、仪表及食品、真空等行业中得到广泛的应用。 对于永磁联轴器的研究,随着科技的发展,研究方法在不断改进和完善,种类也不断增加。对于径向力和力矩的计算,国内外己经有很多种方法,包括经验法、有限元法和磁路法等等。由于有限元法的计算相对其它几种算法精度较高,所以本文将采用此种方法对主、从动磁环之间的轴向力、传递的力矩进行计算分析,然后利用Ansoft有限元软件进行仿真。 本文以径向磁性联轴器为研究对象,主要讲述几个问题: (1)计算径向永磁联轴器力矩,分析影响力矩的主要因素。 (2)用有限元法分析气隙磁场,建立径向永磁联轴器气隙磁场的有限元分析模型,利用Ansoft软件对径向永磁联轴器 气隙磁场进行分析,得出正确的结果。 (3)设计一个简单的径向磁性联轴器,用Ansoft软件的模拟分析,验证理论知识的正确性。 关键词 径向磁性联轴器;Ansoft有限元法;磁场;力矩 1 引言 近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本及可靠性等方面有了突破性的进展。永磁传动技术逐渐应用到各个领域,将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术发展的时间不长,还存在一些的问题:永磁传动[1]有些因为制造困难,性价比低,往往还只停留在理论研究上;永磁传动的设计目前还没有一套系统和完善的设计方法,磁路的设计、转矩的计算均建立在实验、半实验基础上,研制周期长,代价高,重复性劳动多;在磁路设计方面,多体渐变技术未能充分利用;磁场计算多成用上述的一些方法,由于多是近似计算,精度有待进一步提高。永磁传动技术的发展任重而道远。 2 磁性联轴器电磁转矩分析 本章涉及到电磁转矩的模拟分析,通过对一磁性联轴器的分析,利用有限元分析软件Ansoft模拟

磁力耦合传动

磁力耦合器 磁力耦合器比液耦有很多优势 也称磁力联轴器、永磁传动装置。 磁力耦合器结构图 永磁涡流传动装置主要由铜转子、永磁转子和控制器三个部分组成。一般,铜转子与电机轴连接,永磁转子与工作机的轴连接,铜转子和永磁转子之间有空气间隙(称为气隙),没有传递扭矩的机械连接。这样,电机和工作机之间形成了软(磁)连接,通过调节气隙来实现工作机轴扭矩、转速的变化。因气隙调节方式的不同,永磁涡流传动装置分为标准型、延迟型、限矩型、调速型等不同类型。 永磁涡流传动技术并非只是简单地利用磁体的同性相斥、异性相吸的原理,它是传动技术、材料技术、制造技术的集成。21 世纪制造技术不但将继续制造常规条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备,21 世纪制造的产品应是符合节能和生态环保,与人友好的绿色产品,永磁涡流传动技术正是适应这一发展态势应运而生的。随着新技术、新工艺、新结构的不断出现,必将迎来永磁涡流传动技术发展的新阶段。 技术优势 该技术主要特点有: 1. 节能效果:25%~66% 2. 维护工作量小,几乎是免维护产品,维护费用极低。 3. 允许有较大的安装对中误差(最大可为5mm),大大简化了安装调试过程。 4. 具有过载保护功能,从而提高了整个系统的可靠性,完全消除了系统因过载而导致的损坏。 5. 提高电机的启动能力,减少冲击和振动,协调多机驱动的负荷分配。 6. 调速型可在电机转速基本不变的情况下实现输出转速的无级调节。 7. .使用寿命长,设计寿命为30 年。并可延长系统中零部件的使用寿命。 8. .易于实现遥控和自动控制,过程控制精确高。 9. 结构简单,适应各种恶劣环境。对环境友好,不产生污染物,不产生谐波。体

客车电磁涡流刹车制动扭矩分析

客车电磁涡流刹车制动扭矩分析 摘要随着汽车制造行业的高速发展,车辆的各项动力性能也在不断提高,使得车辆的行驶速度不断加快,因此车辆的制动性能要求随之增高。对于一些客车来说,经常跑一些长途路线,制动性能尤为重要。而电磁涡流刹车制动扭矩作为当今主流辅助刹车系统,已被汽车行业广泛应用。如果不对客车电磁涡流刹车制动扭矩进行一个充分的了解,将会对汽车制动造成一个潜在的威胁。本文主要针对电磁涡流刹车制动扭矩的各项数据进行详细分析,并提出了改进客车刹车制动的方法。 关键词客车;电磁涡流;刹车;制动扭矩 中图分类号U46 文献标识码 A 文章编号1674-6708(2016)162-0145-02 随着现代人们生活水平的提高,出行方式越来越偏向于驾驶车辆出行。我国的城乡道路建设越来越规范,原来的乡村土路也变成了一条条的水泥路和柏油路,各种车辆的运行速度越来越快,公路上的车辆越来越多,对人们的出行构成了潜在的威胁,车辆经常需要在复杂的交通环境下进行频繁制动。超速行驶、超载行驶严重影响了车辆的制动安全。传统的车辆制动方式通常采用的是车轮制动器和缓速器制动,

这种制动方式在车辆超载或者车辆下坡时间长时频繁制动会导致制动器发热,降低制动性能,虽然有很多司机向制动器浇水让制动器冷却,从而减缓制动器发热,但是没有取得很好的效果。仍然有很多交通事故因为制动失灵而发生,不能从根本上解决制动失灵问题。但是电磁涡流刹车制动系统很好地解决了车辆的制动问题,能够令车辆行驶的安全性能提高,下面进行详细分析。 1 电磁涡流刹车的工作原理 车辆制动减速器按照不同的工作原理主要分为这样几种制动系统:液力减速、发动机排气减速和电磁涡流减速刹车。液力减速器主要是和液力传动变速器结合运用,才能起到减速制动的作用。在液力传动变速器的两个不同位置区分为输入和输出减速器,输入减速器主要作用是在动力传入变速器时,通过不同的档位进行变化,从而减缓汽车动力,输入减速器起到一个很好的减速器输入轴的作用。而输出减速器主要作用是输出轴变速器,在输出动力时,比较平缓,方便控制制动系统,可以调节不同的档位。发动机排气减速系统造价比较低,结构较为简单,不需要在汽车的传动系统上进行改动,只需要在发动机排气系统上进行改动,但是对发动机的使用效果有一些不利影响。和这两种汽车缓速器进行对比,电磁涡流刹车缓速器性能更加优良,拥有更好的市场发展前景。

电涡流传感器

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z 的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。 其工作过程是:当被测金属与探头之间的距离发生变化时,探头中线圈的Q值

涡流制动器工作原理

电涡流制动器使用说明书 一、概述: 电涡流制动器是一种性能优越的自动控制元件,它是利用涡流损耗的原理来吸收功率的。其输出转矩与激磁电流呈良好的线性关系。并具有响应速度快、结构简单等优点。 电涡流制动器广泛应用于测功机的加载。即测量电机、内燃机、减变速机等动力及传动机械的转矩、转速、功率、效率、电流、电压、功率因数时,用电涡流制动器作为模拟加载器。并可与计算机接口实现自动控制。与我公司生产的TR-1型转矩转速功率测量仪、CGQ型转矩转速传感器、WLK型自动控制器、自动测试软件可组成成套自动测功系统。 电涡流制动器广泛应用于印刷、包装、造纸及纸品加工、纺织、印染、电线、电缆、橡胶皮革、金属板带加工等有关卷绕装置的张力自动控制系统中。与我公司生产的WLK型控制器配套,可组成手动张力控制系统。与我公司生产的ZK 型自动张力控制仪及张力检测传感器配套,可组成闭环自动张力控制系统.。 二、主要特点: 1、转矩与激磁电流线性关系良好,适合于自动控制; 2、结构简单,运行稳定、价格低廉、使用维护方便; 3、采用水冷却,噪音低、振动小; 4、输入转速范围宽,可用于变频调速等各类电动机及动力机械的型式试验; 5、控制器采用直流电源,控制功率小。

四、特性曲线 注:P0为最大冷却功率; n1为额定最低转速; n2为额定最高转速。

五、使用环境 1、最高环境温度不超过40℃; 2、海拔高度不超过2000m; 3、当环境温度为20℃时,相对湿度不大于85%。 六、冷却水 1、水质。冷却水为自来水,一般工业用水、地下水、河水。水中不含有直径1mm 以上的固体颗粒或其它杂物,其pH值为6-8,硬度为200ppm以下为宜,最大值为300ppm。 2、水压。进水压力一般为不小于0.1Mpa,不大于0.3Mpa。用户在使用本产品时应安装水压表和进水阀门,以方便监控和调节水量。 3、水量。冷却水量见参数表,进水量的大小按测试功率的不同进行调节。 4、水温。进水温度最高不超过30℃,出水温度约为50℃-60℃为宜,使用时可根据出水温度的高低调节水量。 七、注意事项: 1、按额定转矩、转速、功率选用涡流制动器。严禁超转矩、超功率、超转速使 用。 2、运行前须对电涡流制动器进行检查。核定铭牌数据是否为要求的规格;检查 紧固件是否松动,各接线板接线是否正确,接触是否良好,如有缺陷或不良应予排除或更换;用500伏的兆欧表检查励磁绕组

合肥永磁磁力联轴器7大优点

合肥永磁磁力联轴器7大优点 磁力耦合器也称磁力联轴器,主要由连接在电动机轴端的导磁体和连接在负载端的永磁体两部分组成。在运行中,按照涡流感应原理,以上两部分相对运动产生磁场,而这样在盘状导体中就会产生涡流,而涡流所产生的磁场和磁体相互吸引,从而使转子和导体两个部件通过空气间隙传递力矩,这样电动机和负载就由原来的硬连接转变为软连接[1],如图1和图2所示。 根据以上原理,近年来国内开发出了延迟型、限矩型、调速型等不同类型的磁力耦合器。我公司使用的是由上海高率机电科技有限公司生产的限矩型磁力耦合器。近年来,随着水泥企业节能降耗和内部挖潜等技术革新的开展,如磁力耦合器、动态谐波节能装置等,在水泥行业逐渐得到了应用和推广。 磁力耦合器与其他传动设备比较

通过统计及实际应用分析,现将磁力耦合器与其他类型的联轴方式针对其特点、维修成本等方面进行分析比较,如表1所示。 将磁力耦合器与其他节能传动设备进行性能、能效等方面比较,如表2所示。 通过以上内容及列表分析可知,弹性联轴器、滑差设备及液力耦合器等类型的传动设备所存在的弊端,这里就不再一一赘述。而磁力耦合器的优点主要体现在以下几个方面:1)驱动电动机电流降低,节能效果显著。使用磁力耦合器后,无论是单台设备的能效还是系统的总能效,磁力耦合器的效率都是最高的。因此,使用磁力耦合器,将会为水泥生产线设备降低能耗,节约运行和维修成本。 2)使用磁力耦合器后,可大大减少设备的振动,延长电动机及其轴承的使用寿命。磁力耦合器是靠空气间隙传递扭矩的,是真正的无接触连接装置。这种连接方式,可使设备连接应力更加均匀,对中性能更好,承载能力大大加强。通过检测,使用磁力耦合器可以减少80%以上的振动。 3)使用磁力耦合器后,可以很好地实现设备柔性启动(即软启动),可以很好地保护电动机和负载。 4)使用磁力耦合器可以减低故障率。由于磁力耦合器靠空气间隙传递扭矩,没有磨损部件,基本上不发生故障,这样就会降低故障率,从而大大缩短停机时间。 5)磁力耦合器具有过载保护功能,提高了系统运行的安全可靠性。水泥企业常用的液力耦合器是通过喷油泄压方式来进行过载保护的,而这种过载保护方式,既污染环境,又增加修复时间和维护费用。 6)磁力耦合器结构简单,无需润滑,对环境无任何污染损害,属绿色环保产品。 7)对于调速范围较窄的设备,如高温风机等,还可以通过调节磁力耦合器两部分之间

电涡流传感器基本原理

电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。 注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。2、电涡流传感器的工作原理与结构

。 传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z 降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理 3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用

4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

电磁涡流刹车制动扭矩减小原因分析资料报告

电磁涡流刹车制动扭矩减小原因分析 目前,电磁涡流刹车已经广泛应用于石油钻机辅助刹车系统中。它利用电磁感应原理进行无磨损制动,应用电磁涡流刹车可大幅度减少主刹车的磨损,延长刹车盘的使用寿命,降低劳动强度。在一般情况下,只要操作司钻开关或自动控制给定信号而不必使用刹把(主刹车)就能可靠地控制钻具下放速度。将钻具平稳地座落在转盘或卡瓦上。下面从现场使用过程中制动扭矩减小的故障入手,对影响电磁刹车使用性能的故障原因进行分析,并提出了对于类似故障检修的方法和防措施。 1故障概况及经过 配套DWS50电磁涡流刹车的50D钻机在运转过程中,操作人员反映起下钻过程中,挂合电磁刹车始终感觉无法达到理想的制动转矩,其制动功能明显低于正常状态。经检测控制柜控制功能良好,无交、直流故障显示,直流电压输出可达额定值。 2故障原因及时效机理分析 2.1电磁涡流刹车基本结构和工作原理 分析电磁刹车制动力矩减小的原因,应该首先从电磁刹车的基本结构和原理入手。电磁涡流刹车装置一般由刹车主体、可控硅整流装置、司钻开关、冷却系统等组成。电磁刹车是将钻具下放时产生的巨大机械能转换为电能,又将电能转化为热能的非摩擦式能量转换装置。其应用的是电磁感应原理。当刹车工作时,可控硅整流装置向定子线圈通入直流电流,于是在转子与定子之间便有磁通相连,使转子处在磁场闭合回路中。磁场所产生的磁力线通过磁极→气隙→电枢→气隙→磁极形成一个闭合回路。绞车滚筒带动电磁刹车主轴上的转子以相同转速在该磁场旋转。在这个磁场中,磁力线在磁级的齿部(凸极部分)分布较密,而在磁极的槽部(齿间部分)分布较稀,因此随着转子与定子的相对运动,转子各点上的磁通便处

电涡流位移传感器的原理..

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I 和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。

永磁联轴器在破碎机上的应用

永磁联轴器在SSC800型破碎机上的应用 姓名:何宗豪 单位:西山煤电集团公司东曲选煤厂

永磁联轴器在SSC800型破碎机上的应用 何宗豪 西山煤电集团公司东曲选煤厂 摘要:根据磁学、力学的观点,永磁联轴器可以分成四类:涡流装置、磁滞传动、磁阻式同步联轴器、同步联轴器。重点分析了常用的同步联轴器的磁路结构及其特点。指出永磁联轴器的重要性能是脱开扭矩、扭转刚度、运动惯性、总体尺寸与装置成本。 关键词:永磁联轴器;同步联轴器;破碎机;保护减速器 引言: 永磁联轴器在欧美地区已得到了广泛应用,相比较其他的传动方式,其性能优势非常明显。以齿辊式破碎机来说,齿辊与减速器之间使用鼓形齿式联轴器连接,属于刚性连接,没有针对减速器的保护装置,当有硬度较大的矸石或铁器进入破碎机后,由于齿辊的惯性作用,齿辊无法及时停止运转,这将给减速器带来很大伤害;相比较液力耦合器,磁力耦合器在满载启动、启动平稳、过载保护、失速保护等,保护破碎机及延长减速器寿命与降低维护保养费用方面,都有明显的优势。本文从结构、工作原理,结合实际的性能表现数据等对对两者进行了比较分析,并通过具体的应用实例来说明磁力耦合器的优势所在。 一、永磁联轴器的结构与性能特点 1、永磁联轴器的结构

永磁联轴器主要由两部分组成:一部分是连接在电动机出轴端的特殊材料的导体;另一部分是连接在负载端(减速器输入轴)的永磁体。在运行过程中,这两个部分的相对运动产生了一个磁场,在盘状导体中产生涡流。涡流产生的磁场和磁体相互吸引,从而使转子和导体两个部件通过空气间隙传递力矩。 2、永磁联轴器的性能特点 与液力耦合器及其他传动设备相比,永磁联轴器结构紧凑,安装无须其它的附属设备。由于是通过空气间隙传递扭矩,两部件之间没有任何接触,所以无磨损部件,并能减少80%的振动;最大限度的允许偏心;无须润滑;能提供指定的启动方式;容许脉动载荷;能实现软启动、加载启动;过载保护,并且对电机、负载、耦合器没有损害。 永磁联轴器可以使用在任何离心负载的应用中,能够使用在高达6000马力的负载上。因为负载速度改变的同时,电机一直以它额定转速运行,电机发热不再是问题。而且因为这是机械装置,它不会引起谐波干扰。滤波器、变压器以及冷却系统都不需要。在磁力耦合器中,导体盘与磁体盘之间存在滑差,这种滑差会使速度大约比全速时损失1%-2%。 3、永磁联轴器的优点 限矩形磁力耦合器的主要优点有:超负荷扭矩保护;自动重启;柔性启动/停止;降低使用的总成本;允许一定的轴心偏离;减小电

永磁涡流联轴器原理及应用

永磁涡流联轴器原理及应用 永磁涡流联轴器原理及应用。永磁联轴器它无需直接的机械联接,而是利用稀土永磁体之间的相互作用,利用磁场可穿透一定的空间距离和物质材料的特性,进行机械能量的传送。磁力联轴器的出现,彻底解决了某些机械装置中动密封存在的泄漏问题。这种产品广泛应用于化工、电镀、造纸、制药、食品、真空等行业的密封传动机械上。 磁性联轴器原理 磁力传动联轴器主要有2种结构:平面磁力传动联轴器和同轴磁力传动联轴器。磁体以轴向充磁,耦合磁极成轴向配置的叫平面磁力传动联轴器。磁体以径向充磁,耦合磁极成径向配置的叫同轴磁力传动联轴器,如图1所示。 现以同轴磁力传动联轴器为例,来说明其工作原理。磁力传动联轴器由外磁体、内磁体和隔离罩组成。内、外磁体均由沿径向磁化且充磁方向相反的永磁体组成,永磁体以不同极

性沿圆周方向交替排列,并固定在低碳钢钢圈上,形成磁断路连体。隔离罩采用非铁素体(因而是非磁性)的高电阻材料制造,一般用奥氏体不锈钢。在静止状态时,外磁体的N极(S极)与内磁体的S极(N极)相互吸引并成直线,此时转矩为零,如图3所示。当外磁体在动力机的带动下旋转时,刚开始内磁体由于摩擦力及被传动件阻力的作用,仍处于静止状态,这时外磁体相对内磁体开始偏移一定的角度,由于这个角度的存在,外磁体的N极(S极)对内磁体的S极(N极)有一个拉动作用,同时外磁体的N极(S极)对内磁体的前一个N极(S极)有一个推动作用,使内磁体有一个跟着旋转的趋势,这就是磁力联轴器的推拉磁路工作原理。当外磁体的N极(S极)刚好位于内磁体的2个极(S极和N极)之间时,产生的推拉力达到最大,如图4所示,从而带动内磁体旋转。在传动过程中,隔离罩将外磁体和内磁体隔开,磁力线是穿过隔离罩将外磁体的动力和运动传给内磁体的,从而实现了无接触的密封传动。 应用领域 磁力传动联轴器的成功应用之一是其与泵的结合——磁力泵。以前,它作为贵重的特殊产品迫不得已时才选用,现在它的应用领域很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入;饮食、生物、医药要保证介质的纯净卫生。磁力传动联轴器在这些领域找到了用武之地,可以说磁力泵是磁性材料的一大市场。 将磁力传动联轴器特别是永磁联轴器应用于阀门上,阀杆不穿过阀盖,省略了填料函,得名为全封闭无填料永磁传动阀。该阀门由于无填料函,可长期安全可靠地运行;阀杆与填料间无摩擦力矩,转动省力;负压操作无外界气体进入。截止阀、闸板阀、球阀、碟阀等一切工业阀门均可以改造成全封闭阀门。反应釜是化工厂广泛使用的一种混合反应设备,液体

涡流制动器

一种涡流制动器调速系统,是利用检测感应电动机转子电压作为转速反馈信号的转速单闭环系统,当转速给定值与实际值比较后产生差值时,此差值经速度调节器,令可控硅整流装置调节涡流制动器的制动转矩,使系统在给定转速下运行,其特征在于所述的调整速系统是在转速闭环的基础上,增设了克服涡流制动器电惯性的电流环,为了确保系统的安全可靠,再增设励磁电流快速上升补偿环节、励磁电流全过程监控环节及停顿制动环节,所述的转速闭环的转速反馈信号,是采用检测感应电动机的转子频率,并将频率快速转换成电压的测速方法。 涡流制动器,还有涡流阻尼器,原理是导体在磁场中运动,导体内产生感生电势感生电流,并受到阻碍其运动的制动电磁力矩。电涡流制动器 一、概述 涡流制动器又称电磁制动器,它是利用涡流损耗的原理来吸收功率的。通常由涡流制动器、控制器及测力装置组成测功装置,可以测取被测机械的输出转矩和转速,从而得出输出功率,它可以取代磁粉离合器、水力测功机、直流发电机组等,用来测量各种电动机、变频器、发动机、齿轮箱等动力机械的性能,成为型式试验的必要设备,与其它测功装置相比,WZ

系列测功装置具有更高的可靠性、实用性和稳定性,价格也便宜很多。 二、主要特点 1、结构简单、运行稳定、价格低廉、使用维护方便; 2、采用水冷却,噪音低、振动小; 3、输入转速范围宽,可用于变频调速等各类电动机及动力机械的型式试验; 4、控制器采用单相交流电源,控制功率小; 5、转矩的测量可以采用普通磅秤、电子磅秤或高精度转矩转速测量仪,适用于不同测量精度的场合; 6、该装置还能作制动器用,制动力矩大,耐高转速。 三、产品规格及主要数据 1、型号说明 A:双轴伸,基本形式(可省略)B:单轴伸

2019年电涡流传感器原理指什么

2019年电涡流传感器原理指什么 篇一:电涡流传感器基本原理 电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。 2、电涡流传感器的工作原理与结构 。

传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用 4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

电涡流探头原理与安装

电涡流传感器探头的原理以及实际应用和安装 一、概述 我公司#1、#2小汽轮机TSI(汽轮机监视系统)使用美国本特立.内华达公司生产的3500 电涡流传感器系统,本系统为我公司#1、#2小机TSI系统提供准确可靠的监测数据。 在#1、#2小机TSI系统中主要使用了本特立.内华达公司的3500 XL 8 mm 电涡流传感器,这种电涡流传感器提供最大80 mils (2 mm)线性范围和200 mV/mil 的输出。它在大多数机械监测应用中用于径向振动、轴向位移、转速和相位的测量。 二、工作原理 电涡流传感器可分为高频反射式和低频透射式两类,我公司主要使用高频反射式电涡流传感器,下面将对其工作原理作以阐述: 电涡流传感器是基于电磁感应原理而工作的,但又完全不同于电磁感应,并且在实际测量中要避免电磁感应对其的干扰。电涡流的形成:现假设有一线圈中的铁心是由整块铁磁材料制成的,此铁心可以看成是由许多与磁通相垂直的闭合细丝所组成,因而形成了许多闭合的回路。当给线圈通入交变的电流时,由于通过铁心的磁通是随着电流做周期性变化的,所以在这些闭合回路中必有感应电动势产生。在此电动势的作用下,形成了许多旋涡形的电流,这种电流就称为电涡流。电涡流传感器的工作原理如下图所示:

当线圈中通过高频电流i时,线圈周围产生高频磁场,该磁场作用于金属体,但由于趋肤效应,不能透过具有一定厚度的金属体,而仅作用于金属表面的薄层内。在交变磁场的作用下金属表面产生了感应电流Ie,即为涡流。感应电流也产生一个交变磁场并反作用于线圈上,其方向与线圈原磁场方向相反。这两个磁场相互叠加,就改变了原来线圈的阻抗Z,Z的变化仅与金属导体的电阻率ρ、导磁率u、激励电磁强度i、频率f、线圈的几何形状r以及线圈与金属导体之间的距离有关。线圈的阻抗可以用如下的函数式表示:Z=F(ρ、u、i、f、d)。当被测对象的材料一定时,ρ、u为常数,仪表中的i、f、d也为定值,于是Z就成为距离d的单值函数。 三、实际应用 电涡流传感器以其测量线性范围大,灵敏度高,结构简单,抗干扰能力强,不受油污等介质的影响,特别是非接触测量等优点,而得到了广泛的应用。在火电厂中主要应用在以下几个监测项目: 1、转子转速:在机组运行期间,连续监视转子的转速,当转速高于给定值时 发出报警信号或停机信号。其工作原理:根据电涡流传感器的工作原理可知,趋近式电涡流探头和运行的转子齿轮之间会产生一个周期性变化的脉冲量,测出这个周期性变化的脉冲量,即可实现对转子转速的监测。

电涡流式传感器

电涡流式传感器 根据初中学的法拉第电磁感应原理,块状金属导体置于变化的磁场中,导体内将产生呈涡旋状的感应电流,称之为电涡流或涡流,这种现象称为涡流效应。 电涡流传感器是利用电涡流效应,将位移、温度等非电量转换为阻抗的变化或电感的变化从而进行非电量电测的。 目前生产的变间隙位移传感器,器量程范围为300m~800mm。 将块状金属导体置于通有交变电流的传感器线圈磁场中。根据法拉第电磁感应原理,由于电流的变化,在线圈周围就产生一个交变磁场,当被测导体置于该磁场范围之内,被测导体内便产生电涡流,电涡流也将产生一个新磁场,和方向相反,抵消部分原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化。

一、电涡流式传感器的结构 电涡流式传感器结构比较简单,主要由一个安置在探头壳体的扁平圆形线圈构成。 二、电涡流式传感器的测量电路 利用电涡流式变换元件进行测量时,为了得到较强的电涡流效应,通常激磁线圈工作在较高频率下,所以信号转换电路主要有调幅电路和调频电路两种。 调幅式(AM)电路

调频式(FM)电路 调频式电路(100kHz~1MHz)结构如图所示: 当电涡流线圈与被测体的距离x改变时,电涡流线圈的电感量L 也随之改变,引起LC振荡器的输出频率变化,此频率可直接用计算机测量。 如果要用模拟仪表进行显示或记录时,必须使用鉴频器,将△?转换为电压U0。 三、电涡流式传感器的应用电路 电涡流式传感器具有测量范围大、灵敏度高、结构简单、抗干扰能力强和可以非接触测量等优点,被广泛应用于工业生产和科学研究各个领域中。 1、电磁炉

电磁炉是我们日常生活中必备的家用电器之一,涡流传感器是其核心器件之一,高频电流通过励磁线圈,产生交变磁场;在铁质锅底会产生无数的电涡流,使锅底自行发热,烧开锅内的食物。 2、电涡流探雷器 3、电涡流式接近开关 接近开关又称无触点行程开关。它能在一定的距离(几毫米至几十毫米)内检测有无物体靠近。 当物体接近到设定距离时,就可发出“动作”信号。接近开关的核心部分是“感辨头”,它对正在接近的物体有很高的感辨能力。这种接近开关只能检测金属。

COT--调速型永磁涡流传动装置

COT--调速型永磁涡流传动装置 1、适用范围 输出功率:10--3000KW;转速:最高为 3600r/min; 电机转速不变,实现负载过程控制,达到节能效果;替代变频器进行节能改造;可在恶劣的工作环境下运行。 2、工作原理 调速型永磁涡流传动装置由铜转子、永磁转子和控制器三个部分组成。一般,铜转子(带铜环的钢制转子)与电机轴连接,永磁转子(带永磁材料的铝制转子)与工作机的轴连接。铜转子和永磁转子之间有空气间隙(称为气隙),而没有传递扭矩的机械连接。在电机转动时,铜转子的铜环上在切割永磁体的磁力线时产生感应涡电流,而感应涡电流的磁场与永磁体的磁场之间的作用力实现了电机与工作机之间的扭矩传递。当气隙小时,调速型永磁传动装置的传动能力强;相反,气隙大时传动能力小。而控制器可通过手动或控制信号调节空气隙的大小。对于自动控制系统,当控制器接到一个控制信号(如系统对压力、流量或液面高度等要求进行调节的信号)后,控制器对信号进行识别、计算和转换后,给其执行元件发出调节指令,执行元件就会调节铜转子与永磁转子之间的气隙,从而改变工作机的工作点,即调节了工作机的转速和扭矩。 永磁涡流传动装置包括调速型永磁涡流传动装置的输出扭矩等于输入扭矩,而其输出转速(即工作机转速和输入转速(即电机转速)是不相等的,它们之间的差值与输入转速的比值称为转差率,额定转差率为1-4%。调速型永磁涡流传动装置对于不同负荷特性的工作机有不同的调速范围。 3、技术优势 1.可按系统的工艺要求对工作机进行无级调速,节能效果非常显著,根据负载类型和系统工艺对调速要求的不同可实现高达66%的节能效果。 2.总体运行成本低。 3.电机能实现更为平稳和渐进的柔性启动/停止。 4.减少冲击和振动。协调多机驱动的负荷分配。 5.延长传动系统中各零部件的使用寿命。 6.有过载保护功能,从而提高了整个系统的可靠性,完全消除了系统因过载而导致的损坏。 4、与变频器相比,优点独特 --稳定性和可靠性比变频器高,在大功率时尤其突出。 --负载转速高、功率大时代替变频器优势明显。 --在恶劣的工作环境中的适应能力和免维护性能,是变频器所不具备的。 --与变频器相比,不对电网产生谐波干扰。 --在电压降低时,变频器可能无法工作,但调速型永磁涡流传动装置则不受影响。 --与变频器相比,能消除电机与负载之间的振动传递。 --与变频器相比,维护和保养费用低。 --与变频器相比,永磁涡流传动装置能有效延长传动系统各零部件的寿命。

电涡流缓速器工作原理及结构

二 电涡流缓速器工作原理及结构 电涡流缓速器是一种非接触式辅助制动系统,俗称“电刹”,其可以有效提高汽车的安全性能。欧洲各国已于20世纪30年代开始在货车上安装电涡流缓速器。因其有效提高重型汽车的安全性能,许多国家将其规定为标准件安装在相关汽车。 2.1 电涡流缓速器结构 图2.1所示为电涡流缓速器的示意图。电涡流缓速器由机械部分和电气部分组成。机械部分包括定子、转子以及支撑架,其主要内容如下:①定子。该结构是缓速器的主要工作部件,在定子圆周方向均匀地固定安装有8个高导磁材料制成的铁心,线圈套在铁心上,铁心起增大磁通的作用。圆周上相对两个励磁线圈串联或并联成一组磁极,并且相邻两个磁极均为N 、S 相间,这样就形成了相互独立的4组磁极。定子通过固定支架刚性安装在车架上(或者驱动桥主减速器外壳上,也可安装在变速器后端盖上),定子相对于车架静止不动。②转子。该结构呈圆环状,由2片前后对称、带散热叶片的转盘组成,前后2转盘中间通过连接环将其固定为一体,前后转盘通过法兰或凸缘与传动轴相连,并随传动轴一起高速旋转。转子一般用导磁率高且剩磁率低的铁磁材料制成。定子和转子之间有一定气隙,可以相对转动。从减小磁阻角度讲,气隙越小越好,但又要保证转子在规定的偏心误差内自由转动,以便使转子盘旋转时不会刮擦到定子,综合考虑缓速器的性能要求以及运行可靠性,定子和转子之间的气隙一般在0.5~1.5mm 之间。这是一个对制动转矩影响很大的结构参数。 电气部分包括控制系统、ABS 连接器、车速信号传感器、制动压力传感器、手控开关信号以及指示灯,其主要内容如下: 1) 控制系统。该结构是电涡流缓速器各种信号的集中分析及处理中心,对缓速器的工作状况发出指令。 2) 车速信号传感器。该结构用于收集车速信息,并将信号以电信号方式传输给控制系统。控制系统根据此车速信号V 以及控制系统内预设的临界车速信号0V 来决定电涡流缓速器系统是否进入制动待命状态。当0V V 时进入制动待命状态,反之退出。 3) 制动压力传感器。一般为线性型传感器,其可以产生的反映制动气压线性变化的电信号并传送给控制系统,以便调整缓速器的励磁电流量值的大小。 4) ABS 连接器。该结构由数十个数字逻辑电路构成,能根据车辆的行驶状况自动控制缓速器的工作状态。如果ABS 发现某个车轮打滑,控制器将立即终止缓速器的制动作用。车轮打滑一旦结束,缓速器又进入待工作状态,始终保持缓速器的制动力矩在地面附着力的范围内。另外,当ABS 有故障时,控制系统将切断电涡流缓速器的脚控功能,手控制动仍然有效,以保证行车安全。因此,电涡流缓速器和ABS 系统是兼容的。 5) 指示灯。安装在仪表板上,显示电涡流缓速器的当前工作状态。

纯正的麦格钠永磁传动装置与其它产品主要区别说明

纯正的麦格钠永磁涡流柔性传动装置与仿 制产品主要区别说明 一、永磁涡流柔性传动技术的知识产权和法律控制权 美国麦格钠(MagnaDrive)成立1999年,总部在美国华盛顿州西雅图市。在美国拥有17项专利、全世界拥有200多项专利,在中国已获得发明专利2项、实用新型17项、外观设计2项,已受理并在审专利技术10项。是全球第一个从事专业永磁涡流柔性传动技术开发的企业。法律上,支持麦格钠公司为拥有永磁专利技术的第一申请和第一应用单位。同时“永磁涡流柔性传动技术”为麦格钠公司专用产品名称。美国麦格钠公司在中国关联公司:麦格钠(中国)节能设备有限公司和鞍山钦元节能设备制造有限公司。 麦格钠公司保留对后续使用同类技术应用和生产等企业及个人的相关法律追述权利。 其它仿制或应用企业存在的风险:随时存在受美国麦格钠公司对其进行永磁涡流柔性传动技术权利的法律风险。 二、永磁传动的技术壁垒、复杂性和核心风险 轴系旋转机械传动装置采用麦格钠永磁涡流柔性传动及调速技术来替代常规的刚性传动及调速控制应用和发展,是一项全新的技术应用革命,具有国际领先的应用意义。 永磁涡流柔性传动装置的仿制壁垒在技术上,而不是生产、制备、材料配置和规模上等。

壁垒的核心关键是永磁涡流的磁路引导设计和磁路的方向控制等技术核心参数和函数公式。 该技术核心公式,目前全球学术上没有通过理论推导得出线性的、实用的公式和检验公式。只有通过大量、复杂的实测数据模型而构筑成的经验累积公式和校验手段等,是一个非常复杂,并由大量数据库支撑的应用性技术。 目前拥有此类数据库仅为美国麦格钠(MagnaDrive)公司,其它任何企业没有该支撑,或数据支撑量太小太单薄,更不可能实现稳定的永磁传动控制。 仿制品的主要危害:在实际设备运行中,由于没有磁路引导和控制,电机与负载的力矩传递呈不稳定状态,更无法控制。随设备旋转速度越快和设备功率越大而出现的消磁、发热、失稳、失恒现象越严重,非常容易造成电机输出力矩和负载端输入力矩严重失恒,造成设备运行波动,甚至于损坏或突发性停机,严重影响生产。 三、国家支持和政府支持 麦格钠永磁涡流柔性传动装置已经获得中国政府及政策的扶持和引导,2012年11月,“永磁涡流柔性传动节能技术”列入国家发改委《国家重点节能技术推广目录(第五批)》。2014年6月26日被工信部列入《第一批电机能效提升计划》。 该技术是由麦格钠公司申报并审批核准的推广应用技

相关文档
最新文档