最新新编基础物理学上册5-6单元课后答案

第五章

5-1 有一弹簧振子,振幅m A 2100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振动位移、速度和加速度方程。

分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。 解:振动方程为:]2cos[]cos[?π

?ω+=+=t T

A t A x 代入有关数据得:30.02cos[2]()4

x t SI π

π=+ 振子的速度和加速度分别是:

3/0.04sin[2]()4v dx dt t SI π

ππ==-+

2223/0.08cos[2]()4a d x dt t SI π

ππ==-+

5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.

分析 通过与简谐振动标准方程对比,得出特征参量。

解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ?π=

(2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,22cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-

5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;

(2)作用于质点的力的最大值和此时质点的位置.

分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。 解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =

(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N = 5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率

Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.

设振动均在弹簧的弹性限度内进行,求被测物体的质量. 分析 根据简谐振动频率公式比较即可。

解:由m k /21π

ν=

,对于同一弹簧(k 相同)采用比较法可得:

m

m '

21=

νν 解得:'4m m =

5-5一放置在水平桌面上的弹簧振子,振幅m A 2100.2-?=,周期T=0.5s ,当t=0时, (1)物体在正方向端点;

(2)物体在平衡位置,向负方向运动;

(3)物体在m x 2100.1-?=处,向负方向运动; (4)物体在m x 2100.1-?-=处,向负方向运动. 求以上各种情况的振动方程。

分析 根据旋转矢量图由位移和速度确定相位。进而得出各种情况的振动方程。 解:设所求振动方程为:]4cos[02.0]2cos[?π?π

+=+=t t T

A x 由A 旋转矢量图可求出

3/2,3/,2/,04321π?π?π??====

(1)0.02cos[4]()x t SI π=(2)0.02cos[4]()2

x t SI π

π=+ (3)0.02cos[4]()3

x t SI π

π=+

(4)20.02cos[4]()3

x t SI π

π=+

5-6在一轻弹簧下悬挂0100m g =砝码时,弹簧伸长8cm.现在这根弹簧下端悬挂250m g =的物体,构成弹簧振子.将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程.

分析 在平衡位置为原点建立坐标,由初始条件得出特征参量。 解:弹簧的劲度系数l g m k ?=/0。

题图5-5

当该弹簧与物体m 构成弹簧振子,起振后将作简谐振动,可设其振动方程为:

]cos[?ω+=t A x

角频率为m k /=ω代入数据后求得7/rad s ω=

以平衡位置为原点建立坐标,有:000.04,0.21/x m v m s ==- 据202

0)/(ωv x A +=

得:0.05A m =

据A

x 0

1

cos -±=?得0.64rad ?=±由于00v <,应取)(64.0rad =? 于是,所求方程为:))(64.07cos(05.0m t x += 5-7 某质点振动的x-t 曲线如题图5-7所示.求: (1)质点的振动方程;

(2)质点到达P 点相应位置所需的最短时间.

分析 由旋转矢量可以得出相位和角频率,求出质点的振动方程。并根据P 点的相位确定最短时间。

00001cos()0,/2,03

1,3

2

56

50.1cos()63

20x A t t x A v t s t x t m P ω?π

π

ωπ

ωππ=+==>=-=-=

=

=-Q Q 解:()设所求方程为:从图中可见,由旋转矢量法可知;又故:()点的相位为

0500.463

0.4p p p t t t s

P s

ππ

ω?∴+=

-==即质点到达点相应状态所要的最短时间为 5-8有一弹簧,当下面挂一质量为m 的物体时,伸长量为m 2108.9-?.若使弹簧上下振动,且规定向下为正方向.

(1)当t =0时,物体在平衡位置上方m 2100.8-?,由静止开始向下运动,求振动方程. (2) 当t =0时,物体在平衡位置并以0.6m/s 的速度向上运动,求振动方程. 分析 根据初始条件求出特征量建立振动方程。 解:设所求振动方程为:)cos(?ω+=t A x

题图5-7

其中角频率l

g

m l mg

m k ?=?=

=//ω,代入数据得:10/rad s ω= (1)以平衡位置为原点建立坐标,根据题意有:000.08,0x m v =-= 据202

0)/(ωv x A +=

得:0.08A m =

据A

x 0

1

cos -±=?得rad ?π=±由于0v =0,不妨取rad ?π= 于是,所求方程为:10.08cos(10)()x t SI π=+

(2)以平衡位置为原点建立坐标,根据题意有:000,0.6/x v m s ==- 据202

0)/(ωv x A +=

得:0.06A m =

据A

x 0

1

cos -±=?得/2rad ?π=±由于00v <,应取/2rad ?π= 于是,所求方程为:20.06cos(10/2)()x t SI π=+

5-9 一质点沿x 轴作简谐振动,振动方程为)SI )(3

t 2cos(104x 2π+π?=-,求:从 t=0时刻

起到质点位置在x=-2cm 处,且向x 轴正方向运动的最短时间.

分析 由旋转矢量图求得两点相位差,结合振动方程中特征量即可确定最短时间。 解: 依题意有旋转矢量图

?π?=从图可见

02(0)t t ?ωπ?=?=-而

012

t s ?

ω

?=

=

故所求时间为:

5-10两个物体同方向作同方向、同频率、同振幅的简谐振动,在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡

解答图5-9

位置的方向运动,试利用旋转矢量法求它们的相位差.

分析 由旋转矢量图求解。根据运动速度的方向与位移共同确定相位。 解:由于2/10A x =、100v <可求得:4/1π?= 由于2/20A x =、200v >可求得:4/2π?-= 如图5-10所示,相位差:12/2???π?=-=

5-11一简谐振动的振动曲线如题图5-11所示,求振动方程.

分析 利用旋转矢量图求解,由图中两个确定点求得相位,再根据时间差求得其角频率。 解:设所求方程为)cos(?ω+=t A x

当t=0时:115,0x cm v =-<由A 旋转矢量图可得:02/3t rad ?π==

题图5-11

题图5-11

题图5-10

当t=2s 时:从x-t 图中可以看出:220,0x v => 据旋转矢量图可以看出, 23/2t rad ?π==

所以,2秒内相位的改变量203/22/35/6t t rad ???πππ==?=-=-= 据t ?ω?=?可求出:/5/12/t rad s ω?π=??=

于是:所求振动方程为:52

0.1cos()()123

x t SI ππ=+

5-12 在光滑水平面上,有一作简谐振动的弹簧振子,弹簧的劲度系数为K,物体的质量为m ,振幅为A .当物体通过平衡位置时,有一质量为'm 的泥团竖直落到物体上并与之粘结在一起.求:(1)'m 和m 粘结后,系统的振动周期和振幅;

(2)若当物体到达最大位移处,泥团竖直落到物体上,再求系统振动的周期和振幅. 分析 系统周期只与系统本身有关,由质量和劲度系数即可确定周期,而振幅则由系统能量决定,因此需要由动量守恒确定碰撞前后速度,从而由机械能守恒确定其振幅。 解:(1)设物体通过平衡位置时的速度为v ,则由机械能守恒:

2211

22

K KA mv v A

m

==± 当'm 竖直落在处于平衡位置m 上时为完全非弹性碰撞,且水平方向合外力为零,所以

(')'

mv m m u

m

u v

m m =+=+ 此后,系统的振幅变为'A ,由机械能守恒,有

2211

'(')22

'''

KA m m u m m m A u A

K m m =++==+

系统振动的周期为: K

'm m 2T +π=

(2)当m 在最大位移处'm 竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A,周期为K

'm m 2+π.

5-13 设细圆环的质量为m,半径为R,挂在墙上的钉子上.求它微小振动的周期. 分析 圆环为一刚体须应用转动定律,而其受力可考虑其质心。 解: 如图所示,转轴o 在环上,角量以逆时针为正,则振动方程为

θ-=θ

sin mgR dt

d J 22 当环作微小摆动θ≈θsin 时, 2220d dt

θ

ωθ+=

ω=

22J mR =Q

22T π

ω

∴=

=5-14 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然后由静止释放并开始计时.求 (1) 此小物体是停在振动物体上面还是离开它?(2) 物体的振动方程;(3) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(4) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间.(5) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?

分析 小物体分离的临界条件是对振动物体压力为零,即两物体具有相同的加速度,而小物体此时加速度为重力加速度,因此可根据两物体加速度确定分离条件。 解: 选平衡位置为原点,取向下为x 轴正方向。 由:f kx = 200/f

k N m x

==

7.07/rad s ω=

=≈

(1) 小物体受力如图. 设小物体随振动物体的加速度为a , 按牛顿第二定律有 ma N mg =- )(a g m N -=

当N = 0,即a = g 时,小物体开始脱离振动物体, 已知 A = 10 cm ,200/,

7.07/k N m rad s ω=≈

系统最大加速度为 22max 5a A m s ω-==? 此值小于g ,故小物体不会离开. (2) 00010cos ,0sin t x cm A v A ?ω?=====-时,

解以上二式得 100A cm

?==

∴ 振动方程0.1cos(7.07)()x t SI =

(3) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力 ()f m g a =- ,而2

2

2.5a x m s ω-=-=?

29.2f N ∴=

(4) 设1t 时刻物体在平衡位置,此时0x =,即 10cos ,A t ω= ∵ 此时物体向上运动, 0v < ∴ 11,

0.2222

2t t s π

π

ωω

=

=

=。

题图5-14

题图5-14

再设2t 时物体在平衡位置上方5cm 处,此时5x cm =-,即 25cos ,A t ω-= ∵此时物体向上运动,0v < 2222,0.2963

3t t s ππ

ωω

=

=

= 210.074t t t s

?=-=

(5) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得

x a g 2ω-==

2/19.6x g cm ω=-=-

即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得 2/19.6A g cm ω>=。

5-15在一平板下装有弹簧,平板上放一质量为1.0Kg 的重物.现使平板沿竖直方向作上下简谐振动,周期为0.50s ,振幅为m 2100.2-?,求: (1)平板到最低点时,重物对板的作用力;

(2)若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物会跳离平板? 分析 重物跳离平板的临界条件是对平板压力为零。

解:重物与平板一起在竖直方向上作简谐振动,向下为正建立坐标, 振动方程为:)4cos(02.0?π+=t x

设平板对重物的作用力为N ,于是重物在运动中所受合力为:

f m

g N ma =-=,

2a x ω=-而

据牛顿第三定律,重物对平板的作用力'N 为:)('2x g m N N ω+-=-= (1)在最低点处:A x =,由上式得,'12.96N N =

(2)频率不变时,设振幅变为'A ,在最高点处('A x -=)重物与平板间作用力最小,设

0'=N 可得:2'/0.062A g m ω==

(3)振幅不变时,设频率变为'ν,在最高点处('A x -=)重物与平板间作用力最小,设0'=N 可得:1''/2/ 3.522g A Hz νωππ

==

=

5-16一物体沿x 轴作简谐振动,振幅为0.06m ,周期为2.0s ,当t=0时位移为0.03m ,且向轴正方向运动,求:

(1)t=0.5s 时,物体的位移、速度和加速度;

(2)物体从0.03x m =-处向x 轴负方向运动开始,到达平衡位置,至少需要多少时间? 分析 通过旋转矢量法确定两位置的相位从而得到最小时间。

解:设该物体的振动方程为)cos(?ω+=t A x 依题意知:2//,0.06T rad s A m ωππ=== 据A

x 0

1

cos -±=?得)(3/rad π?±= 由于00v >,应取)(3/rad π?-= 可得:)3/cos(06.0ππ-=t x

(1)0.5t s =时,振动相位为:/3/6t rad ?πππ=-= 据22cos ,sin ,cos x A v A a A x ?ω?ω?ω==-=-=-

得20.052,

0.094/,

0.512/x m v m s a m s ==-=-

(2)由A 旋转矢量图可知,物体从

0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,

A 矢量转过的角度为5/6?π?=,该过程所需时间为:/0.833t s ?ω?=?=

5-17地球上(设2/8.9s m g =)有一单摆,摆长为1.0m ,最大摆角为5o ,求: (1)摆的角频率和周期;

(2)设开始时摆角最大,试写出此摆的振动方程; (3)当摆角为3?时的角速度和摆球的线速度各为多少? 分析 由摆角最大的初始条件可直接确定其初相。 解:(1)/ 3.13/g l rad s ω=

= 2/ 2.01T s πω==

(2)由t=0时,max 5θθ==o 可得振动初相0=?,则以角量表示的振动方程为

cos 3.13()36

t SI π

θ=

题图5-16

(3)由cos 3.13()36

t SI π

θ=

,当3θ=o 时,有max cos /0.6?θθ==

而质点运动的角速度为:2max max /sin 1cos 0.218/d dt rad s θθω?θω?=-=--=- 线速度为:/0.218/v l d dt m s θ=?=

5-18 有一水平的弹簧振子,弹簧的劲度系数K=25N/m,物体的质量m=1.0kg,物体静止在平衡位置.设以一水平向左的恒力F=10 N 作用在物体上(不计一切摩擦),使之由平衡位置向左运动了0.05m,此时撤除力F,当物体运动到最左边开始计时,求物体的运动方程. 分析 恒力做功的能量全部转化为系统能量,由能量守恒可确定系统的振幅。 解: 设所求方程为0cos()x A t ω?=+

5/K

rad s m

ω=

= 因为不计摩擦,外力做的功全转变成系统的能量, 故2120.22Fx Fx KA A m K

=

∴== 000,,t x A ?π==-∴=Q 又

故所求为 0.2cos(5)()x t SI π=+

5-19如题图5-19所示,一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.

分析 由质点在A 、B 两点具有相同的速率可知A 、B 两点在平衡位置两侧距平衡位置相等距离的位置,再联系两次经过B 点的时间即可确定系统的周期,而相位可由A 、B 两点位置确定。

解:由旋转矢量图和 A B v v = 可知 24,

8T s T s ==,111,

28

4

s rad s π

νωπν--===

?

(1)以AB 的中点为坐标原点,x 轴指向右方.

题图5-19

A

B v ρ

x

题图5-18

05cos t x cm A ?==-=时,

25cos(2)sin t s x cm A A ω??===+=-时,

由上二式解得 1tg ?=

因为在A 点质点的速度大于零,所以3544

ππ?-=

/cos A x ?==

∴ 振动方程

2

310cos())44

t x SI -ππ

=-(

(2) 速率

d 3sin()()d 44

x t SI t ππ

==-v

当t = 0 时,质点在A 点

221d 310sin() 3.9310d 4

x m s t ---π=

=-=??v 5-20一物体放在水平木板上,这木板以Hz 2=ν的频率沿水平直线作简谐振动,物体和水平木板之间的静摩擦系数50.0=s μ,求物体在木板上不滑动时的最大振幅max A . 分析 物体在木板上不滑动的临界条件是摩擦力全部用来产生其加速度。

2max 222max ,mg 0(1)(2)(3)cos()

(4)

(1)(2)(3)/(4)//(4)0.031x x s s s s s N f ma f N

a A t a mg m g

A g g m

μωω?μμμωμπν-==-≤=-+=====解:设物体在水平木板上不滑动竖直方向:水平方向:且又有由得再由此式和得

5-21在一平板上放一质量为2m kg =的物体,平板在竖直方向作简谐振动,其振动周期0.5T s =,振幅4A cm =,求:

(1)物体对平板的压力的表达式. (2)平板以多大的振幅振动时,物体才能离开平板?

分析 首先确定简谐振动方程,再根据物体离开平板的临界位置为最高点,且对平板压力为零。

解:物体与平板一起在竖直方向上作简谐振动,向下为正建立坐标,振动方程为:

0.04cos(4)()x t SI π?=+

设平板对物体的作用力为N ,于是物体在运动中所受合力为: x m ma N mg f 2ω-==-=

(1)据牛顿第三定律,物体对平板的作用力'N 为:)('2x g m N N ω+-=-=

题解图5-19

即:)4cos(28.16.19)16('22?πππ+--=+-=t x g m N

(2)当频率不变时,设振幅变为'A ,在最高点处('x A =-)物体与平板间作用力最小 令0'=N 可得:2'/0.062A g m ω==

5-22一氢原子在分子中的振动可视为简谐振动.已知氢原子质量Kg m 271068.1-?=,振动频率Hz 14100.1?=ν,振幅m A 11100.1-?=.试计算:(1)此氢原子的最大速度;(2)与此振动相联系的能量.

分析 振动能量可由其最大动能(此时势能为零)确定。 解:(1)最大振动速度:32 6.2810/m v A A m s ωπν===?

(2)氢原子的振动能量为:2201

3.31102

m E mv J -=

=? 5-23 一物体质量为0.25Kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k=25N/m ,如果起始振动时具有势能0.06J 和动能0.02J ,求: (1)振幅;

(2)动能恰等于势能时的位移; (3)经过平衡位置时物体的速度.

分析 简谐振动能量守恒,其能量由振幅决定。

解:21

1k 2

K P E E E A =+=()

1/2[2()/k]0.08()K P A E E m =+= 2

21(2)k 2/22

K P K P P P E E E A E E E E E kx =+=

===因为,当时,有,又因为

2220.0566()x A x A m ==±=±得:,即

21

(3)02

K P x E E E mv ==+=

过平衡点时,,此时动能等于总能量 1/2[2()/]0.8(/)K P v E E m m s =+=±

5-24 一定滑轮的半径为R ,转动惯量为J ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如题图5-24所示.设弹簧的劲度系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力.现将物体m 从平衡位置拉下一微小距离后放手,证明物体作简谐振动,并求出其角频率.

分析 由牛顿第二定律和转动定律确定其加速度与位移的关系即可得到证明。 解:取如图x 坐标,平衡位置为原点O ,向下为正,m 在平衡位置时弹簧已伸长0x

(1)mg kx =

设m 在x 位置,分析受力,这时弹簧伸长0x x +

20()

(2)T k x x =+ 由牛顿第二定律和转动定律列方程:

1(3)mg T ma

-=

12(4)T R T R J β

-=

(5)a R β=

联立(1)(2)(3)(4)(5)解得x m

R J k

a +-

=)/(2

由于x 系数为一负常数,故物体做简谐振动,

其角频率为:2

2

2)/(mR J kR m

R J k

+=+=

ω

5-25两个同方向的简谐振动的振动方程分别为:211

410cos 2()(),8

x t SI π-=?+

221

310cos 2()()4

x t SI π-=?+求:

(1)合振动的振幅和初相;(2)若另有一同方向同频率的简谐振动23510cos(2)()x t SI π?-=?+,则?为多少时,31x x +的振幅最大??又为多少时,32x x +的振幅最小?

分析 合振动的振幅由其分振动的相位差决定。 解:(1))2cos(21?π+=+=t A x x x

m

题图5-24

题图5-24

按合成振动公式代入已知量,可得合振幅及初相为 22224324cos(/2/4)10 6.4810A m ππ--=

++-?=?

4sin(/4)3sin(/2)

1.124cos(/4)3cos(/2)

arctg

rad ππ?ππ+==+

所以,合振动方程为))(12.12cos(1048.62SI t x +?=-π (2)当π??k 21=-,即4/2ππ?+=k 时,31x x +的振幅最大. 当π??)12(2+=-k ,即2/32ππ?+=k 时,32x x +的振幅最小.

5-26有两个同方向同频率的振动,其合振动的振幅为0.2m ,合振动的相位与第一个振动的相位差为6/π,第一个振动的振幅为0.173m ,求第二个振动的振幅及两振动的相位差。 分析 根据已知振幅和相位可在矢量三角形中求得振幅。 解:采用旋转矢量合成图求解

取第一个振动的初相位为零,则合振动的相位为/6φπ= 据21A A A +=可知12A A A -=,如图:

)(1.0cos 2122

12m AA A A A =-+=

?

由于A 、1A 、2A 的量值恰好满足勾股定理, 故1A 与2A 垂直.

即第二振动与第一振动的相位差为2/πθ=

5-27一质点同时参与两个同方向的简谐振动,其振动方程分别为

21510cos(4/3)()x t SI π-=?+,22310sin(4/6)()x t SI π-=?-画出两振动的旋转矢量

图,并求合振动的振动方程.

分析 须将方程转化为标准方程从而确定其特征矢量,画出矢量图。 解:)6/4sin(10322π-?=-t x )2/6/4cos(1032ππ--?=-t )3/24cos(1032π-?=-t 作两振动的旋转矢量图,如图所示. 由图得:合振动的振幅和初相分别为 3/,2)35(πφ==-=cm cm A .

合振动方程为))(3/4cos(1022SI t x π+?=-

5-28将频率为348Hz 的标准音叉和一待测频率的音叉振动合成,测得拍频为3.0Hz.若在待题图5-26

题图5-27

测音叉的一端加上一个小物体,则拍频将减小,求待测音叉的角频率. 分析 质量增加频率将会减小,根据拍频减少可推知两个频率的关系。 解:由拍频公式12ννν-=?可知:ννν?±=12

在待测音叉的一端加上一个小物体,待测音叉的频率2ν会减少,若拍频ν?也随之减小,则说明2ν>1ν,于是可求得:21351Hz ννν=+?=

5-29一物体悬挂在弹簧下作简谐振动,开始时其振幅为0.12m ,经144s 后振幅减为0.06m. 问:(1)阻尼系数是多少? (2)如振幅减至0.03m ,需要经过多少时间? 分析 由阻尼振动振幅随时间的变化规律可直接得到。 解:(1)由阻尼振动振幅随时间的变化规律0t A A e β-?=

)/1(1081.4ln

31

s t A A -?==

β

(2)由0t A A e β-?=

1

2

12t t A e A e

ββ-?-?=

于是:12

21ln /144A A t t t s β

?=-=

=

5-30一弹簧振子系统,物体的质量m=1.0 Kg ,弹簧的劲度系数k=900N/m.系统振动时受到阻尼作用,其阻尼系数为0.10=β 1/s ,为了使振动持续,现加一周期性外力

)(30cos 100SI t F =作用.求:

(1)振动达到稳定时的振动角频率;

(2)若外力的角频率可以改变,则当其值为多少时系统出现共振现象?其共振的振幅为多大?

分析 受迫振动的频率由外力决定。

解:(1)振动达到稳定时,振动角频率等于周期性外力的角频率,有30/rad s ω=

(2)受迫振动达到稳定后,其振幅为:2

2222

004)(/)/(ωβωω+-=m F A

式中m k /0=ω为系统振动的固有角频率,0F 为外力的振幅

由上式可解得,当外力的频率ω

为:26.5/rad s ω==时

系统出现共振现象,共振的振幅为:0.177r A m ==

第六章

6-1频率为Hz 41025.1?=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量

211/1090.1m N E ?=,棒的密度3

3

/106.7m Kg ?=ρ.求该纵波的波长.

分析 纵波在固体中传播,波速由弹性模量与密度决定。

解:波速ρ/E u =

,波长νλ/u = 0.4m λ==

6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-=(1)求波的振幅、波

速、频率及波长;(2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同. 解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λ

π

?ωππ-

+=-=得

0.04A m = ; /2 2.5/2 1.25Hz νωπππ===;2, 2.0m π

πλλ

==

2.5/u m s λν==

(2)0.314/m A m s νω==

(3)t=1(s)时波形方程为:

)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-=

x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y

6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.

分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。依旋转矢量法可求t=0时的各点的相位。

解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.

6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为

)t cos(A y ?+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式

中在描写距A 点为b 处的质点的振动规律是否一样? 分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。只要把各种情况中b 的坐标值分别代入相应的波动方程就可求得b 点的振动规律。

解: 设其波长为λ,选o 点处为坐标原点,由方程)t cos(A y ?+ω=;可得取图中a

题图

题图6-3

t

所示的坐标,则x 处质点的振动比A 点滞后πλ

2x ,故

.cos(2)x

a y A t ωπ?λ

=-

+

同理可得

.cos(2)x

b y A t ωπ?λ

=++

.cos(2)x l

c y A t ωπ?λ-=-

+ .cos(2)x l

d y A t ωπ?λ

-=++

要求距A 为b 的点的振动规律,只要把各种情况中b 的坐标值分别代入相应的波动方程就可求得.从结果可知,取不同的坐标只是改变了坐标的原点,波的表达式在形式上有所不同,但b 点的振动方程却不变.即

cos(2)b

y A t ωπ?λ

=-

+

6-5一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν,波速为u.设't t =时刻的波形曲线如题图6-5所示.求(1)x=0处质点振动方程;(2)该波的波方程.

分析 由于图中是't 时刻波形图,因此,对x=0处质点,由图得出的相位也为't 时刻的相位。再由旋转矢量推算出t=0时刻的初相位。进而写出波动方程。

解:(1)设0x =处质点的振动方程为 ])'(2cos[?πν+-=t t A y 。由图可知,'t t =时

0cos ==?A y ,sin 0A νω?=-<。所以2/π?=

0x =处的振动方程为:]2

1

)'(2cos[ππν+

-=t t A y (2)该波的表达式为: ]2

1

)/'(2cos[ππν+--=u x t t A y

6-6一平面简谐波沿x 轴正向传播,波的振幅10A cm =,波的角频率7/rad s ωπ=,当1.0t s =时,10x cm =处的a 质点正通过其平衡位置向y 轴负方向运动,

而20x cm =处的b 质点正通过 5.0y cm =点向y 轴正方向运动.设该波波长10cm λ>,求该平面波的波方程. 分析 通过旋转矢量图法,结合10x cm =点和20x cm =点,在 1.0t s =的运动状态,可得到波长和初相。

解:设平面简谐波的波长为λ,坐标原点处质点振动初相为?,则该列平面简谐波的表达式可写成 ))(/27cos(1.0SI x t y ?λππ+-=。 1.0t s =时10x cm = 处

0])/1.0(27cos[1.0=+-=?λππy

(2)

题图6-5

t t '=

因此时a 质点向y 轴负方向运动,故 172(0.1/)(1)2

ππλ?π-+=

而此时, b 质点正通过m y 05.0=处,有05.0])/2.0(27cos[1.0=+-=?λππy ,且质

点b 向y 轴正方向运动,故 1

72(0.2/)(2)3

ππλ?π

-+=-

由(1)、(2)两式联立得 m 24.0=λ , 3/17π?-= 所以,该平面简谐波的表达式为:)](3

17

12

.07cos[1.0SI x

t y πππ-

-

= 6-7 已知一平面简谐波的波方程为))(37.0125cos(25.0SI x t y -=(1)分别求

m x m x 25,1021==两点处质点的振动方程;(2)求1x 、2x 两点间的振动相位差;(3)求1x 点

在t=4s 时的振动位移.

分析 波方程中如果已知某点的位置即转化为某点的振动方程。直接求解两点的振动相位差和某时刻的振动位移。

解:(1)m x 101=、m x 252=的振动方程分别为:100.25cos(125 3.7)(),x y t SI ==-

250.25cos(1259.25)()x y t SI ==- (2) 2x 与1x 两点间相位差 21 5.55rad φφφ?=-=-

(3) 1x 点在t=4s 时的振动位移 0.25cos(1254 3.7)0.249y m =?-=

6-8如题图6-8所示,一平面波在介质中以波速20/u m s =沿x 轴负方向传播,已知A 点的振动方程为)(4cos 10

32

SI t y π-?=. (1)以A 点为坐标原点写出波方程;

(2)以距A 点5m 处的B 点为坐标原点,写出波方程. 分析 由波相对坐标轴的传播方向和已知点的振动方程 直接写出波方程。

解:(1)坐标为x 处质点的振动相位为

)]20/([4)]/([4x t u x t t +=+=+ππ?ω波的表达式为

))](20/([4cos 1032SI x t y +?=-π

(2)以B 点为坐标原点,则坐标为x 点的振动相位为 )](20

5

[4'SI x t t -+=+π?ω 波的表达式为 )]()20

(4cos[1032SI x

t y ππ-+

?=- 6-9 有一平面简谐波在介质中传播,波速100/u m s =,波线上右侧距波源O (坐标原点)为75m 处的一点P 的运动方程为))(2/2cos(30.0SI t y ππ+=,求: (1)波向x 轴正向传播的波方程;(2)波向x 轴负向传播的波方程.

解:(1)设以0x =处为波源,沿轴正向传播的波方程为: 0cos[(/)]y A t x u ω?=-+

u

题图6-8

在上式中,代入75x m =,并与该处实际的振动方程)2/2cos(30.0ππ+=t y 比较 可得:100.3,2,2A m s ωπ?π-===, 可得:))(100

22cos(30.0SI x t y π

π-=为所求 (2)设沿轴负向传播的波方程为:0cos[(/)]y A t x u ω?=++

在上式中,代入75x m =,并与该处实际的振动方程)2/2cos(30.0ππ+=t y 比较 可得:100.3,2,A m s ωπ?π-===-, 可得:)](100

22cos[30.0SI x t y π

ππ+-=为所求

6-10 一平面谐波沿ox 轴的负方向传播,波长为λ,P 点处质点的振动规律如题图6-10所示.求:

(1)P 点处质点的振动方程;(2)此波的波动方程;(3)若图中/2d λ=,求O 点处质点的振动方程.

分析 首先由已知振动规律结合旋转矢量图可得P 点振动的初相与周期,从而得到其振动方程。波动方程则由P 与原点的距离直接得到。波动方程中直接代入某点的坐标就可求出该点的振动方程。

解:(1)从图中可见4T s =,且00,,po t y A ?π==-∴=,则P 点处质点的振动方程为 2cos(

)cos()()42

p y A t A t SI ππ

ππ=+=+ (2)向负方向传播的波动方程为

cos[

()]2

x d

y A t π

πλ

-=+

+

(3)把/2,

0d x λ==代入波动方程即得

0/2

3cos[

()]cos(

)2

2

4

y A t A t π

λπ

ππλ

-=+

+=+

6-11一平面简谐波的频率为500Hz ,在空气(3/3.1m Kg =ρ)中以

340/s m 的速度传播,达到人耳时的振幅为m 6100.1-?.试求波在人耳中的平均能量密度

和声强.

分析 平均能量密度公式直接求解。声强即是声波的能流密度。 解:波在耳中的平均能量密度:22222631

2 6.4110/2

w A A J m ρωπρν-=

==? 声强就是声波的能流密度,即:3

2

2.1810/I uw W m -==?

6-12 一正弦空气波,沿直径为0.14m 的圆柱形管传播,波的平均强度为32910/J s m -??,频率为300Hz,波速为300/s m .求:

(1) 波中的平均能量密度和最大的能量密度各是多少? (2) 每两个相邻同相面间的波段中含有多少能量? 题图6-10

大学物理实验习题和答案 版

第一部分:基本实验基础1.(直、圆)游标尺、千分尺的读数方法。 答:P46 2.物理天平 1.感量与天平灵敏度关系。天平感量或灵敏度与负载的关系。 答:感量的倒数称为天平的灵敏度。负载越大,灵敏度越低。 2.物理天平在称衡中,为什么要把横梁放下后才可以增减砝码或移动游码。 答:保护天平的刀口。 3.检流计 1.哪些用途?使用时的注意点?如何使检流计很快停止振荡? 答:用途:用于判别电路中两点是否相等或检查电路中有无微弱电流通过。 注意事项:要加限流保护电阻要保护检流计,随时准备松开按键。 很快停止振荡:短路检流计。 4.电表 量程如何选取?量程与内阻大小关系?

答:先估计待测量的大小,选稍大量程试测,再选用合适的量程。 电流表:量程越大,内阻越小。 电压表:内阻=量程×每伏欧姆数 5.万用表 不同欧姆档测同一只二极管正向电阻时,读测值差异的原因? 答:不同欧姆档,内阻不同,输出电压随负载不同而不同。 二极管是非线性器件,不同欧姆档测,加在二极管上电压不同,读测值有很大差异。 6.信号发生器 功率输出与电压输出的区别? 答:功率输出:能带负载,比如可以给扬声器加信号而发声音。 电压输出:实现电压输出,接上的负载电阻一般要大于50Ω。 比如不可以从此输出口给扬声器加信号,即带不动负载。7.光学元件 光学表面有灰尘,可否用手帕擦试?

8.箱式电桥 倍率的选择方法。 答:尽量使读数的有效数字位数最大的原则选择合适的倍率。 9.逐差法 什么是逐差法,其优点? 答:把测量数据分成两组,每组相应的数据分别相减,然后取差值的平均值。 优点:每个数据都起作用,体现多次测量的优点。 10.杨氏模量实验 1.为何各长度量用不同的量具测? 答:遵守误差均分原理。 2.测钢丝直径时,为何在钢丝上、中、下三部位的相互垂直的方向上各测一次直径,而不是在同一部位采样数据? 答:钢丝不可能处处均匀。 3.钢丝长度是杨氏模量仪上下两个螺丝夹之间的长度还是上端螺丝夹到挂砝码的砝码钩之间的长度?

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1—1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量。 ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1—1图所示. 题1—1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分 量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=

式中 dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度 和加速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而 求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确。因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 22 222 2 22 2 22d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v ==

大学物理实验答案.doc

实验7 分光计的调整与使用 ★1、本实验所用分光计测量角度的精度是多少?仪器为什么设两个游标?如何测量望远镜转过的角度? 本实验所用分光计测量角度的精度是:1'。为了消除因刻度盘和游标盘不共轴所引起的偏心误差,所以仪器设两个游标。望远镜从位置Ⅰ到位置Ⅱ所转过的角度为2 )_()('1'212?????+-= ,注:如越过刻度零点,则必须按式)(120360??--来计算望远镜的转角。 ★2、假设望远镜光轴已垂直于仪器转轴,而平面镜反射面和仪器转轴成一角度β,则反射的小十字像和平面镜转过1800后反射的小十字像的位置应是怎样的?此时应如何调节?试画出光路图。 反射的小十字像和平面镜转过180o 后反射的小十字像的位置是一上一下,此时应该载物台下螺钉,直到两镜面反射的十字像等高,才表明载物台已调好。光路图如下: ★3、对分光计的调节要求是什么?如何判断调节达到要求?怎样才能调节好? 调节要求:①望远镜、平行光管的光轴均垂直于仪器中心转轴;②望远镜对平行光聚焦(即望远调焦于无穷远);③平行光管出射平行光;④待测光学元件光学面与中心转轴平行。 判断调节达到要求的标志是:①望远镜对平行光聚焦的判定标志;②望远镜光轴与分光计中心转轴垂直的判定标志;③平行光管出射平行光的判定标志;④平行光管光轴与望远镜光轴共线并与分光计中心轴垂直的判定标志。 调节方法:①先进行目测粗调;②进行精细调节:分别用自准直法和各半调节法进行调节。 4、在分光计调节使用过程中,要注意什么事项? ①当轻轻推动分光计的可转动部件时,当无法转动时,切记不能强制使其转动,应分析原因后再进行调节。旋转各旋钮时动作应轻缓。②严禁用手触摸棱镜、平面镜和望远镜、平行光管上各透镜的光学表面,严防棱镜和平面镜磕碰或跌落。③转动望远镜时,要握住支臂转动望远镜,切忌握住目镜和目镜调节手轮转动望远镜。④望远镜调节好后不能再动其仰角螺钉。 5、测棱镜顶角还可以使用自准法,当入射光的平行度较差时,用哪种方法测顶角误差较小? ?2 1=A 的成立条件是入射光是平行的,当入射光的平行度较差时,此公式已不再适用,应用自准直法测三棱镜的顶角,用公式?-=1800 A 来计算,误差较小。

大学物理 简明教程 第二版 课后习题 答案 赵进芳

大学物理 简明教程 习题 解答 答案 习题一 1-1 |r ?|与r ?有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时, 有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先 计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有

大学物理上册课后习题答案

大学物理上册课后习题答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解: (1)r ?是位移的模,?r 是位矢的模的增量, 即r ?1 2r r -=,1 2 r r r ? ?-=?; (2)t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题 1-1图 (3) t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量.

∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d τ τ???+= 式中dt dv 就是加速度的切向分量. ( t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予 讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r = 2 2 y x +,然后根据v =t r d d ,及a = 2 2d d t r 而求得结果; 又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种 方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 j y i x r ? ??+=, j t y i t x t r a j t y i t x t r v ??? ???? ?222222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x

大学物理实验答案完整版

大学物理实验答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

实验一 物体密度的测定 【预习题】 1.简述游标卡尺、螺旋测微器的测量原理及使用时的注意事项。 答:(1)游标卡尺的测量原理及使用时的注意事项: 游标卡尺是一种利用游标提高精度的长度测量仪器,它由主尺和游标组成。设主 尺上的刻度间距为y ,游标上的刻度间距为x ,x 比y 略小一点。一般游标上的n 个刻度间距等于主尺上(n -1)个刻度间距,即y n nx )1(-=。由此可知,游标上的刻度间距与主尺上刻度间距相差n 1,这就是游标的精度。 教材P33图1-2所示的游标卡尺精度为 mm 501,即主尺上49mm 与游标上50格同长,如教材图1-3所示。这样,游标上50格比主尺上50格(50mm )少一格(1mm ),即游标上每格长度比主尺每格少1÷50 = 0.02(mm), 所以该游标卡尺的精度为0.02mm 。 使用游标卡尺时应注意:①一手拿待测物体,一手持主尺,将物体轻轻卡住,才 可读数。②注意保护量爪不被磨损,决不允许被量物体在量爪中挪动。③游标卡尺的外量爪用来测量厚度或外径,内量爪用来测量内径,深度尺用来测量槽或筒的深度,紧固螺丝用来固定读数。 (2)螺旋测微器的测量原理及使用时的注意事项: 螺旋测微器又称千分尺,它是把测微螺杆的角位移转变为直线位移来测量微小长 度的长度测量仪器。螺旋测微器主要由固定套筒、测量轴、活动套筒(即微分筒)组成。

如教材P24图1-4所示,固定套管D上套有一个活动套筒C(微分筒),两者由高精度螺纹紧密咬合,活动套筒与测量轴A相联,转动活动套筒可带动测量轴伸出与缩进,活动套筒转动一周( 360),测量轴伸出或缩进1个螺距。因此,可根据活动套筒转动的角度求得测量轴移动的距离。对于螺距是0.5mm螺旋测微器,活动套筒C的周界被等分为50格,故活动套筒转动1 格,测量轴相应地移动0.5/50=0.01mm,再加上估读,其测量精度可达到0.001 mm。 使用螺旋测微器时应注意:①测量轴向砧台靠近快夹住待测物时,必须使用棘轮而不能直接转动活动套筒,听到“咯、咯”即表示已经夹住待测物体,棘轮在空转,这时应停止转动棘轮,进行读数,不要将被测物拉出,以免磨损砧台和测量轴。②应作零点校正。 2.为什么胶片长度可只测量一次? 答:单次测量时大体有三种情况:(1)仪器精度较低,偶然误差很小,多次测量读数相同,不必多次测量。(2)对测量的准确程度要求不高,只测一次就够了。(3)因测量条件的限制,不可能多次重复测量。本实验由对胶片长度的测量属于情况(1),所以只测量1次。

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

基础物理实验期末模拟

复旦大学基础物理实验期末考试复习题库 (内部资料请勿传阅) 整理汇编者:复旦大学临床医学(五年制)bsong@https://www.360docs.net/doc/5319179296.html, 示波器的原理及使用 1. 2. 3. 4.

5.一个已知相关参数的信号,60dB衰减,在已知示波器T和V参数设置的情况下在示波屏上V/DIV和T/DIV的相应读数(按照示波器读数规则) 答案A 9. 10. 11.答案C

13.答案:2 14. 15. 16、输入的信号为正弦波形,但是屏幕上只看到一条直线,可能的原因 A、按下了接地按钮 B、AC\DC档中选了DC档位 C、Volts/DEC衰减过大 D、扫描速度过 17.快衰变改变的是什么()A.幅度 B.频率 C.相位 D.波形 18.已经得到了正弦波图像,改变下面条件,一定不会使图像消失的是B A调节辉度intensity B交流AC变成直流DC(DC还是会保留交流部分。) C接地 D调节垂直position 19.使用示波器前,应先对示波器进行校准,将示波器内部提供的标准方波输入到CH1或CH2通道。用示波器观察李萨如图形时,图形不稳定,应该调节电平旋扭。 20.如果示波器上的波形在触发源开关选择正确的情况下总是沿横向左右移动,应该 先调节“SEC/DIV”旋钮再调节“LEVEL”触发电平调节旋钮 21.“VOLTS/DIV”和“TIME/DIV”旋钮的作用是什么? 22.测量被测信号的电压时,应通过调节衰减倍率开关(VOLTS/DIV)使其幅度尽量放大,但是不能超出显示屏幕为什么? 23.测量被测信号的周期和频率时,应通过调节扫描速度开关(TIME/DIV)使被测信号相邻两个波峰的水平距离尽量放大,但是不能超出显示屏幕为什么? 24.“VOLTS/DIV”和“TIME/DIV”旋钮所在位置分别为0.5v和0.2ms,请给

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M =l024kg ,月球的质量m =l022 kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何q 0受的总电场力为何(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

物理实验习题答案(第二版教材)(1)

第一章复习提要 1.什么是基本单位和导出单位? 2。什么是基本量与导出量? (教材P10)物理学中独立定义的单位叫做基本单位,所对应的物理量叫做基本量。由基本单位导出的单位叫做导出单位,对应的物理量叫做导出量。 2.哪些物理量为基本物理量,它们的基本单位、符号、定义是什么?(教材P10) 在国际单位制中,长度、质量、时间、电流强度、热力学温度、物质的量和发光强度等七个物理量为基本物理量,它们的单位分别为“米”、“千克”、“秒”、“安培”、“开尔文”、“摩尔”和“坎德拉”,它们的单位符号分别为“m”、“kg”、“s”、“A”、“K”、“mol”和“cd”,它们的单位定位分别详见教材P10表1-1 。 3.物理实验中有哪些常用的长度测量器具?(教材P11) 物理实验中,测量长度的常用工具有:钢直尺、钢卷尺、游标卡尺、千分尺、千分表、测微目镜、读数显微镜、电涡流传感器、电容传感器、电感传感器、光栅传感器、激光干涉仪等。 4.物理实验中有哪些常用的质量测量工具?(教材P11) 物理实验中,质量测量最常用的仪器有电子秤、弹簧秤、物理天平、分析天平等。 5.物理实验中常用的时间测量工具有哪些?(教材P12) 物理实验中常用的时间测量仪器有:秒表(停表),指针式机械表、数字显示式电子表、数字毫秒计等。 6.物理实验中常用的温度测量工具有哪些?(教材P12) 物理实验中常用的温度测量仪器有水银温度计、热电偶和光测温度计等。 7.物理实验中有哪些常用的电流测量仪表?(教材P12) 物理实验中电流测量常用仪器有安培表、检流计、表头、灵敏电流计、万用电表、钳表等。 9.(1)力学、热学实验操作过程中应注意什么?(2)力学实验的基本功有哪些? (1)略(教材P13)。(2)仪器的零位校准,水平和铅直调整等调节是力学实验的基本功,务必熟练掌握。 10.(1)电磁学实验操作过程中应注意什么?(2)电磁学实验的基本功是什么? (1)略(教材P13)。(2)回路法接线是电磁学实验的基本功,务必熟练掌握。11.(1)光学实验操作过程中应注意什么?(2)光学实验的基本功有哪些? (1)略(教材P14)。(2)“等高共轴”的调节、成像清晰位置的判断、消视差的调节是光学实验的基本功,务必熟练掌握。 12.常用的物理实验测量方法有哪几种?(教材P14-17) 常用的物理实验测量方法有比较法、转换法、放大法、模拟法、补偿法、干涉法和衍射法等。 13.物理实验中应掌握哪些基本调节技术?(教材P18-20) 物理实验中应掌握的基本调节技术有:仪器初态与安全位置的调节、回路接线法、跃接法、零位(零点)调整、水平、铅直调整、等高共轴调整、调焦、消视差调整、逐次逼近调整、空程误差消除的调节、先定性后定量原则等。 14.计算机和计算器在物理实验中有哪些基本应用?(教材P20-21) 计算器的基本应用:测量数据的统计处理;图形的简单处理等。 计算机的基本应用:实验数据处理、模拟与仿真实验、实时测量、利用物理实验课程网站进行物理实验的辅助教学和教学管理等。 15. 指出几种利用机械放大作用来提高测量仪器分辨率的测量工具。

初中物理实验设计及答案分解

1 / 9 初中物理实验设计及答案 一、《天平量筒法》 例题 :有一块形状不规则的石块,欲测量它的密度,所需哪些器材并写出实验步骤,并表示出测量的结果。 分 析:用天平和量筒测定密度大于水的物质的密度,可用排水法测体积。 实验原理: 实验器材:天平(砝码)、量筒、烧杯、滴管、线、水、石块 实验步骤: (1)用调节好的天平,测出石块的质量m ; (2)在量筒中倒入适量的水,测出水的体积V 1 (3)将石块用细线拴好,放在盛有水的量筒中, (排水法)测出总体积V 2; 实验结论: 二、《助沉法》 例题 有一块形状不规则的蜡块,欲测量它的密度,所需哪些器材并写出实验步骤,并表示出测量的结果。 分 析:用天平和量筒测定密度小于水的物质的密度,可用助沉法测体积。 实验原理:实验器材:天平(砝码)、量筒、烧杯、滴管、线、水、蜡块、铁块。 实验步骤: (1)用调节好的天平,测出蜡块的质量m ; (2)在量筒中倒入适量的水,如图甲将蜡块和铁块 用细线拴好,先将测铁块没入水中,测出水 和石块的体积V 1 (3)再将蜡块浸没在水中,如图乙。(助沉法)测出 水、石块、蜡块的体积总体积V 2; 实验结论: 注意:物质的密度比水小,放在量筒的水中漂浮,不能直接用量筒测出体积。例题中采用的方法是助沉法中的沉锤法,还可以用针压法,即用一根很细的针,将物体压入量筒的水中,忽略细针在水中占据的体积,则可用排水法直接测出物体的体积了。 四、《弹簧测力计法》也可称(双提法)-----测固体密度 【例题】张小清同学捡到一块不知名的金属块,将它放到水中可以沉没,现在,小清同学想测出它的密度,但身边只有一支弹簧秤、一个烧杯及足量的水,请你帮她想一想,替她设计一个测量金属块密度的实验过程,写出实验步骤 分析与解: 这是一道典型的利用浮力知识测密度的试题。阿基米德原理的重要应用就是已知浮力求体积。它的基本思路就是用弹簧测力计测出浮力,利用水的密度已知,求得物体的体积,即可计算出物体的密度值。 实验原理:阿基米德原理 实验器材:一支弹簧秤、一个烧杯及足量的水、金属块、线。 实验步骤: (1)用细线系住金属块,在烧杯中倒入适量的水; 1 2v v m -=V m =ρV m =ρ1 2v v m -=V m =ρ

《大学物理实验》课程教学大纲.docx

《大学物理实验》课程教学大纲 1. 课程名称(中文):物理实验英文名称:Physics Experiments 2.课程编码: 01000102 3.课程类别:基础独立设课 4.课程要求:必修基础实验 5.课程属性:独立设课 6.课程总学时:总学分: 7.实验学时: 51 学时总学分: 1.5学分 8.应开实验学期:第 2 学期至第 3 学期 9.适用专业:土木工程、化学工程与工艺、应用化学、材料科学与工程、生物工程、信息 与计算科学。 10.先修课程:大学物理 11. 编写人:徐子湘俸永格编写日前:2005年9月1日 一、实验课程简介 物理学是实验科学,物理规律的研究都是以严格的实验为基础,实验与数学分析相结合是 物理学研究中的一个特点。物理实验是大学生进行科学实验训练的一门基础课程,在实验过程中,通过理论的运用与现象的观测分析,充分提高学生分析问题与解决问题的能力;充分提高学生综 合运用理论知识解决实际问题的动手能力。本实验课程需学生应达到下列要求: 1、进一步巩固和加深对大学物理理论知识的理解,提高学生的综合素质。 2、能根据需要选学参考书,查阅手册,通过独立思考,深入钻研有关问题,学会自己 独立分析问题、解决问题,具有一定的创新能力。 二、实验教学目标与基本要求 1、本课程的主要目的是: (1)学生通过实验学习物理实验的基本理论、典型的实验方法及其物理思想。 (2)获得必要的实验知识和操作技能训练,培养学生的动手能力、工作能力、创造能力,提高学生分析问题、归纳问题、解决问题的能力。 (3)树立实事求是、一丝不苟、严格认真的科学态度。 2、本实验课程应达到下列要求: (1)进一步巩固和加深对大学物理理论知识的理解,提高学生的综合素质。 (2)能根据需要选学参考书,查阅手册,通过独立思考,深入钻研有关问题,学会自己独立分析问题、解决问题,具有一定的创新能力。

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

北航基础物理实验考试试题及答案

2009级基础物理实验期末试题 一、单项选择题(每题3分,共30分) 1、不确定度在可修正的系统误差修正以后,将余下的全部误差按产生原因及计算方法不同分为两类,其中 B 属于A类分量。 A、由测量仪器产生的的误差分析 B、同一条件下的多次测量值按统计方法计算的误差分量 C、由环境产生的误差分析 D、由测量条件产生的误差分量 2、下列说法中 C 是正确的。 A、在给定的实验条件下,系统误差和随机误差可以相互转化 B、当测量条件改变后,系统误差的大小和符号不随之变化 C、随机误差可以通过多次重复测量发现 D、一组测量数据中,出现异常的值即为粗大误差 5、已知(),下列公式中 B 是正确的。 A、 B、 C、 D、 7、用千分尺(精度0、01mm)测某金属片厚度d的结果为 i1234567 1.516 1.519 1.514 1.522 1.523 1.513 1.517

则测量结果应表述为d u(d)= A A、(1.5180.003)mm B、(1.5180.004)mm C、(1.5180.001)mm D、 (1.5180.002)mm 8.tg45°1′有 B 位有效数字 A、 6 B、5 C、 4 D、 3 9、对y=a+bx的线性函数,利用图解法求b时,正确的求解方法是 C 。 A、 b=tg(为所作直线与坐标横轴的夹角实测值) B、 b=(、为任选两个测点的坐标值之差) C、 b=(、为在所作直线上任选两个分得较远的点的坐标值之差) D、 b=(x、y为所作直线上任选一点的坐标) 10、用量程为500mV的5级电压表测电压,下列测量记录中哪个是正确的? D A、250.43mV B、250.4mV C、250mV D、0.25V 二、填空题(每题3分,共15分) 11、已被确切掌握了其大小和符号的系统误差成为可定系统误差。 12、已知某地的重力加速度值为9.794,甲、乙、丙三人测量的结果分别为:9.7950.024,9.8110.004,9.7910.006,试比较他们测量的精密度、正确度和准确度。甲测量的精密度低,正确度高;乙测量的正确度最低;

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理实验习题和答案(整理版)

第一部分:基本实验基础 1.(直、圆)游标尺、千分尺的读数方法。 答:P46 2.物理天平 1.感量与天平灵敏度关系。天平感量或灵敏度与负载的关系。 答:感量的倒数称为天平的灵敏度。负载越大,灵敏度越低。 2.物理天平在称衡中,为什么要把横梁放下后才可以增减砝码或移动游码。 答:保护天平的刀口。 3.检流计 1.哪些用途?使用时的注意点?如何使检流计很快停止振荡? 答:用途:用于判别电路中两点是否相等或检查电路中有无微弱电流通过。 注意事项:要加限流保护电阻要保护检流计,随时准备松开按键。 很快停止振荡:短路检流计。 4.电表 量程如何选取?量程与内阻大小关系? 答:先估计待测量的大小,选稍大量程试测,再选用合适的量程。 电流表:量程越大,内阻越小。 电压表:内阻=量程×每伏欧姆数 5.万用表 不同欧姆档测同一只二极管正向电阻时,读测值差异的原因? 答:不同欧姆档,内阻不同,输出电压随负载不同而不同。 二极管是非线性器件,不同欧姆档测,加在二极管上电压不同,读测值有很大差异。 6.信号发生器 功率输出与电压输出的区别? 答:功率输出:能带负载,比如可以给扬声器加信号而发声音。 电压输出:实现电压输出,接上的负载电阻一般要大于50Ω。 比如不可以从此输出口给扬声器加信号,即带不动负载。 7.光学元件 光学表面有灰尘,可否用手帕擦试? 答:不可以 8.箱式电桥 倍率的选择方法。 答:尽量使读数的有效数字位数最大的原则选择合适的倍率。 9.逐差法 什么是逐差法,其优点? 答:把测量数据分成两组,每组相应的数据分别相减,然后取差值的平均值。 优点:每个数据都起作用,体现多次测量的优点。 10.杨氏模量实验 1.为何各长度量用不同的量具测?

赵近芳版《大学物理学上册》课后答案之欧阳文创编

习题解答 习题一 1-1|r ?|与r ?有无不同?t d d r 和t d d r 有无不同?t d d v 和 t d d v 有无不 同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?1 2r r -=,12r r r -=?; (2)t d d r 是速度的模,即 t d d r ==v t s d d .t r d d 只是速度在径向上的 分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是 速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示. 题1-1 图 (3) t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上 的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v =t r d d ,及a =2 2d d t r 而求得结果;又有人先计算速度和加速度的 分量,再合成求得结果,即 v = 2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种 正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面 直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴故它们 的模即为 2 222 22222 222d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 其二,可能是将2 2d d d d t r t r 与误作速度与加速度的模。在1-1题中 已说明t r d d 不是速度的模,而只是速度在径向上的分量,同 样,2 2d d t r 也不是加速度的模,它只是加速度在径向分量中的

大学物理实验思考题答案

大学物理实验思考题答案 力学和热学 电磁学 光学 近代物理 1. 是否可以测摆动一次的时间作周期值为什么 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化对测量结果影响大吗为什么

答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。 实验2 金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D 或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。 2. 何谓视差,怎样判断与消除视差 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3. 为什么要用逐差法处理实验数据 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。 实验三,随即误差的统计规律

相关文档
最新文档