第三章 傅里叶变换 知识要点

第三章 傅里叶变换 知识要点
第三章 傅里叶变换 知识要点

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

不懂傅里叶变换与Z变换的意义的可以看看(谢谢分享)

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。 傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也

第三章——傅里叶变换

第三章 傅里叶变换 3.1周期信号的傅里叶级数分析 (一) 三角函数形式的傅里叶级数 满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若 ()f t 的周期为1T ,角频率11 2T π ω=,频率111f T =,傅里叶级数展开表达 式为 ()()()0111 cos sin n n n f t a a n t b n t ωω∞ ==++????∑ 各谐波成分的幅度值按下式计算 ()01 01t T t a f t dt T +=? ()()01 012cos t T n t a f t n t dt T ω+=? ()()01 012sin t T n t b f t n t dt T ω+=? 其中1,2,n =??? 狄利赫里条件: (1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个; (2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00 t T t f t dt +? 等于有限值。 (二) 指数形式的傅里叶级数 周期信号的傅里叶级数展开也可以表示为指数形式,即 ()()11 jn t n n f t F n e ωω∞ =-∞ = ∑ 其中 ()0110 11t T jn t n t F f t e dt T ω+-= ? 其中n 为从-∞到+∞的整数。

(三) 函数的对称性与傅里叶系数的关系 (1) 偶函数 由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则 ()()01 112sin 0t T n t b f t n t dt T ω+==? 所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2) 奇函数 由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则 ()01 0110t T t a f t dt T +==? ()()01 011 2cos 0t T n t a f t n t dt T ω+= =? 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项 (3) 奇谐函数(()12T f t f t ?? =-+ ?? ?) 半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而 不会含有偶次谐波项,这也是奇谐函数名称的由来。 (四) 傅里叶有限级数与最小方均误差 吉布斯现象:在用有限项傅里叶级数合成原周期函数时,当选取傅里叶有限项级数愈多时,在所合成的波形中出现的峰起愈靠近()f t 的不连续点。当所选取的项数很大时,该峰起值趋于一个常数,它大约等于总跳 变值的9%,并从不连续点开始以起伏振荡的形式逐渐衰减下去,这种现象通常称为吉布斯现象。 3.2傅里叶变换

C语言实现FFT(快速傅里叶变换)

C语言实现FFT(快速傅里叶变换) 函数原型:空快速傅立叶变换(Struct Compx *xin,Intn) 函数函数:对输入复数组执行快速傅立叶变换(FFT)输入参数:*xin复结构组的第一个地址指针。结构输出参数:no * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *结构compx u,w,t。 nv2 =快速傅立叶变换_ N/2;nm1 =快速傅立叶变换_ N-1;(I = 0;i

第三章离散傅里叶变换(DFT)

第三章 离散傅里叶变换(DFT ) 1. 如图P3-1所示,序列)(n x 是周期为6的周期性序列,试求其傅里叶级数的系数。 图 P3-1 分析 利用DFS 的定义求解。 解:由nk j n nk n e n x W n x k X 6250650 )()()(~π -==∑∑== k j k j k j k j k j e e e e e 56 246 236 226 26 21068101214πππππ-----+++++= 计算求得 ,3j39(1)X ~ 60,(0)X ~-== 3j 3(2)X ~ += , 3j 3(4)X ~ 0,(3)X ~-== 3j39(5)X ~ += 2. 设4()()x n R n =,6()(())x n x n =,试求)(~k X ,并做图表示)(~ ),(~ k X n x 。 分析 利用DFS 的定义求解。 解: 由 k j k j k j nk j n nk n e e e e n x W n x k X ππ π π -----=+++===∑∑3 236250 650 1)(~)(~)(~ 计算求得 ,3j (1)X ~ 4,(0)X ~-== 1(2)X ~ = ,1(4)X ~ 0,(3)X ~== 3j (5)X ~ = )(~),(~k X n x 如图P3-2所示。

图 P3-2 3. 已知)(n x 是N 点有限长序列,)]([)(n x DFT k X =。现将长度变成rN 点的有限长序列)(n y ???-≤≤-≤≤=1,01 0),()(rN n N N n n x n y 试求rN 点DFT[)(n y ]与)(k X 的关系。 分析 利用DFT 定义求解,)(n y 是rN 点序列,因而结果相当于在频域序列进行插值。 解:由)(k X = DFT[)(n x ]∑-=-=1 02)(N n nk N j e n x π ,10-≤≤N k 可得 nk rN N n nk rN N n W n x W n y n y DFT k Y ∑∑-=-====10 1 )()()]([)( )()(1 2r k X e n x N n l k n N j ==∑-=-π, 1,...,0,-==N l lr k 所以在一个周期内,)(k Y 的抽样点数是)(k X 的r 倍()(k Y 的周期为Nr ),相当于在)(k X 的每两个值之间插入r-1个其他的数值(不一定为零),儿当k 为r 烦人整数l 倍时,)(k Y 与)(r k X 相等。 4. 已知)(n x 是N 点有限长序列,)]([)(n x DFT k X =,现将)(n x 的每两点之间补进

快速傅里叶变换FFT的FPGA设计与实现--电科1704 郭衡

快速傅里叶变换FFT的FPGA设计与实现 学生姓名郭衡 班级电科1704 学号17419002064 指导教师谭会生 成绩 2020年5 月20 日

快速傅里叶变换FFT 的设计与实现 一、研究项目概述 非周期性连续时间信号x(t)的傅里叶变换可以表示为:= )(?X dt t j e t x ? ∞ ∞ --1 )(?,式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为: ∑-=-=-==1 02,1.....10)()(N n N j N kn N e W N k W n x K X π、、。 可以看出,DFT 需要计算大约N2次乘法和N2次加法。当N 较大时,这个计算量是很大的。利用WN 的对称性和周期性,将N 点DFT 分解为两个N /2点的DFT ,这样两个N /2点DFT 总的计算量只是原来的一半,即(N /2)2+(N /2)2=N2/2,这样可以继续分解下去,将N /2再分解为N /4点DFT 等。对于N=2m 点的DFT 都可以分解为2点的DFT ,这样其计算量可以减少为(N /2)log2N 次乘法和Nlog2N 次加法。图1为FFT 与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT 算法的优越性。 图1 FFT 与DFT 所需乘法次数比 较

X[1] 将x(n)分解为偶数与奇数的两个序列之和,即x(n)=x1(n)+x2(n)。 x1(n)和x2(n)的长度都是N /2,x1(n)是偶数序列,x2(n)是奇数序列,则 ∑∑=--=-=+2 )12(120 2)1.....,0()(2)(1)(N n k n N N n km N N k W n x W n x K X 所以)1...,0()(2)(1)(12 22120 -=+=∑∑-=-=N k W n x W W n x K X N n km N k N km N N n 由于km N N j km N j km N W e e W 2/2 /2222===--ππ ,则 )1.....,0)((2)(1)(2)(1)(12 2/120 2/-=+=+=∑∑-=-=N k k X W k X W n x W W n x K X k N N n km N k N N n kn N 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N /2点DFT 。由于X1(k)和X2(k)均以N /2为周期,且WNk+N/2=-WNk ,所以X(k)又可表示为: )12/....,1,0)((2)(1)(-=+=N k k X W k X K X k N )12/....,1,0)((2)(1)2/(-=-=+N k k X W k X N K X k N

傅立叶变换的原理、意义和应用

傅立叶变换的原理、意义和应用 1概念:编辑 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。 参考《数字信号处理》杨毅明著,机械工业出版社2012年发行。 定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换 中文译名 Fourier transform或Transformée de Fourier有多个中文译

名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).[1] 2性质编辑 线性性质 傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于

FFT快速傅里叶变换的现实作用

快速傅里叶变换地现实作用 (快速傅里叶变换)是数字信号处理地经典算法,学过或者芯片设计地人大多知道这个算法.但是,大家是否想过,为什么数字信号处理会有那么多呢?有人会说,为了分析信号地频谱.那么下边地问题就是,分析频谱对我们地日常需求,比如手机打电话,雷达测量速度和方向等等一些与实际需求有什么联系?为什么如此重要?本文举一些简明地例子,阐释一下到底有什么用. 先回忆一下是什么.上世纪年代之前,我们主要通过模拟电路来进行信号处理,比如大家熟悉地用二极管和电容进行调制信号地包络检波一样,随着数字系统地普及,我们可以用处理器或者数字电路更为精确地处理信号,比如我们做检波,实际上可以用载波把信号混频(与余弦函数做乘法),再进行低通滤波,那么这个过程可以用数字电路地乘法器和滤波器来做,比二极管和电容构成地低通滤波器阶数高地多,性能自然更为理想,同时,由于数字电路易于做成集成电路,因此我们更多地是将原先地模拟信号(比如麦克风地音频)通过模拟数字转换器,转换为数字值后进行处理.这样地系统有几个问题,一个是信号需要被采样,其次是信号被分成若干量阶.信号被采样,也就意味着我们得到地不是原先地连续地信号了,而是一个离散地一些采集地样点.那么对时域信号进行采样,必然造成频谱地周期化,如果原先频谱仅限于有限地带宽,那么周期化之后,只要周期大于原先地带宽,那么实际上没有混叠失真.而数字电路限制我们只能进行乘加

等二进制域地计算,获得另一些离散地点,因此我们不得不将频谱也进行“采样”,频域地抽样导致时域上又周期化了,好在如果我们只取有限地长度,可以假定没采集地部分进行地是周期化延拓(由于平稳系统认为信号可以分解为正余弦函数地组合,而正余弦函数是可以周期延拓地,所以这个假设没有问题),那么我们得到了时域和频域都是离散地周期延拓地点集.既然是周期延拓地,那么延拓地部分和主值区间(靠近地那个周期)是重复地数值,因此我们只保留主值区间地部分,这样地时域点集到频域点集地变换关系叫离散傅里叶变换().然而它地运算过于复杂,因此库里和图基(, )两人力图化简它,找到了这个算法地一些内在运算规律,得到地运算量由原来地平方级降为级,这个算法就叫按时间抽取快速傅里叶变换,桑德和图基研究按频率抽取也可以得到类似地低复杂度算法,这类算法统称快速傅里叶变换(),地计算结果和是完全等价地,只是运算量降低了.又由于时频变换能量不变(定理),所以频域地绝对数值没有意义了,只要获得相对数值即可,因此数字系统中地量化阶数以及数字系统溢出后地缩放调整对地计算结果影响仅在于精度,而不是对错,从而,正好满足数字系统可以处理地前提,同时运算复杂度不高,因此获得了广泛地应用.那么,模拟系统能不能做类似地呢?可以,构造与频点数量相同个数地带通滤波器,组成一个阵列,信号进入这个带通滤波器组,每个滤波器只保留了相应频点为中心地类似于地频响函数,那么就可以得到地结果.当然,这个代价不是一般地系统可以负担地.所以,在没有数字电路普及地年代里,基本是数学算法,是不可实现地.

快速傅里叶变换的意义

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 傅里叶变换属于谐波分析。 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 1、为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。 因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 2、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区

C语言实现FFT(快速傅里叶变换)

#include #include /********************************************************************* 快速福利叶变换C函数 函数简介:此函数是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。此函数采用联合体的形式表示一个复数,输入为自然顺序的复 数(输入实数是可令复数虚部为0),输出为经过FFT变换的自然顺序的 复数 使用说明:使用此函数只需更改宏定义FFT_N的值即可实现点数的改变,FFT_N的应该为2的N次方,不满足此条件时应在后面补0 函数调用:FFT(s); 时间:2010-2-20 版本:Ver1.0 参考文献: **********************************************************************/ #include #define PI 3.1415926535897932384626433832795028841971 //定义圆周率值#define FFT_N 128 //定义福利叶变换的点数 struct compx {float real,imag;}; //定义一个复数结构struct compx s[FFT_N]; //FFT输入和输出:从S[1]开始存放,根据大小自己定义 /******************************************************************* 函数原型:struct compx EE(struct compx b1,struct compx b2) 函数功能:对两个复数进行乘法运算 输入参数:两个以联合体定义的复数a,b 输出参数:a和b的乘积,以联合体的形式输出 *******************************************************************/ struct compx EE(struct compx a,struct compx b) { struct compx c; c.real=a.real*b.real-a.imag*b.imag; c.imag=a.real*b.imag+a.imag*b.real; return(c); } /***************************************************************** 函数原型:void FFT(struct compx *xin,int N)

为什么进行傅里叶变换

一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.360docs.net/doc/4c2879264.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著

限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅立叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离解信号,这时我们就可以用离散傅立叶变换方法进行变换。这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。 但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。 每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶换的基础上再来理解复数傅立叶变换。

第三章傅立叶变换习题复习过程

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

fft快速傅里叶变换 c语言实现

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

傅里叶变换

研究生课程论文(作业)封面 ( 2014 至 2015 学年度第 1 学期) 课程名称:__________________ 课程编号:__________________ 学生姓名:__________________ 学号:__________________ 年级:__________________ 提交日期:年月日 成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周 评阅日期:年月日 东北农业大学研究生部制

积分变换在工程上的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的积分变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用,并在分离变数法中对齐次方程及非齐次方程进行了区分。傅里叶变换在不同的领域有不同的形式,诸如现代声学,语音通讯,声纳,地震,核科学,乃至生物医学工程等信号的研究发挥着重要的作用。 关键词:傅里叶变换;偏微分方程;数字信号处理 1 概要介绍 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 1.傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。——(1) 2.傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 ()()()()()()?? ? ??-++=-? ? ∞ +∞ +∞ -.,200,]cos [1 其它连续点处, 在t f t f t f t f d d t f ωττωτπ 当()t f 满足一定条件时,在()t f 的连续点处有:

图像傅里叶变换的物理意义

傅里叶变换在图像处理中的作用 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数 傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰 注: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大) 傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量

快速傅里叶变换 (FFT) 实现

§2.4 快速傅里叶变换 (FFT) 实现 一、实验目的 1. 掌握FFT 算法的基本原理; 2. 掌握用C 语言编写DSP 程序的方法。 二、实验设备 1. 一台装有CCS3.3软件的计算机; 2. DSP 实验箱的TMS320F2812主控板; 3. DSP 硬件仿真器。 三、实验原理 傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2 步运算减少至 ( N/2 )log 2N 步。 离散信号x(n)的傅里叶变换可以表示为 ∑=-=1 0][)(N N nk N W n x k X , N j N e W /2π-= 式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。本实验以时间抽取方法为例。 时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。这样x(n) 的N 点DFT 可写成: ()()∑++∑=-=+-=1 2/0 )12(1 2/0 2122)(N n k n N N n nk N W n x W n x k X 考虑到W N 的性质,即 2/)2//(22/)2(2][N N j N j N W e e W ===--ππ 因此有: ()()∑++∑=-=-=1 2/0 2/1 2/0 2 /122)(N n nk N k N N n nk N W n x W W n x k X 或者写成: ()()k Z W k Y k X k N +=)( 由于Y(k) 与Z(k) 的周期为N/2,并且利用W N 的对称性和周期性,即: k N N k N W W -=+2/

相关文档
最新文档