仪器分析论文~

仪器分析论文~
仪器分析论文~

SEM和TEM分析方法在制备纳米二氧化钛中的应用

1 引言

1.1本论文提出的背景及意义

纳米TiO2是20世纪80年代后期问世的,是一种十分重要的无机材料,其独特的紫外线屏蔽作用、光催化作用、杀菌作用及颜色效应等功能,使其一经面世便备受青睐。在防晒、杀菌、废水处理、环保、汽车工业等方面有着广阔的应用前景。纳米二氧化钛作为一种新型的高性能材料,近年来受到了国内外研究人员的关注,并在相当广泛的领域中得到应用。本文介绍了SEM和TEM分析方法的发展背景及特点,并且对这些分析方法在制备纳米材料中的应用进行了讨论,SEM和TEM都是研究材料的重要方法,在纳米技术的基础研究及开发应用中也有着重要作用。本文针对采用溶胶凝胶水解法制备纳米二氧化钛时浪费大量溶剂、抑制剂和造成环境污染的问题,制备出一种新型的丙三醇钛盐,并通过直接焙烧丙三醇钛的方法制备了纳米级二氧化钛粉体。运用SEM和TEM等手段对制得的丙三醇钛和纳米二氧化钛粉体进行了表征。

1.2 SEM和TEM的发展史

扫描电子显微镜(英文名:scanning electron microscop e,以下均用SEM代替)是近十余年才发展起来的。他的电子束路径附好与透射电镜的相侧逆。扫描电镜在几个方面具有明显的优越性,它的成像有较大的景深,不需作样品表面的复型,可以观察游离细胞、血细胞的表面结构和染色体的次级罗纹,其分辨率已经达2nm左右。扫描电镜利用电子束在晶体中的通道效应可作选区电子衍射,进行微区空间结构的分析,选区范围可小到10nm。透射电子显微镜(Transmission electron microscopy,TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,适于观察超微结构。透射电子显微镜在材料科学、生物学上应用较多。

由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。

1.3 SEM和TEM的工作原理

SEM的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。扫描电子显微镜的制造是依据电子与物质的相互作用。根据不同需求,可制造出功能配置不同的扫描电子显微镜。透射电镜的工作原理是电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,经过物镜放大的像进一步经过几级中间磁透镜的放大,最后投影在荧光屏上成像。由于透射电镜物镜焦距很短,也因此具有很小的像差系数,所以透射电镜具有非常高的空间分辨率,0.1-0.2nm,但景深比较小,对样品表面形貌不敏感,主要观察样品内部结构。

1.4 SEM和TEM的特点及应用

透射电镜是研究材料的重要仪器之一,但是用透射电镜研究材料微观结时,试样必须是透射电镜电子束可以穿透的纳米厚度的薄膜。单体的纳米颗粒或纳米纤维一般是透射电镜电子束可以直接穿透的。研究者通常把试样直接放在微栅上进行透射电镜观察。但是由于纳米颗粒或纳米纤维容易团聚,因此,用这种方法常常得不到理想的结果,有些研究内容也难以实施。比如∶纳米颗粒的表面改性的研究,纳米纤维的横切面研究都比较困难,研究界面问题则有更大

的难度。和透射电镜相比,扫描电镜具有以下特点:能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。样品制备过程简单,不用切成薄片。样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。电子束对样品的损伤与污染程度较小。在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

1.5 纳米尺寸的研究

扫描电子显微镜是近十余年才发展起来的。他的电子束路径附好与透射电镜的相侧逆。扫描电镜在几个方面具有明显的优越性,它的成像有较大的景深,不需作样品表面的复型,可以观察游离细胞、血细胞的表面结构和染色体的次级罗纹,其分辨率已经达到2nm左右。扫描电镜利用电子束在晶体中的通道效应可作选区电子衍射,进行微区空间结构的分析,选区范围可小到10nm,若带上X光微区分析仪后,可利用样品在电子束作用下发出的特征X线来进行表面微区成份分析。还可利用样品在电子束作用下的荧光效应来作荧光特性分析。

纳米材料是纳米科学技术最基本的组成部分,现在可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点, 纳米陶瓷在一定的程度上也可增加韧性、改善脆性等, 新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,目前该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术。另外如果将扫描电子显微在光学显微镜下无法看清小于0.2nm的细微结构,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透

射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。

1.6纳米二氧化钛的制备方法

目前,制备纳米二氧化钛的方法很多,分类的方法也不同,有的根据有无液相,分为干法和湿法两种。

1.6.1气相法

气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法。纳米二氧化钛的气相制备方法主要有化学气相反应法。用气相法制备的二氧化钛纳米粒子具有粒度细、化学活性高、粒子呈球形、单分散性好、凝聚粒子少、可见光透过性好、吸收紫外线的能力强等特点,易于工业放大,实现连续生产。气相反应法分为气相氧化法、气相水解法和气相热解法。

1.6.2液相法

液相法制备纳米二氧化钛的方法大致有水热法、水解法、沉淀法、溶胶—凝胶法、微乳液法、胶溶法等。其中水热法、水解法、沉淀法与溶胶—凝胶法等为较常用的方法。

1.6.3水热合成法

该法是利用化合物在高温高压水溶液中的溶解度增大、离子活度增强、化合物晶体结构转型等性质,在特制的密闭反应容器里,以水溶液作反应介质,通过对容器加热,创造一个高温、高压的反应环境,使难溶或不溶的物质溶解并重结晶,从而制得相应的纳米。粉体该法的优点是:制得的超细产品纯度高、分散性好、晶型好而且颗粒大小可控。但该法要经历高温高压过程,对设备的材质和安全要求较严,而且产品成本较高。

1.6.4沉淀法

沉淀法合成纳米二氧化钛,一般以四氯化钛、硫酸氧钛或硫酸钛等无机钛盐为原料,原料便宜易得。也可采用工业钛白粉生产的中间产物钛液作为原料,国外的很多公司都采用该种工艺生产纳米二氧化钛。均匀沉淀法是利用某一化

学反应使溶液中的构晶离子由溶液中缓慢、均匀地释放出来,最常用的沉淀剂为尿素。

1.6.5溶胶—凝胶法

溶胶—凝胶法可以在低温下制备高纯度、粒径分布均匀、活性大的纳米微粒,且反应过程易于控制、副反应少、工艺操作简单、易实现工业化生产。通常采用钛酸丁酯或钛酸异丁酯作为母体钛源,除此之外,也可选用偏钛酸、四氯化钛等来作为钛源。抑制剂起抑制水解作用,常选用醋酸、乙醇胺、乙酰丙酮等;催化剂用以控制水解过程的PH值,常选用盐酸、硝酸、NH3等;分散剂可作为反应中间体防止发生团聚。

2实验部分

2.1 丙三醇钛的合成

1) 原料与试剂

钛酸异丙酯,Nelles 法自制;丙三醇(分析纯)、丙酮(分析纯)、有机溶剂(分析纯),沈阳新西试剂厂。

2) 合成方法

将一定摩尔比的丙三醇、钛酸异丙酯和有机溶剂在干燥氮气的保护下依次加入到带有温度计、真空搅拌器和冷凝管的四口烧瓶中搅拌,液体混合均匀后开始加热。随着反应的进行,逐渐升高反应液温度.当没有馏出液流出时,停止反应.将反应液温度降至室温,停止搅拌和通氮气。经减压蒸馏、丙酮( 乙醇) 洗涤、干燥,得到丙三醇钛白色固体粉末。

2.1.1 丙三醇钛直接分解制备纳米二氧化钛

将干燥后的丙三醇钛分别放入马弗炉,按照一定升温速率,在400、500、600 和850 ℃下直接焙烧2 h,然后研磨产物,得到均匀细小的二氧化钛白色粉体。

2.2分析检测方法

纳米微粒的表征方法有很多,其主要的表征方法见表1

表征的方法表征的内容

TEM(透射电镜)微粒的形状、平均粒径、粒径分布,

测得到的是颗粒度

BET吸附法比表面积、孔容、孔径

XRD(射线衍射法)谢乐公式晶体结构,测得到的是晶粒度

差热分析仪、热重分析仪晶型转变温度及表面吸附物的脱附

与分解机理

X射线荧光光谱仪化学成分

XPS(射线光电子能谱法)表面组成

表1 纳米微粒的表征方法

2.3丙三醇钛的表征

丙三醇钛的FT-IR 表征钛酸异丙酯与丙三醇交换反应产物的傅里叶红外光谱(Fourier transform infrared,简称FT-IR) 如图1所示。

图1 丙三醇钛红外光谱图

Fig. 1 Infrared (IR) spectrum of titanium glycerol

由图1可以看出丙三醇与钛酸异丙酯反应合成的产物为丙三醇钛。

2.3.1 丙三醇钛的TG-DSC 表征

对合成的丙三醇(thermo gravimetric differential scanning calorimeter,简称TG-DSC)进行热重差热扫描量热分析。采用10 ℃ /min 的升温速率,终止温度为700 ℃,TG-DSC 曲线见图2。

图2 丙三醇钛的TG-DSC 曲线

Fig. 2 TG-DSC curves of titanium glycerol

TG 曲线在室温至250℃时,失重率为20.12%,DSC 曲线在50~100℃和200~250℃之间有2个较弱的峰,是由于有机溶剂中有残留;250~350℃,TG 曲线失重率为36.85%,同时DSC 曲线在相变温度Tm= 320.35℃处有一个很强的放热峰,是由丙三醇钛燃烧造成的;350~550℃,TG 曲线失重平缓,失重率为10.9%,这主要是燃烧后残余的炭和高温有机物挥发所致;DSC曲线T = 466.41℃的放热峰应归属于二氧化钛由锐钛矿相向金红石相转变的结果,晶体长大和晶形转变是一个弱的放热过程。结果表明,实验合成的丙三醇钛有较高的热稳定性能和较好的分解特性。

2.3.2 丙三醇钛的SEM表征

在钛酸异丙酯与丙三醇的摩尔比为1:1.33和1:2.00 条件下,丙三醇钛的

SEM 照片见图3。

图3 丙三醇钛的SEM照片

Fig. 3 SEM photographs of titanium glycerol

从图3可以看出,在有机溶剂中,由钛酸异丙酯与丙三醇通过醇交换反应所合成出的丙三醇钛均为无晶型和颗粒较小的白色固体粉末,在不同的实验条件下,得到的丙三醇钛的形态是相同的,其基本形态为无定形的非晶固体。

2.4纳米二氧化钛的制备

2.4.1 焙烧温度与晶型

将丙三醇钛固体粉末放入马弗炉中,直接焙烧分解2h,制得二氧化钛粉体,其外观与钛酸丁酯等一元醇钛盐溶胶凝胶法制备的纳米二氧化钛相同,产品易碾磨,粉体呈白色。经XRD衍射分析仪测定其物相结果见图4。

图4 丙三醇钛焙烧温度与二氧化钛晶型的XRD图谱

Fig. 4 XRD spectra for crystal form of titanium dioxide

at different calcination temperatures

从图4可以看出,丙三醇钛在400 ℃以上直接培烧均可制得二氧化钛,并具有完整的晶形。400 ℃焙烧制备的二氧化钛为锐钛矿型,500 ℃和600 ℃制得的二氧化钛为锐钛矿与金红石矿的混合相,随着焙烧温度的升高,锐钛矿的衍射峰逐渐减弱,金红石相的衍射峰不断增强,850℃下焙烧制得的二氧化钛全部为金红石相。

从焙烧温度看,相同晶相下丙三醇钛的焙烧温度低于一元醇钛盐溶胶凝胶法所需要的焙烧温度,这可能是由于丙三醇与Ti4 +能够形成环状螯合物和空间网状结构,阻止了晶粒团聚,使晶粒分散均匀,抑制了晶粒的长大,所需焙烧温度低的缘故。根据实际需求,可以控制不同的焙烧温度,制得不同晶相的二氧化钛。根据观察和测定,丙三醇钛在升温焙烧过程中,没有发生沸腾和升华现象,而是丙三醇钛直接分解为纳米二氧化钛。

2.4.2 纳米二氧化钛颗粒形貌

丙三醇钛在不同温度下直接焙烧分解制得纳米二氧化钛,经透射电子显微镜测定其形貌如图5所示。

图5丙三醇钛直接焙烧制得纳米二氧化钛TEM图

Fig.5 TEM images of nano-titanium dioxide prepared

with direct calcination of titanium glycerol

由图5 可以看出,500 ℃以上焙烧制得的纳米二氧化钛均具有明显片状晶体结构,平均粒径为15~50nm。

3 结论

1)以丙三醇钛为原料,经直接热分解制备得到了具有完整、呈片状结构晶形的纳米二氧化钛,平均粒径为15~50 nm。直接热分解法制备纳米二氧化钛,避免了广泛采用的溶胶凝胶法,工艺简单可行,浪费资源少、污染小,具有非常好的应用前景。

2)本文在制备纳米二氧化钛时采用多种表征方法,高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面具有简便、可操作性强的优势,SEM和TEM方法对于纳米材料的制备有很多重要的应用。SEM和TEM具有的新型分析功能为新材料、新工艺的探索和研究起到重要作用。

仪器分析在医药的应用

仪器分析在药物分析的应用 班级:12食品姓名:李娜学号:12110217 【摘要】近年来,随着仪器分析在医药领域应用越来越广泛,越来越多的的新技术新方法被应用在医药制造分析方面,本文对医药领域方面的仪器分析应用整理并统一综述。【关键词】仪器分析医药应用制造高效毛细管电泳应用 【正文】 高效毛细管电泳(HPCE)又叫毛细管电泳(CE),是必高压电场为驱动力,以毛细管及其内壁为通道和载体,利用样品各组分之间电泳淌度或分配行为的差异而实现分离的一类液相分离技术。目前已广泛应用于生命科学、生物技术、临床医学、药物学和环境保护等领域。采用HPCE法能数秒至数分钟内可冲洗再生,不易污染,能直接进样水溶性蛋白样品。此外,它呵在185~210nm波长下进行监测,因其避免了高效液相色谱仪(HPLC)在短紫外波长测定时易受到所用溶剂截止波长的干扰,这样就可测定分子中不带生色团的药物,扩大了监测范围[1],这些优点与传统药物分析方法相此更突出了HPCE在这一领域巾的优势地位,使毛细管电泳在体内药物分析领域有着极其广阔的应用前景。 1.概述 1.1 电泳及其发展介绍 电泳是带电粒子在电场力作用下,以不同的速度向电荷相反方向迁移的现象.称之为电泳。由于不同离子所带电荷及性质的不同,迁移速率不同,可实现分离。1937年,蒂塞利乌斯将蛋白质混合液放在两段缓冲溶液之间,两端施以电压进行自由溶液电泳,第一次将人血清提取的蛋白质混合液分离出白蛋白和α、β、γ球蛋白;发现样品的迁移速度和方向由其电荷和淌度决定;第一次的自由溶液电泳;第一台电泳仪;1948年,获诺贝尔化学奖。 1.2 传统电泳和高效毛细管电泳的比较 传统电泳:(纸电泳,凝胶电泳等)操作烦琐,分离效率低,定量困难,无法与其他分析相比。高效毛细管电泳(HPCE):是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。高效毛细管电泳在技术上采取了两项重要改进:一是采用了0.05mm内径的毛细管;二是采用了高达数千伏的电压。 1.3 HPCE的特点 高灵敏度:常用紫外检测器的检测限可达10-13-10-15mol,激光诱导荧光检测器(LIF)则达10-19-10-21。 高分辨率:每米理论塔板数为几十万,高者可达几百万乃至几千万。

仪器分析作业参考答案

第二章 电化学分析法 6.计算[OH –] = 0.05 mol/L ,p(O2)=1.0×103 Pa 时,氧电极的电极电势,已知O2 +2H2O+4e= 4OH –,φθ=0.40 V 。 解:根据能斯特方程 ()ln (Re )RT a Ox nF a d θ??=+ 代入数据计算得?=0.438V 7. 试从有关电对的电极电势,如?θ(Sn2+/Sn )、?θ(Sn4+/Sn2+)及?θ(O2/H2O ),说明为什么常在SnCl2溶液加入少量纯锡粒以防止Sn2+被空气中的氧所氧化? 答:?θ值较大的电对中的氧化态物质能和?θ值较小的电对中的还原态物质反应。所以在SnCl2溶液加入少量纯锡粒以防止Sn2+被空气中的氧所氧化\ 11. 下述电池中溶液,pH = 9.18时,测得电动势为0.418 V ,若换一个未知溶液,测得电动势为0.312 V ,计算未知溶液的pH 值 玻璃电极)(H x s a a 或+饱和甘汞电极 答:根据pH 的实用定义公式:F /RT .E E 3032s x pHs pHx -+=, 代入数据得PH=7.39 12. 将ClO4-离子选择性电极插入50.00 mL 某高氯酸盐待测溶液,与饱和甘汞电极(为负极)组成电池,测得电动势为358.7 mV ;加入 1.00 mL 、0.0500 mol /L NaClO4标准溶液后,电动势变成346.1 mV 。求待测溶液中ClO4-浓度。 答:根据 /0.059(101)s s x n E x c V c V ±?=-,代入数据 Cx=1.50?10-3mol/L 第五章 气相色谱分析法 6.当下述参数改变时: (1)增大分配比,(2) 流动相速度增加, (3)减小相比, (4) 提高柱温,是否会使色谱峰变窄?为什么? 答:(1)保留时间延长,峰形变宽; (2)保留时间缩短,峰形变窄; (3)保留时间延长,峰形变宽; (4)保留时间缩短,峰形变窄。 11. 分析某种试样时,两个组分的相对保留值r21=1.11, 柱的有效塔板高度H=1mm ,需要多长的色谱柱才能完全分离? 解:根据公式 2121212111(()r r R r r --= 得L=3.67 m

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

《仪器分析资料报告》模拟考试精彩试题

《仪器分析》模拟考试试题(1) 一、填空题:(每空1分,共20分) 1.按被作用物质的本质可分为___________光谱和___________光谱。 2.色谱分析中有两相,其中一相称为__________,另一相称为__________,各组分就在两相之间进行分离。 3.在气相色谱分析中用热导池作检测器时,宜采用______作载气,氢火焰离子化检测器进行检测时,宜用_______作载气。 4.在色谱分析中,用两峰间的距离来表示柱子的__________,两峰间距离越______,则柱子的________越好,组分在固液两相上的______性质相差越大。 5.红外光谱图有两种表示方法,一种是________________,另一种是_________________。 6.红外光谱法主要研究振动中有__________变化的化合物,因此,除了___________和___________等外,几乎所有的化合物在红外光区均有吸收。 7.原子发射光谱是由______________________________跃迁产生的,线光谱的形成原因是________________________________。 8.影响有色络合物的摩尔吸收系数的因素是_________________________。 9.多组分分光光度法可用解联立方程的方法求得各组分的含量,这是基于______________。 10.原子吸收光谱是由_________________________________________的跃迁而产生的。 二、选择题:(每小题2分,共40分) ()1. 分子中电子跃迁的能量相当于 A紫外/可见光B近红外光 C微波D无线电波 ()2. 在气相色谱法中,用于定量的参数是 A. 保留时间 B. 相对保留值 C. 半峰宽 D. 峰面积 ()3. 在气相色谱法中,调整保留值实际上反映了哪些部分分子间的相互作用? A. 组分与载气 B. 组分与固定相 C. 组分与组分 D. 载气与固定相 ()4. 在气相色谱中,直接表征组分在固定相中停留时间长短的保留参数是 A. 调整保留时间 B. 死时间

仪器分析答案

《仪器分析》 一、选择题(共30分) 1 准确度、精密度高、系统误差、偶然误差之间的关系是( C ) A准去度高,精密度一定高B精密度高,一定能保证准确度高 C 系统误差小,准确度一般较高 D 偶然误差小,准确度一定高 2 可见光度分析中所用的比色血是用(A)材料制成的。 A玻璃 B 盐片 C 石英 D 有机玻璃 3 测定值的大小决定于( A) A待测物的浓度 B 待测物的性质 C 比色皿的厚度 D 入射光强度 4 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( A ) A 热电偶 B 光电倍增管 C 光电池 D 光电管 5 指出下列哪种因素对朗伯-比尔定律不产生偏差?( D ) A溶质的离解作用 B 杂散光进入检测器 C 溶液的折射指数增加 D 改变吸收光程长度 6 某化合物的浓度为1.0×10-5mol/L,在λMAX=380nm时, 有透射比为50%,用1.0cm吸收池,则在该波长处的摩尔吸收系数为/[L/(mol.cm)] ( D ) A 5.0 ×104 B 2.5 ×104 C 1.5 ×104 D 3.0 ×104 7 膜电位产生的原因是( B )。 A电子得失 B 离子的交换和扩散 C 吸附作用 D 电离作用 8 为使pH玻璃电极对氢离子响应灵敏,pH玻璃电极在使用前应在( )浸泡24 小时以上。A自来水中 B 稀碱中 C 纯水中 D 标准缓冲溶液中 9 控制电位库伦分析的先决条件是(A) A 100%电流效率 B 100%滴定效率 C 控制电极电位 D 控制电流密度 10 下列关于荧光光谱的叙述哪个是错误的( C ) A荧光光谱的形状与激发光的波长无关 B 荧光光谱和激发光谱一般是对称镜像关系 C 荧光光谱是分子的吸收光谱 D 荧光激发光谱和紫外吸收光谱重合 11 荧光分光光度计常用的光源是( C ) A空心阴极灯 B 氙灯 C 氘灯 D 硅碳棒 12 无火焰原子吸收谱线宽度主要决定于(A) A多普勒变宽 B 洛伦茨变宽 C 共振变宽D自然变宽 13 原子吸收的定量方法标准加入法,消除了下列哪种干扰?( D ) A背景吸收 B 电离干扰 C 光谱干扰 D 物理干扰 14 测定工作曲线时,工作曲线截距为负值原因可能是( D ) A参比池比样品池透光率大 B 参比池与样品池吸光度相等 C 参比池比样品池吸光度小D参比池比样品池吸光度大 15 在极谱分析中与被分析物质浓度呈正比例的电流时(A) A极限扩散电流 B 迁移电流 C 残留电流 D 极限电流 16 双波长分光光度计的输出信号是(B )

仪器分析课程论文

毛细管电泳综述 摘要:自 1988 年第一台商品化的毛细管电泳仪问世,距今已有二十多年的时光。在这期间,毛细管电泳(CE)技术无论在理论还是应用方面,都得到了飞速的发展。今天,CE 技术已逐渐成熟,在分析化学、生物化学、环境化学、材料化学、临床化学、有机化学、天然产物化学和药物化学等领域有着广泛的应用。CE 技术作为一种强有力的分离分析手段,已成功地应用于小分子、大分子、中性化合物和荷电化合物的分离。检测器是毛细管电泳仪器的关键部件,本文主要对毛细管电泳的检测器进行讨论,介绍一下我们自制的电导检测器。关键词:毛细管电泳,检测器 第一章前言 电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象,据此对某些化学或生物化学组分进行分离的技术称为电泳技术。毛细管电泳(CE)又称高效毛细管电泳(HPCE),是指以毛细管为分离室,以高压电场为驱动力的一类新型现代电泳技术,它于 80 年代中后期迅速发展,其原理是在高压电场和毛细管分离通道中,依据试样中各组分电泳淌度和分配行为上的差异而实现分离的一类分析技术。与经典电泳相比,毛细管电泳法克服了由于焦耳热引起的谱带宽和柱效较低的缺点。毛细管电泳引入高的电场强度,改善了分离质量,具有分离效率高、速度快和灵敏度高等特点,而且所需样品少、成本低,更为重要的是,它又是一种自动化的仪器分析方法。毛细管电泳法与高效液相色谱一样同是液相分离技术,在很大程度上两者互为补充,但无论从效率、速度、用量和成本来说,毛细管电泳法都显示了它独特的优势。毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:1.高效(105-107理论塔板数/米);2.快速(几十秒至几十分钟); 3.分离模式多,选择自由度大; 4.分析对象广,从无机离子到整个细胞; 5.高速自动化; 6.样品需量小,无环境污染,运行成本低,如:毛细管电泳可通过改变操作模式和缓冲液成分,根据不同的分子性质(如大小、电荷数、疏水性等)对极广泛的物质进行有效分离,而高效液相色谱法要用价格昂贵的色谱柱和溶剂。可见,毛细管电泳法具有仪器简单、分离模式多样化、应用范围广、分析速度快、分离效率高、灵敏度高、分析成本低、环境污染小等优点。 CE的研究可追溯到60 年代,1967 年由Stellen Hjerten 撰写的一篇论文,他使用3 mm 内径的石英毛细管,进行自由溶液区带电泳(CZE)[1],由于意识到焦耳热会引起严重的峰展宽,他使用旋转毛细管的方法减小温度梯度的影响。1974 年,Virtanen 通过实验比较,认为使用细内径毛细管是降低焦耳热效应、提高分离效率的主要方法[2]。1979 年,Mikkers 采用200 μm 内径的聚四氟乙烯管和电导检测器分离了16 种有机离子,获得了105 plates/m 的高柱效[3],这是毛细管电泳发展中第一个突破性成就。第二个突破性成就是Jorgenson 等人于1981 年完成的[4],他们采用内径为75 μm 的石英毛细管和荧光检测器,配以30 kV 的高电压,获得了 4 × 105 plates/m 的柱效,使传统电泳技术发生了根本变革,迅速发展成为可与气相色谱(GC)和高效液相色谱(HPLC)相媲美的新颖的分离和分析技术——高效毛细管电泳(HPCE)。1983 年Hjerten 开展了很多开创性的工作,把传统的聚丙烯酰胺凝胶电泳移植到毛细管中,创建了毛细管凝聚电泳(CGE)[5];1984 年Terabe 在毛

仪器分析论文

各分析仪器特点及在环境监测中的应用 一、绪论 本文总结了本学期仪器分析实验中涉及的三大类共八种仪器和方法,内容包括其在定性、定量分析方面的特点,适用及不适用的分析样品类型,必需的样品预处理,以及在环境监测中的应用。 二、光分析法 光分析法是基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法。光分析法在研究物质组成、结构表征、表面分析等方面具有其他方法不可取代的地位 1、原子吸收分光光度法-原子吸收分光光度计 原子吸收光谱法是基于测量待测元素的基态原子对其特征谱线的吸收程度而建立起来的分析方法。 其原理为,样品特定元素由基态原子吸收特定能量的光,恰好使得核外电子激发从而形成原子吸收光谱。从仪器结构而言,空心阴极灯提供特定能量的光辐射,特定能量的光只能由待测元素提供,其他元素无法取代。所以空心阴极由待测元素金属或合金制成,保证实现峰值吸收。原子化器提供基态原子,基态原子吸收特定光形成吸收光谱。整个过程中没有像紫外与红外那样形成一个范围很宽的吸收谱带,由于宽度很窄习惯上称之为谱线。故通常不用于物质的定性分析,而是用于物质的定量分析。 该仪器主要适用于分析金属元素,对于难熔金属和大多数非金属元素测定困难,因为需要将被测元素金属制成阴极。 主要优点有检出限低,精密度和准确度高,灵敏度高,选择性好,需样量少,测定元素多,分析速度快。缺陷除了之前提到的非金属元素测定困难,还有就是测定不同元素需要换用不同的灯。 存在的干扰主要分为四类:物理、化学、电离以及光谱干扰。物理干扰的消除方法是配制与待测溶液组成相似的标准溶液或采用标准加入法,化学干扰的消除方法是加入释放剂及保护剂,电离干扰消除法为加入消电离剂,光谱干扰中的背景吸收可采用空白校正法、氘灯校正法等方法进行消除。 原子吸收光谱法加测汞和氢化物发生器等附件,测定灵敏度可比石墨炉更高,汞、砷、硒、碲、铋、锑、锗锡、铅的测定范围可提高1~2个数量级。原子吸收光谱法已广泛用于测定水、飘尘、土壤、粮食以及各种生物样品中的重金属元素。 2、紫外-可见光吸收光谱分析法-紫外-可见分光光度计 紫外-可见吸收光谱法属于分子吸收分光光度法,基于物质分子对光的选择性吸收。 主要用于无机化合物、有机化合物的定量分析以及配合物的组成和稳定常数

仪器分析论文

仪器分析总结 本学期我们开的仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。仪器分析方法所包括的分析方法很多,目前有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。 仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。仪器分析的分析对象一般是半微量(0.01-0.1g)、微量(0.1-10mg)、超微量(<0.1mg)组分的分析,灵敏度高;仪器分析大致可以分为:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外-可见光谱法、质谱分析法、红外光谱法、其它仪器分析法等,这学期我们学的主要是气相色谱法、原子光谱法、高效液相色谱法、紫外-可见光谱法、红外光谱法、分子发光分析法、紫外可见分光光度法。 紫外--可见分光光度法是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。适用于低含量组分

测定,还可以进行多组分混合物的分析。利用催化反应可大大提高该法的灵敏度。 红外光谱法又称“红外分光光度分析法”。简称“IR”,分子吸收光谱的一种。是利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。红外吸收光谱法主要用于鉴定有机化合物的组成,确定化学基因及定量分析,已用于无机化合物。 分子发光分析法是某些物质的分子吸收一定能量后,电子从基态跃迁到激发态,以光辐射的形式从激发态回到基态,这种现象称为分子发光,在此基础上建立起来的分析方法为分子发光分析法。此种方法对某些元素具有较高的灵敏度和选择性。 原子光谱法根据与电磁辐射作用的物质是以气态原子还是以分子(或离子团)形式存在,可将光谱法分为原子光谱法和分子光谱法两类。原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法(AES)、原子吸收光谱法(AAS)、原子荧光光谱法(AFS)以及X射线荧光光谱法(XFS,这是应对欧盟RoHS指令最主要的仪器)等。原子光谱法可以分为以下三类:(1)原子发射光谱分析(AES),它是利用原子

仪器分析总习题及参考答案

1、试述“仪器分析”是怎样的一类分析方法有何特点大致分哪几类具体应用最广的是哪两 类 2、光谱法的仪器通常由哪几部分组成它们的作用是什么 光谱法的仪器由光源、单色器、样品容器、检测器和读出器件五部分组成。作用略。 3、请按照能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外线,无线电波,可 见光,紫外光,X射线,微波。 能量递增顺序:无线电波、微波、红外线、可见光、紫外光、X射线。 波长递增顺序:X射线、紫外光、可见光、红外线、微波、无线电波。 4、解释名词电磁辐射电磁波谱发射光谱吸收光谱荧光光谱原子光谱 分子光谱特征谱线 电磁辐射――电磁辐射是一种以巨大速度通过空间传播的光量子流,它即有波动性,又具有粒子性. 电磁波谱――将电磁辐射按波长顺序排列,便得到电子波谱.电子波谱无确定的上下限,实际上它包括了波长或能量的无限范围. 发射光谱――原来处于激发态的粒子回到低能级或基态时,往往会发射电磁辐射,这样产生的光谱为发射光谱. 吸收光谱――物质对辐射选择性吸收而得到的原子或分子光谱称为吸收光谱. 荧光光谱――在某些情形下,激发态原子或分子可能先通过无辐射跃迁过渡到较低激发态,然后再以辐射跃迁的形式过渡到基态,或者直接以辐射跃迁的形式过渡到基态。通过这种方式获得的光谱,称为荧光光谱. 原子光谱――由原子能级之间跃迁产生的光谱称为原子光谱. 分子光谱――由分子能级跃迁产生的光谱称为分子光谱. 特征谱线――由于不同元素的原子结构不同(核外电子能级不同),其共振线也因此各有其特征。元素的共振线,亦称为特征谱线。

5、解释名词:灵敏线共振线第一共振线 共振线――由任何激发态跃迁到基态的谱线称为共振线. 主共振线――由第一激发态回到基态所产生的谱线;通常是最灵敏线、最后线 灵敏线――元素的灵敏线一般是指强度较大的谱线,通常具有较低的激发电位和较大的跃迁几率。 AAS 解释下列名词:多普勒变宽、谱线轮廓、光谱通带、释放剂、峰值吸收积分吸收锐线光源多普勒变宽――又称为热变宽,它是发射原子热运动的结果,主要是发射体朝向或背向观察器运动时,观测器所接收到的频率变高或变低,于是出现谱线变宽。 谱线轮廓――是谱线强度随波长(或频率)分布的曲线。 光谱通带――仪器出射狭缝所能通过的谱线宽度。 释放剂――当欲测元素和干扰元素在火焰中形成稳定的化合物时,加入另一种物质,使与干扰元素化合,生成更稳定或更难挥发的化合物,从而使待测元素从干扰元素的化合物中释放出来,这种加入的物质称为释放剂。 峰值吸收――采用发射线半宽度比吸收线半宽度小得多且发射线的中心与吸收线中心一致的锐线光源,测出峰值吸收系数,来代替测量积分吸收系数的方法。 6、试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc If=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源

仪器分析答案

仪器分析 1.灵敏度和检出限 其定义为流动相中样品组分在检测器上产生两倍基线噪声信号时相当的浓度或质量流量。 方法检出限不但与仪器噪音有关,而且还决定于方法全部流程的各个环节,如取样,分离富集,测定条件优化等,即分析者、环境、样品性质等对检出限也均有影响,实际工作中应说明获得检出限的具体条件。 2.谱线自吸 在发射光谱中,谱线的辐射可以想象它是从弧焰中心轴辐射出来的,它将穿过整个弧层,然后向四周空间发射。弧焰具有一顶的厚度,其中心的温度最高,边缘处温度较低。边缘部分的蒸汽原子,一般比中心原子处于较低的能级,因而当辐射通过这段路程时,将为其自身的原子所吸收,而使谱线中心减弱,这种现象称为谱线的自吸。 谱线自蚀 原子发射光谱的激发光源都有一定的体积,在光源中,粒子密度与温度在各部位分布并不均匀,中心部位的温度高,边缘部位温度低。元素的原子或离子从光源中心部位辐射被光源边缘处于较低温度状态的同类原子吸收,使发射光谱强度减弱,这种现象称为谱线的自吸。谱线的自吸不仅影响谱线强度,而且影响谱线形状.一般当元素含量高,原子密度增大时,产生自吸。当原子密度增大到一定程度时,自吸现象严重,谱线的峰值强度完全被吸收,这种现象称为谱线的自蚀。在元素光谱表中,用r表示自吸线,用R表示自蚀线。 3.分配系数和分配比 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,

平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD 为一常数。 在稀溶液中可以用浓度代替活度 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比.用D表示: 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如:CCl4——水萃取体系萃取I2 在复杂体系中KD 和D不相等。分配系数与萃取体系和温度有关,而分配比除与萃取体系和温度有关外,还与酸度、溶质的浓度等因素有关。 1.下列哪一个不是仪器分析方法的主要评价指标( ) 主要:灵敏度和检测限 检出限和灵敏度、定量限、精密度、准确度、适用性 2.波长大于1mm,能量小于10-3 eV(电子伏特)的电磁波普,称为( 无线电波) 3.在紫外-可见光度分析中极性溶剂会使被测物吸收峰(C位移) A 消失 B 精细结构更明显 C 位移 D 分裂 5.双光束分光光度计与单光束分光光度计相比,其突出优点是( ) 1、双光束分光光度计以两束光一束通过样品、另一束通过参考溶液的方式来分析样品的分光光度计。这种方式可以克服光源不稳定性、某些杂质干扰因素等影响,还可以检测样品随时间的变化等; 2、单光束分光光度计是由一束经过单色器的光,轮流通过参比溶液和样品溶液,以进行光强度测量。这种分光光度计的特点是:结构简单价格便宜主要适于做定量分析; 缺点是:测量结果受电源的波动影响较大,容易给定量结果带来较大误差,此外,这种仪器操作麻烦,不适于做定性分析 6.若在一个1m 长的色谱柱上测得两组分的分离度为0.68,若要使它们完全分离,则柱长(m) 至少应为( ) 柱长至少为4.87m 。 公式:R1/R2=(L1/L2的开平方)或表示为L1/L2=(R1/R2)*(R1/R2)。 已知:L1=1m ,R1=0.68 ,R2=1.5 , 则L2=(R2/R1)*(R2/R1)*L1=(1.5/0.68)*(1.5/0.68)*1=4.87(m)。

现代生物学仪器分析

现代生物学仪器分析在生命科学研究中的应用 生命科学的发展与生物学仪器分析技术的进步密切相关,比如X射线晶体衍射对DNA双螺旋结构的发现起着至关重要的作用,而DNA双螺旋结构的发现奠定了现代分子生物学的基石,使微观世界的大门为我们敞开,让我们得以一窥微观领域的奇妙景象。一代测序技术的问世使人类得以提前完成人类基因组计划,第二代,第三代测序技术的出现,不仅大大降低了测序成本,还大幅提高了测序速度,并且保证了高准确性,为现代生物学的研究提供了强有力的帮助。诞生于上个世纪八十年代的生物质谱技术,为功能基因组,蛋白质组的研究奠定了基础。随着科学技术的发展,更精确,更快速,选择性更高,灵敏度更高的分析仪器以及新的技术和新的方法会不断的涌现出来,从而加速生命科学研究的不断发展。 现代生物学仪器分析中有“四大谱”和“三大法”。生物分子的结构分析最有效的方法就是“四大谱”:紫外-可见光谱、红外光谱、核磁共振波谱和质谱。而生物大分子结构测定的最重要和应用最广泛的“三大法”分为X射线晶体衍射分析、核磁共振波谱分析和冷冻电镜。 紫外可见吸收光谱是通过研究溶液中生物分子对紫外和可见光谱区辐射能的吸收情况对生物分子进行定性、定量和结构分析的方法。通常我们所说的紫外光谱其波长范围主要是为200~800nm。由于不同物质的分子其组成和结构不同,它们所具有的特征能级也不同,其能级差不同,而各物质只能吸收与它们分子内部能级差相当的光辐射,所以不同物质对不同波长光的吸收具有选择性。紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析。近年来,随着生命科学领域的发展,紫外可见吸收光谱在生命科学领域应用的越来越广泛。比如利用紫外-可见吸收光谱对生物样品的定性分析,鉴定生物样品的种类、纯度等;还可以利用紫外-可见吸收光谱测定生物样品的浓度(蛋白质,核酸等) 红外—拉曼光谱在生命科学领域应用十分广泛,因为拉曼样品用量很少,不需要对生物样品进行固定、脱水、包埋、切片、染色、标记等繁琐的前处理程序,不仅操作简单,而且不会损伤样品从而能够获得样品最真实的信息。另外,生物大分子多是处在水溶液中,研究它们在水溶液中的结构对于了解生物大分子的结构和性能的关系非常重要。由于水的红外吸收很强,因此用红外光谱研究生物体系有很大局限性,而水的拉曼散射很弱,干扰小,而且单细

仪器分析习题(附答案)

1. 仪器分析法的主要特点是(D ) A. 分析速度快但重现性低,样品用量少但选择性不高 B. 灵敏度高但重现性低,选择性高但样品用量大 C. 分析速度快,灵敏度高,重现性好,样品用量少,准确度高 D. 分析速度快,灵敏度高,重现性好,样品用量少,选择性高 2. 仪器分析法的主要不足是(B ) A. 样品用量大 B. 相对误差大 C. 选择性差 D.重现性低 3. 下列方法不属于光分析法的是( D ) A. 原子吸收分析法 B. 原子发射分析法 C. 核磁共振分析法 D. 质谱分析法 4. 不属于电分析法的是( D ) A. 伏安分析法 B. 电位分析法 C. 永停滴定法 D. 毛细管电泳分析法 5. Ag-AgCl参比电极的电极电位取决于电极内部溶液中的( B )。 A. Ag+活度 B. C1-活度 C. AgCl活度 D.Ag+和C1-活度之和 6. 玻璃电极使用前,需要( C )。 A. 在酸性溶液中浸泡1 h B. 在碱性溶液中浸泡1 h C. 在水溶液中浸泡24 h D. 测量的pH不同,浸泡溶液不同 7. 根据氟离子选择电极的膜电位和内参比电极来分析,其电极的内充液中一定含有( A )。 A. 一定浓度的F-和Cl- B. 一定浓度的H+ C. 一定浓度的F-和H+ D. 一定浓度的Cl-和H+ 8. 测量pH时,需要用标准pH溶液定位,这是为了( D )。 A. 避免产生酸差 B. 避免产生碱差 C. 消除温度的影响 D. 消除不对称电位和液接电位的影响 9. 玻璃电极不包括( C )。 A. Ag-AgCl内参比电极 B. 一定浓度的HCl溶液 C. 饱和KCl溶液 D. 玻璃膜 10. 测量溶液pH通常所使用的两支电极为( A )。 A. 玻璃电极和饱和甘汞电极 B. 玻璃电极和Ag-AgCl电极 C. 玻璃电极和标准甘汞电极 D. 饱和甘汞电极和Ag-AgCl电极 11. 液接电位的产生是由于( B )。 A. 两种溶液接触前带有电荷 B. 两种溶液中离子扩散速度不同所产生的 C. 电极电位对溶液作用的结果 D. 溶液表面张力不同所致 12. 离子选择性电极多用于测定低价离子,这是由于( A )。 A. 高价离子测定带来的测定误差较大 B. 低价离子选择性电极容易制造 C. 目前不能生产高价离子选择性电极 D. 低价离子选择性电极的选择性好 13. 电位滴定中,通常采用( C )方法来确定滴定终点体积。 A. 标准曲线法 B. 指示剂法 C. 二阶微商法 D. 标准加入法 14. 离子选择电极的电极选择性系数可以用来估计( B )。 A. 电极的检测极限 B. 共存离子的干扰 C. 二者均有 D. 电极的响应时间 15. 用电位滴定法测定水样中的C1-浓度时,可以选用的指示电极为( C )。 A. Pt电极 B. Au电极 C. Ag电极 D. Zn电极 16. 用pH玻璃电极测定pH为13的试液,pH的测定值与实际值的关系为( B )。 A. 测定值大于实际值 B. 测定值小于实际值 C. 二者相等 D. 不确定 17. 用pH玻璃电极测定pH为0.5的试液,pH的测定值与实际值的关系为( A )。 A. 测定值大于实际值 B. 测定值小于实际值 C. 二者相等 D. 不确定 18. 用pH玻璃电极为指示电极,以0.2000 mol/L NaOH溶液滴定0.02000 m/learning/CourseImports/yycj/cr325/Data/FONT>苯甲酸溶液。从滴定曲线上求得终点时pH = 8.22,二分之一终点时溶液的pH = 4.18,则苯甲酸的Ka为( B )。 A. 6.0×10-9 B. 6.6××10-5 C. 6.6××10-9 D. 数据少无法确定 19. 当金属插人其金属盐溶液时,金属表面和溶液界面间会形成双电层,所以产生了电位差。此电位差为( B )。 A. 液接电位 B. 电极电位 C. 电动势 D. 膜电位 20. 测定溶液pH时,用标准缓冲溶液进行校正的主要目的是消除( C )。 A.不对称电位B.液接电位 C.不对称电位和液接电位D.温度 21. 用离子选择性电极标准加入法进行定量分析时,对加入标准溶液的要求为( A )。

仪器分析第五版习题及答案

仪器分析第五版习题及答案 第一章引言 1-2 1,主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析使用物质的物理或物理化学特性进行分析。(2)化学分析不需要特殊的仪器和设备;仪器分析需要特殊的仪器和设备;(3)化学分析只能用于成分的定量或定性分析;仪器分析也可用于部件的结构分析。 (3)化学分析灵敏度低、选择性差,但测量精度高,适用于主要成分的分析。该仪器灵敏度高,选择性好,但测量精度稍差。适用于痕量、痕量和超痕量成分的分析。 2,共同点:两者都是成分测量的手段,都是分析化学的成分。1-5 分析仪器与仪器分析的区别:分析仪器是一种用于仪器分析的技术设备和装置;仪器分析是利用仪器和设备进行成分分析的技术手段。分析仪器和仪器分析的关系:仪器分析需要分析仪器来达到测量的目的,而分析仪器是仪器分析工具仪器分析和分析仪器的发展相互促进。1-7 ,因为仪器分析直接测量物质的各种物理信号,而不是它们的浓度或质量数,并且信号和浓度或质量数之间的关系仅在一定范围内是确定的,并且这种关系还受到仪器、方法和样品基质等的影响。因此,为了对组分进行定量分析,消除仪器、方法和样品基体对测量的影响,必须建立特定测量条件下信号与浓度或质量数的关系,即必须进行定量分析和校正。第二章光谱分析导论

2-1 光谱仪的总体组成包括:光源、单色仪、样品引入系统、探测器、信号处理和输出装置每个组件的主要功能是: 光源:提供能量使被测组件吸收,包括激发到高能态;单色仪:将合成光分解成单色光,收集特定波长的光进入样品或探测器;样品引入系统:样品以适当的方式引入光路,可以作为样品容器;检测器:将光信号转换成可量化的输出信号信号处理和输出设备:放大、转换、数学处理、滤除噪声,然后以适当的方式输出2-2: 单色仪由入射狭缝、透镜、单色仪、聚焦透镜和出射狭缝组成。每个组件的主要功能是:入口狭缝:从光源或样品池收集合成光;透镜:将入射狭缝收集的合成光分解成平行光;单色元件:将合成光分散成单色光(即按波长排列的光)的聚焦透镜:将单色元件分散的相同波长的光成像在单色仪的出射曲面上;出射狭缝:收集色散后特定波长的光入射样品或探测器2-3 棱镜的分光原理是光的折射因为不同波长的光在同一介质中具有不同的折射率,所以不同波长的光可以相应地分离光栅的分裂原理是光衍射和干涉的综合作用。不同波长的光被光栅衍射后具有不同的衍射角,从而分离出不同波长的光。 2-7 ,因为对于一阶光谱(n=1),光栅的分辨率为 R = nN = N =光栅宽度x光栅刻痕密度= 720 x 5 = 3600 ,并且因为

仪器分析技能总结与综合

分析技能总结与综合 本学期我们学仪器分析课程的同时做了本课程的实验。理论可以指导实验,通过实验可以验证和发展理论。对于大多数同学来说,将来并不从事分析仪器制造或者仪器分析研究,而是将仪器分析作为科学实验的手段,利用它来获取所需要的 信息。 仪器分析实验的目的是让学生以分析仪器为工具,亲自动手去获得需要的信息,是学生走向未来社会独立进行科学实践的预演。本次实验课程收获很多。 仪器分析是以测量物质的某些物理和化学性质的参数来确定其化学组成,含量或结构的分析方法。在最终测量过程中,利用物质的这些性质获得定性,定量,结构以及解决实际问题的信息。 仪器分析的分类 一,电化学分析法建立在溶液电化学性质基础上的一类分析方法,包括电位分析法,库仑分析法,电重量分析法,伏安法和极谱分析法以及电导分析法。 二,色谱法利用混合物中各组分不同的物理和化学性质来达到分离的目的。分离后的组分可进行定性和定量分析,有时分离和测定同时进行,有时先分离后测定。包括气相色谱法和液相色谱法等。 色谱的定性分析-确定各色谱峰所代表的化合物。 各种物质在一定的色谱条件下均有确定的保留值,故保留值可作为一种定性指标(目前各种色谱定性方法的依据)。不同物质在同一色谱条件下,可能具有相似或相同的保留值,即保留值并非专属。仅根据保留值对一个完全未知的样品定性是困难的。如果在了解样品的来源、性质、分析目的的基础上,对样品组成作初步的判断,再结合下列的方法则可确定色谱峰所代表的化合物。 色谱定性和定量分析 利用保留值定性(最常用、最简单)

1.利用纯物质定性相同条件下,通过对比试样中具有与纯物质相同保留值的色谱峰,确定试样中是否含有该物质。该法不适用于不同仪器上获得的数据之间的对比。 2.利用加入法定性作出未知样品的色谱图,然后在未知样品加入某已知物,又得到一个色谱图。峰高增加的组分即可能为这种已知物。 色谱图的意义 ①根据色谱峰的个数,可以判断样品中所含组分的最少个数是样品中所含组分的最少个数; ②色谱峰的保留值,色谱定性分析的依据; ③色谱峰下的面积或峰高,色谱定量分析的依据; ④色谱峰的保留值及其区域宽度,评价色谱柱分离效能的依据; ⑤色谱峰两峰之间的距离,评价固定相(或流动相)选择是否合适的依据。 三,光学分析法建立在物质与电磁辐射互相作用基础上的一类分析法,包括原子发射光谱法,原子吸收光谱法,紫外—可见吸收光谱法,红外吸收光谱法,核磁共振谱法,分光和荧光光度法和X射线衍射法等。 我们本学期一共做了十二个分析试验,分别是一下十二个 (1)核磁共振波谱法研究乙酰丙酮的互变异构现象 核磁共振属于光学分析法。核磁共振波谱是以电磁波作用于磁场中的原子核时,原子核产生自旋跃迁所得的吸收波谱。由于各原子核所处的化学环境不同,使不同的有机化合物呈现不同的核磁共振谱,因此可以用核磁共振谱法测定和确证有机化合物的结构,检验化合物的纯度和进行混合物的分析。 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。当外加射频场的频率与原子核自旋进动的频率相同的时候,即入射光子的频率与Larmor频率γ相符时,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。 核磁共振的条件之一是外磁场中存在着具有磁矩的原子核。本实验是利用核磁

中学中仪器分析归纳

仪器分析在高中教学设置思考 象山中学唐朝军 摘要:仪器分析作为分析化学重要分支之一,在与化学相关的各行各业中具有重要的作用。本文结合我国高中化学的课标和高中教材,对仪器分析作以归纳和总结,并关注新课程的化学改革中仪器分析教学问题和未来的新动向。 关键词:现代分析测试技术仪器分析新课程改革 现代分析测试技术的发展水平是国家科技水平和综合国力的重要标志之一。科学研究离不开现代分析测试技术的发展,同样,科学仪器的发展体现国家科技水平和综合国力。化学是一门以实验为基础的学科,实验贯穿于整个学习过程。仪器分析作为实验化学的一部分,与实验化学有着密不可分的关系,但又有着与高中其它实验部分与众不同的特点。仪器分析在化工、制药、食品分析、环境监测以及生命科学等领域有着广泛的应用,在有关专业教学中占有重要地位,是高等院校化学专业和化学相关专业必修的基础课程之一。笔者搜索1994年至今的化学教育发现大学中讨论仪器分析的有56篇。但从中学角度讨论仪器分析的论文却没有。本文结合仪器化学的特点,浅析我国高中的课标、教材和中学阶段的仪器分析的教学。 一、仪器分析简介 仪器分析是通过测量表征物质的某些物理或物理化学性质的参数来确定其化学组成、含量或结构的分析方法[1]。这类方法常常是测量热、声、光、电、磁等物理量而得到分析结果,而测量这些物理量,一般要使用比较特殊或复杂的仪器设备,故称为“仪器分析”。仪器分析不仅用于物质的定量和定性分析,还可用于状态分析、价态、结构,微区和薄层分析,微量及超痕量分析等,是分析化学发展的方向,广泛应用于制药、食品分析、环境监测以及生命科学等领域[2]。 根据仪器的物理学原理现代的仪器分为质谱分析法、光分析学、电化学学、色谱分析法和热分析法等及其联用(见表一)。中学阶段主要是让学生了解红外吸收光谱、核磁共振氢谱、紫外可见分光光度计和质谱法四种仪器分析,这四种方法也是目前仪器分析中的重要内 表一:常见的仪器分析方法分类

仪器分析结课论文

仪器分析论文

核磁共振(NMR )的应用 具有磁距的原子核在高强度磁场作用下,可吸收适宜频率的电磁辐射,由低能态跃迁到高能态的现象。如1H、3H、13C、15N、19F、31P等原子核,都具有非零自旋而有磁距,能显示此现象。不同分子中原子核的化学环境不同,将会有不同的共振频率,产生不同的共振谱。记录这种波谱即可判断该原子在分子中所处的位置及相对数目,可以分析各种有机和无机物的分子结构,用于进行定量分析及分子量的测定。可以直接研究溶液和活细胞中分子量较小(20 kDa以下)的蛋白质、核酸以及其他分子的结构,而不损伤细胞。 核磁共振适合于液体、固体。如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。 在世界的许多大学、研究机构和企业集团,都可以听到核磁共振这个名词,包括我们在日常生活中熟悉的大集团。而且它在化工、石油、橡胶、建材、食品、冶金、地质、国防、环保、纺织及其它工业部门用途日益广泛。 微型磁共振成像系统 BRUKER 公司获得R&D100 奖的mq 系列minispec核磁共振分析仪是理想的TD-NMR 谱仪(TD, Time Decay,时间衰减的NMR 谱仪),长时间的稳定性以及优异的测试重复性保证了仪器用于产品质量控制/过程控制的可靠性,mq 系列核磁共振分析仪还可用于研究、开发。Bruker的mq系列核磁共振分析仪广泛用于食品如油脂厂、巧克力厂、饼干厂,石化如聚丙烯装置、聚乙烯装置、聚苯乙烯装置、ABS装置、SBS装置等,化工如牙膏厂、有机氟产品等的产品质量的检验检测。 BRUKER 公司是最早生产minispec NMR 用于QA/QC 的家,一支强有力的集研究、生产、应用、技术支持的队伍以及遍及世界各地的售后服务体系,这些因素保证BRUKER 公司的产品处于世界领先、用 户最多、售后及应用支持最完善。 测定固体脂肪含量(SFC):

相关文档
最新文档