数理统计例题

数理统计例题
数理统计例题

例题解析(1)

例1设随机变量X 和Y 相互独立,),(~),,(~2

2

2211σμσμN Y N X 。1621,,,X X X Λ是X 的一个样本,1021,,,Y Y Y Λ是Y 的一个样本,测得数据

∑∑∑∑========10

1

2

10

1

16

1

2

16

1

72,18,563,84i i i i i i

i i y y x x

(1)分别求21,μμ的矩估计量;(2)分别求2

221σσ,的极大似然估计值; (3)在显著水平05.0=α下检验假设 22210σσ≤:H ,2

2211σσ>:H 。

解 (1)用样本一阶原点矩估计总体一阶矩,即得1μ和2μ的矩估计值:

8.1101?,25.5161?10

1

21611=====∑∑==i i i i y x x μμ

。 (2)正态总体),(~2σμN X 的参数2σ的极大似然估计量为

∑=-==n i i X X n 1

22

)(1?σ。因此2

221σσ和的极大似然估计值为

625.716161)(161?1611222

21

=??

? ??-=-=∑∑==i n i i i x x x x σ

96.316101)(101?1011222

22

=??

? ??-=-==∑∑==i n i i i y y y y σ

(3)是21,μμ未知,双总体方差的假设检验。待检假设2

2210σσ≤:H ;

2

2211σσ>:H ,是在05.0=α下的单侧检验。

因为4.4)(91,31.8)(1511

21221221

=-==-=∑∑==n i n i i y y S x x S &。所以F 同机量得

847.14.415

.822

21===S S F

查F 分布表,得01.391505

.0=),(F .经比较知,01.3)9,15(847.105.0=<=F F ,故接 受0H ,认为2

221σσ不比大。

例2 有三台机器,生产同一种规格的铝合金薄板,测量三台机器所生产的 薄板厚度(单位:厘米),得结果如表所示。

机器1 机器2 机器3

试考察机器对薄板厚度有无显著的影响)

(05.0=α。 解 检验假设3210μμμ==:H 。i μ是各台机器生产的薄板总体的均值。 经计算15,5,3321=====n n n n s ,

8102.4,8.3,963912.03

1

23

15

1

2

===∑∑∑=?==j j j i ij

T T x 。

3

001245.015

12

315

1

2

&=-

=∑∑==T x S j i ij T , 3001053.015

151312

2&=-=∑=?j j A T T S ,

000192.0=-=E T E S S S .

因为92.3293.821205

.0=<=比),(F F ,故拒绝0H ,认为各台机器生产的薄板厚度有显著差异。

在进行方差分析时,还常要对未知参数进行估计。下面写出常用的几个估计:

①s

n S E

-=2?σ

是的无偏估计。 ②j j x x ?==μμ

?,?分别是j μμ,的无偏估计。 ③x x j j -=?σ

?是j δ的无偏估计,且∑=0j j n δ。

④两总体),.(2σμj N 与),(2σμK N 的均差值k j μμ-的置信度为α-1的置信区间为

))11()((k j E k j n n S s n t x x +--??αμ。

例3 求上例中未知参数j j δμσ,,2的点估计及均值差的置信度为的 置信区间。

解 000016.03

15000192

.0?2=-=-=s n S E σ

, 262.0??256.0?240.0?332211======???x x x μμμ

,,, 011.0?253.0?1

-=-===?x x x δμ,, 又由1788.2315025

.0=-)(t , 36

10256.15

2

10

1611--?=??=+k j E n n S (, 知0055.01112025.0=+k j E n n S t ()(,故323121μμμμμμ---及,的置信度为的置信区间分别为

(μ)=(,), (μ)=(,), (μ)=(,)。

例4 某工厂在生产一种产品时使用了三种不同的催化剂和四种不同的原

试在05.0=α下检验不同催化剂和原料对压强有无显著影响。

解 设i α为因素A 在水平i A 的效应,j β为因素B 在水平j β的效应。待检验 假设

032101===ααα:H ,

0432102====χβββ:H 。

因为43==s r ,,所以

67.984364

31159402

=??-=)(T S ,

17.2543643163466412

=??-?=)(A S ,

34.693644

3147732312

=??-?=)(B S ,

16.4=--=B A T E S S S S 。

列出方差分析表如下

因为35.3376.4)6,3(16.18145.62(05.005.0=<==<=比比,),

F F F F ,所以拒绝01H 和02H ,认为催化剂和原料的影响都是显著的。

例5 设关于某设备的使用年限x 和支出的维修费用(单位:千元)y 如下 所示:

求(1)关于x 的回归方程,2σ的无偏估计;

(2)检验回归是否显著,并求7=x 时,维修费用y 的预测区间。 解 (1)左散点图(略),数据分布呈直线趋势。列计算表:

并计算下列数据:

)(1020519012

11

2=?-=??? ??-=∑∑==n i i n

i i

xx x n x l 3

.12252051

3.1121111=??-=??? ????? ??-=∑∑∑===n i i n i i n

i i i xy y x n y x l 78.15255178.14012

2

112=?-=??

? ??-=∑∑==)(n i i n

i i yy

y n y l ,

解得 23.110

3.12?===xx xy l l b

, 08.0423.15?1?1

=?-=-=∑=x b y n a

n

i i 。 所以,线性回归方程为

x y

23.108.0?+=。 2σ的无偏估计为

8837.0)3.11223.178.140(3

1)?(21?2=?-=--=xy

yy l b l n σ

。 (2)将70=x 代入回归方程得69.8?0=y

。 因为35.2)3(,5025.0==t n ,所以0y 的置信度为的置信区间为

))(11?)2(?2020xx l x x n n t y

-++-±σα( )893.11,487.5()45.194.035.269.8(=??±=。

计算t 统计量

187.13908837

.023

.1??===xx l b t σ。

因为187.131824.3)3(025.0=<=t t ,故知回归效果是显著的。

例6(单因素方差分析)下表给出了小白鼠在接种三种不同菌型伤寒杆菌后的存

活天数,问

三种菌型的平均存活天数有无显著差异

表4-3

菌 型

接种后存活天数

∑=9

1

i i

x

Ⅰ型(1A ) 2 4 3 2 4 7 7 2 5 36 Ⅱ型(2A ) 5 6 8 5 10 7 12 6 6 65 Ⅲ (3A ) 7 11 6 6 7 9 5 10 6 67

计算:222.6,444.7,22.7,4321====X X X X

()()8889.66)168(27

144894225129691271)(9111224

53351517667

,65,3622

12

322211212

3219

12

3219

1

=-++=??? ??-++=??? ??-==++=++=====?=∑∑∑

∑∑=====r

i i r i i r

i i

i

A j ij i j ij i S S S S S n n S Q SS SS SS x SS S S S x S

()6667

.1788889.667778.1117778

.1112222.11125335151769

3

12

3

1=+=+==-++=-=∑∑==A E T i i i i E Q Q Q S SS Q 列成表格

如下,其中,

方差来源 平方和

自由度

均方 F

因素

8889.66=A Q

误差

7778.111=E Q

总和

6667.178=T Q

657

.424

7778.1114445.332

8889

.6612

2

==-===-=

r n Q S r Q S E E A A

1809.76574

.44445.3322

0===E A S S F ,查表

()40.324,205.0=F

对给定的显著水平05.0=α,查表

,

40.3)24,2(05.0=F 因

40.3)24,2(1809.705.0=>=F F ,故拒绝0H ,即认为这三种不同菌型的伤寒杆菌

的平均存活天数有显著差异。

关于未知求2σ, i μ,i δ(i =1,2,3)的参数估计

2

=6574.42

==-E E S r n Q 222.2222.6000.4?11-=-=-=X X δ

000.1222.6222.7?22=-=-=X X δ 222.1222.6444.7?3

3=-=-=X X δ i μ的区间估计

26

.4)24,1(),1(05.005.0==-F r n F

i μ的置信区间为

()),1(2

r n F n S X i

E i -αμ

)),1(2

r n F n S i

E

-α=9/657.4X 26.4=

置信区间为的,,%95321μμμ

的置信区间为的-均值之差αμμ-1k i (22

i 11)

(E k

i k S n n r n t X X +-αμ-)

)

(2

r n t -α0624.2)24(025.0=t

)

(2

r n t -α2

11E

k

i S n n +=100.265.49

2

=?? 的置信区间为的-,95%,323,121μμμμμμ--∴

(-,-);(-,-);(-,)

例7.(正交试验)为了制造轴承,寻求新钢种最佳等温淬火工艺。考察试验指

标是径向抗压负荷与硬度,对试验指标有影响的主要因素:加热温度(单位:C 0

,等温温度

(单位:C 0),淬火返修次数(单位:次),将因素列如下表。

水平

列号 A 加热温度 B

等温温度 C

淬火返修次数 1 2 3

900 880 860

250 260 270

0 1 2

因为是3元素3水平,选择正交表)3(49L 合适。

表头设计 A B C

列号试验号

1 2 3 4 1 2 3 4 5 6 7 8 9 1(900) 2(880) 3(860) 1 2 3 1 2 3 1(250) 1 1 2(260) 2 2 3(270) 3 3 3(2) 1(0) 2(1) 2 3 1 1 2 3 2 3 1 3 1 2 1 2 3

确定试验方案 在上表中,每一个横行就代表了一个试验条件,共有9个试验条件。等1号试验条件是:加热温度是900C 0(1A ),等温温度是250C 0()1B ,返修次数是2次(3C ),记作为 311C B A ,类似地第2号试验条件是Λ,112C B A ,第9号试验条件是333C B A 。

试验方案的实施 按正交表中的试验条件严格操作。将各次的试验结果记录下并列如下表中。

其中 jk T ——第j 列因素水平)3,2,1(=k k ,3

jk jk T T =——第j 列因素水平k 的

3次试验指标的平均

例 ,6.194.87.55.5)(11=++=负荷T 对因素B ,有硬度25.573/)325.57(23=?=T 。

2.633

1

==∑=k jk j

T S (负荷)——各因素的3个水平的负荷之和 15.5831)(3

1==∑=k jk j T S 硬度——各元素的3个水平平均硬度。

)(负荷j R ={}{}3

13

1min max ≤≤≤≤-k jk jk k T T

j R (硬度)={}{}jk k jk k T T 3

13

1min max ≤≤≤≤-

正交试验结果的分析

1. 直接看:(1)比较9次试验的负荷:抗压负荷最高的试验条件是232C B A ,

即第8号试验,其次是131C B A (第7号试验),1

23C B A (第6号试验),112C B A (第2号试验)。(2)再比较9次试验的硬度是:硬度的高低主要取决于等温温度,加热温度和返修次数对硬度无明明显影响。综合考虑,等2号试验的条件问好。 2. 计算分析;(1)负荷 因素A 平均负荷是C T 01288067.7→= 因素B 平均负荷是27.823=T 因素C 平均负荷是87.731=T

由此分析出132C B A 是最好的试验条件。但这个条件在表中没有出现。 类似 (1)硬度——C AB 1

根据每个因素对试验指标的影响不同,区分出主次。由上表可见 主——————— 次

负荷??

?C

C A

C B 0

08800270次水平因素

硬度???各水平

各水平水平因素

250C

C

A B

用极差大小来区分主次:若某因素的极越大,则该因素对指标的影响就越大。结果可以看出是因素B 。综合平衡考虑:硬度不能低于)(58HRC

在这一条件下高负荷的好水平组合为122C B A 。试验结果的分析很分别的在正交表中进行。 3. 方差分析

这是3元素3水平的无重复试验设计问题。

其效应模型为 是相互独立

各约束条件ijk ijk k k j j i i ijk

k j i ijk N Y εσεγβαεγβαμ),,0(~0,0,023

1

3

1

3

1

--===++++=∑∑∑===

设921,,,Y Y Y Λ表示从第1号试验到第9号试验的试验指标。 具体效应模型表示如下

9

33398232871317612365322542214321332112213111εγβαμεγβαμεγβαμεγβαμεγβαμεγβαμεγβαμεγβαμεγβαμ++++=++++=++++=++++=++++=++++=++++=++++=++++=Y Y Y Y Y Y Y Y Y 检验假设 0

:0:0

:321033210232101=========γγγβββαααH H H

总离差平方()∑∑===-=4

1

9

1

2

j j i i t SS Y Y SS

其中j SS ——第j 列的离差平方和,由于正交表具有均衡分散性和综合可

比性的特点,所以2

91312

9

1)(913133∑∑∑===-=???

? ?

?-=i i i jr r jr

j Y T Y T SS ()????????????????? ??-+++??? ??-+++???

?

?-++=??

? ??-+??? ??-+??? ??-=∑∑∑===29

19632918

522917412

132

1221119139139133]

333[3i i i i i i Y Y Y Y Y Y Y Y Y Y Y Y E Y T

Y T Y T E SS E =()22

322

2123σααα+++ 同理 ()()2232221223σβββ+++=SS E

()()22

322

21323σγγγ+++=SS E ()242σ=SS E

记A SS SS =1——为因素A 的平方和 B SS SS =2——为因素B 的平方和

C SS SS =3——为因素C 的平方和。

4SS ——1C SS

χ

σχσ~),

13(~2

22

1

C C

SS SS -)13(~),

13(~),

19(~22

22

22

---χσχσχσB

A

t

SS SS SS

)13(~22-χσC SS ,)13(~221-χσC SS

当01H 为真时,检验统计量)2,2(~2

/2

/1F SS SS F C A A =

分布;

当02H 为真时,检验统计量)2,2(~2

/2

/1F SS SS F C B B =

分布;

当03H 为真时,检验统计量)2,2(~2

/2

/1F SS SS F C C C =

分布。

若给定显著系性水平α,拒绝域()2,2αF F ≥, 当拒绝01H ,则认为因素A 对试验指标有显著影响; 当拒绝02H ,则认为因素B 对试验指标有显著影响; 当拒绝03H ,则认为因素C 对试验指标有显著影响;

利用正交表进行方差分析时,要确定自由度可以用如下方法。

t SS n f =-=1)总试验组数(总;

正交表每列的自由度

正交表总的自由度1-=该列数字种数列f

即每个因素平方和的自由度1-=该因素水平数因素f 正交表总的自由度=各自由度之和,即∑=列总f f ; 正交表空白列的自由度=误差平方和的自由度。

若无空白列,则将最小的离差平方和作为误差平方和,即 {}j k

j C SS SS ≤≤=1min 1。

将例7的关于抗压负荷的方差列如下表

效应是未知参数,应先求效应估计值,效应估计值大的所对应的水平是好水平。

前面已经分析过因素C A ,对试验指标的影响不显著,可以认为

0,0321321======γγγααα,所以 ()()()()()()3

987232654221

32121333333βμβμβμ+=++=+=++=+=++=Y Y Y E T E Y Y Y E T E Y Y Y E T E 由于Y =μ

? 所以Y T Y T Y T -=-=-=3?,3?,?233222211βββ, 比较3

21?,?,?βββ的大小,只需比较232221,,T T T 的大小,得出 80.2423=T 最大,故因素B 的3水平是好水平。结合直接看和计算分析,

确定好的工艺条件为132C B A

硕士生《数理统计》例题及答案

《数理统计》例题 1.设总体X 的概率密度函数为: 2 2 1)(ββ x e x f -= )0(>β 试用矩法和极大似然法估计其中的未知参数β。 解:(1)矩法 由于EX 为0, πβββββ βββββββ2 00 2 2 2 22 2 1][) ()2 (2) ()2(21 2)(2 2 2 2 2 2 2 2 2 2 = +-=- =- - ===???? ?∞ +-∞+- ∞ +- - ∞ +- ∞ ++∞ ∞ -dx e xe e d x x d xe dx e x dx x f x EX x x x x x πβ2 222 1= -=X E EX DX 令2S DX =得:S π β2 ?= (2)极大似然法 ∑= ==- =- ∏ n i i i x n n i x e e L 1 2 22 2 1 11 1 β ββ β ∑=- -=n i i x n L 1 22 1 ln ln ββ 2 31 ln 2n i i d L n x d βββ==-+∑ 令0ln =β d L d 得∑==n i i x n 1 2 2?β

2. 设总体X 的概率密度函数为: ?? ???<≥--=αα βαββαφx x x x ,0),/)(exp(1 ),;( 其中β>0,现从总体X 中抽取一组样本,其观测值为(2.21,2.23,2.25,2.16,2.14,2.25,2.22,2.12,2.05,2.13)。试分别用矩法和极大似然法估计其未知参数βα和。 解:(1)矩法 经统计得:063.0,176.2==S X β αβαβ φα β α α β ααβ α β α α β α α +=-=+-=-===∞ +-- ∞ +-- ∞ +-- -- ∞ +-- ∞ +∞ +∞-?? ? ?x x x x x e dx e xe e xd dx e x dx x x EX ][) (1 )( ) (222][) (1 222 22 2βαβαβαβ β α α αβ α β α α β α α ++=+=+-=-==--∞ +∞ +-- --∞ +-- ∞ +?? ?EX dx e x e x e d x dx e x EX x x x x 222)(β=-=EX EX DX 令???==2S DX X EX 即???==+2 2S X ββα 故063.0?,116.2?===-=S S X βα (2)极大似然法 ) (1 1 1),;(αβ β α β β βα---- == =∏X n n X n i e e x L i )(ln ln αβ β-- -=X n n L )(ln ,0ln 2αβ βββα-+-=??>=??X n n L n L 因为lnL 是L 的增函数,又12,,,n X X X α≥L 所以05.2?)1(==X α

典型相关分析及其应用实例

摘要 典型相关分析是多元统计分析的一个重要研究课题.它是研究两组变量之间相关的一种统计分析方法,能够有效地揭示两组变量之间的相互线性依赖关系.它借助主成分分析降维的思想,用少数几对综合变量来反映两组变量间的线性相关性质.目前它已经在众多领域的相关分析和预测分析中得到广泛应用. 本文首先描述了典型相关分析的统计思想,定义了总体典型相关变量及典型相关系数,并简要概述了它们的求解思路,然后深入对样本典型相关分析的几种算法做了比较全面的论述.根据典型相关分析的推理,归纳总结了它的一些重要性质并给出了证明,接着推导了典型相关系数的显著性检验.最后通过理论与实例分析两个层面论证了典型相关分析的应用于实际生活中的可行性与优越性. 【关键词】典型相关分析,样本典型相关,性质,实际应用

ABSTRACT The Canonical Correlation Analysis is an important studying topic of the Multivariate Statistical Analysis. It is the statistical analysis method which studies the correlation between two sets of variables. It can work to reveal the mutual line dependence relation availably between two sets of variables. With the help of the thought about the Principal Components, we can use a few comprehensive variables to reflect the linear relationship between two sets of variables. Nowadays It has already been used widely in the correlation analysis and forecasted analysis. This text describes the statistical thought of the Canonical Correlation Analysis firstly, and then defines the total canonical correlation variables and canonical correlation coefficient, and sum up their solution method briefly. After it I go deep into discuss some algorithm of the sample canonical correlation analysis thoroughly. According to the reasoning of the Canonical Correlation Analysis, sum up some of its important properties and give the identification, following it, I infer the significance testing about the canonical correlation coefficient. According to the analysis from the theories and the application, we can achieve the possibility and the superiority from canonical correlation analysis in the real life. 【Key words】Canonical Correlation Analysis,Sample canonical correlation,Character,Practical applications

(完整word版)西安交通大学数理统计研究生试题

2009(上)《数理统计》考试题(A 卷)及参考解答 一、填空题(每小题3分,共15分) 1,设总体X 和Y 相互独立,且都服从正态分布2 (0,3)N ,而12 9(,,)X X X 和 129(,,)Y Y Y 是分别来自X 和Y 的样本,则U = 服从的分布是_______ . 解:(9)t . 2,设1?θ与2?θ都是总体未知参数θ的估计,且1?θ比2?θ有效,则1?θ与2?θ的期望与方差满足_______ . 解:1212 ????()(), ()()E E D D θθθθ=<. 3,“两个总体相等性检验”的方法有_______ 与____ ___. 解:秩和检验、游程总数检验. 4,单因素试验方差分析的数学模型含有的三个基本假定是_______ . 解:正态性、方差齐性、独立性. 5,多元线性回归模型=+Y βX ε中,β的最小二乘估计是?β=_______ . 解:1?-''X Y β= ()X X . 二、单项选择题(每小题3分,共15分) 1,设12(,, ,)(2)n X X X n ≥为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为 样本方差,则____D___ . (A )(0,1)nX N ; (B )22()nS n χ; (C ) (1)()n X t n S -; (D ) 2 122 (1)(1,1)n i i n X F n X =--∑. 2,若总体2(,)X N μσ,其中2σ已知,当置信度1α-保持不变时,如果样本容量 n 增大,则μ的置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能. 3,在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是____C___ . (A )α减小时β也减小; (B )α增大时β也增大;

概率与数理统计典型例题

《概率与数理统计》 第一章 随机事件与概率 典型例题 一、利用概率的性质、事件间的关系和运算律进行求解 1.设,,A B C 为三个事件,且()0.9,()0.97P A B P A B C ==U U U ,则()________.P AB C -= 2.设,A B 为两个任意事件,证明:1|()()()|.4 P AB P A P B -≤ 二、古典概型与几何概型的概率计算 1.袋中有a 个红球,b 个白球,现从袋中每次任取一球,取后不放回,试求第k 次 取到红球的概率.(a a b +) 2.从数字1,2,,9L 中可重复地任取n 次,试求所取的n 个数的乘积能被10整除的 概率.(58419n n n n +--) 3.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太 弱,从而成为不合格品,试求10个部件都是合格品的概率.(19591960 ) 4.掷n 颗骰子,求出现最大的点数为5的概率. 5.(配对问题)某人写了n 封信给不同的n 个人,并在n 个信封上写好了各人的地址,现在每个信封里随意地塞进一封信,试求至少有一封信放对了信封的概率. (01(1)! n k k k =-∑)

6.在线段AD上任取两点,B C,在,B C处折断而得三条线段,求“这三条线段能构成三角形”的概率.(0.25) 7.从(0,1)中任取两个数,试求这两个数之和小于1,且其积小于 3 16 的概率. (13 ln3 416 +) 三、事件独立性 1.设事件A与B独立,且两个事件仅发生一个的概率都是 3 16 ,试求() P A. 2.甲、乙两人轮流投篮,甲先投,且甲每轮只投一次,而乙每轮可投两次,先投 中者为胜.已知甲、乙每次投篮的命中率分别为p和1 3 .(1)求甲取胜的概率; (2)p求何值时,甲、乙两人的胜负概率相同?( 95 ; 5414 p p p = + ) 四、条件概率与积事件概率的计算 1.已知10件产品中有2件次品,现从中取产品两次,每次取一件,去后不放回,求下列事件的概率:(1)两次均取到正品;(2)在第一次取到正品的条件下第二次取到正品;(3)第二次取到正品;(4)两次中恰有一次取到正品;(5)两次中 至少有一次取到正品.(28741644 ;;;; 45954545 ) 2.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的数字不再重复,试求下列事件的概率:(1)拨号不超过3次而接通电话;(2)第3次拨号才接通电话.(0.3;0.1) 五、全概率公式和贝叶斯公式概型 1.假设有两箱同种零件:第一箱内装50件,其中10件为一等品;第二箱内装30件,其中18件为一等品,现从两箱中随意挑选出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率;(2)在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品 的概率.(2690 ; 51421 ) 2.有100个零件,其中90个一等品,10个二等品,随机地取2个,安装在一台设备上,若2个零件中有i个(0,1,2 i=)二等品,则该设备的使用寿命服从参

数理统计试卷

广西大学研究生课程考试试卷 ( 2013 —2014 学年度第一学期) 课程名称: 数理统计 试卷类型:( B ) 命题教师签名: 教研室主任签名: 主管院长签名: 装订线(答题不得超过此线) 一、单项选择题(本大题共5小题,每小题2分,共10分) 1. 设随机变量2 1 ),1)((~X Y n n t X =>,则 【 】 ① )(~ 2n Y χ. ② )1(~2-n Y χ. ③ )1,(~n F Y . ④ ),1(~n F Y . 2. 假设母体X 正态分布),(2σμN ,对μ作区间估计,得95%的置信区间,其意 义是指这个区间 【 】 ① 平均含母体95%的值 ② 平均含子样95%的值 ③ 有95%的机会含μ的值 ④ 有95%的机会含子样值 3. 测定某种溶液中的水分,由它的9个测定值,计算出子样均值和子样方差%452.0=x , %037.0=s ,母体服从正态分布,在α=0.05下,正面提出的检验假设被接受的是 【 】 ① 0H :%05.0=μ ② 0H :%03.0=μ ③ 0H :%5.0=μ ④ 0H :%03.0=σ

4.在方差分析中,进行两两均值比较的前提是 【 】 ① 拒绝原假设 ② 不否定原假设 ③ 各样本均值相等 ④ 各样本均值无显著差异 5.一元线性回归分析,误差项ε的方差2 σ的矩估计是 【 】 ① ∑=-n i i i y y n 12 )?(1 ② ∑=--n i i i y y n 1 2)?(11 ③ ∑=--n i i i y y n 1 2)?(21 ④ ∑=-n i i i y y 1 2)?( 二、填空题 (本大题共5小题,每小题3分,共15分) 1.设母体X 服从正态分布)2,0(2N ,而1521,,,X X X 是来自母体X 的简单随机样本, 则随机变量) (22 152112 10 21X X X X Y +++=服从 分布,参数为 . 2.如果,?1θ2?θ都是母体未知参数θ的估计量,称1?θ比2 ?θ有效,则满足 。 3.设母体)2,(~2 μN X ,1621,,,X X X 来自X ,考虑假设0H :0=μ,则选择的检验 统计量为X 2,此统计量为)1,0(N 的条件是 。 4.单因素分析中,平方和∑∑==-= r i n j i ij E i x x Q 11 2)(描述了 。 5.在线性回归直线方程为x a y 4??+=,而3=x ,6=y ,则=a ? 。 三、计算题 (本大题共6小题,共55分) 1.设母体X 的设总体X 的概率密度为?? ???=--0),(1a x a e ax x f λλλ 00≤>x x , 其中λ>0是未知参数,a >0为已知常数,试根据来自母体X 的简单随机样本X X n 1, ,求λ的最大似然估计量λ^ .

数理统计复习题第五章

第五章 大数定律与中心极限定理 一、 典型题解 例1设随机变量X 的数学期望()(){}2,3E X u D X X u σσ==-≥方差,求P 的大小区间。 解 令3εσ=,则有切比雪夫不等式有: ()() ()22 221 ,339D X P X E X P X E X σεσεσ????-≥≤ -≥≤=????有 例2在n 次独立试验中,设事件A 在第i 次试验中发生的概率为()1,2,....i p i n = 试证明:A 发生的频率稳定于概率的平均值。 证 设X 表示n 次试验中A 发生的次数,引入新的随机变量0i A X A ?=??1,发生? ,不发生 ()12,...i n =, ,则X 服从()01-分布,故 ()()(),1i i i i i i i E X p D X p p p q ==-=, 又因为 () ()2 2 4140i i i i i i i i p q p q p q p q -=+-=-≥, 所以 ()()1 1,2, (4) i i i D X p q i n =≤ = 由切比雪夫大数定理,对,o ε?>有()11lim 1n i i n i p X E X n ε→∞ =?? -<=???????? ∑ 即 11lim 1n i n i X p p n n ε→∞ =?? -<=???? ∑ 例 3 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学 生无家长,1名家长、2名家长来参加会议的概率分别为。若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布。(1)求参加会议的家长数X 超过450的概率;(2)求有1名家长来参加会议的学生数不多于340的概率。 解(1)以()400,,2,1 =k X k 记第k 个学生来参加会议的家长数,则k X 的分布律为 k X 0 1 2 k P 0.05 0.8 0.15

最新重庆大学研究生数理统计期末考试题

涉及到的有关分位数: ()()()()()()()()()()()()2 0.950.950.950.9750.9750.9752222220.9750.0250.0250.9750.950.97520.95 1.645,16 1.746,15 1.753,16 2.12,15 2.131,1628.851527.49,16 6.91,15 6.26,1 5.02,1 3.84,27.382 5.99 u t t t t χχχχχχχχ============= 一、设123,,X X X 是来自总体~(0,3)X N 的样本。记()2 332 i 11 11,32i i i X X S X X ====-∑∑, 试确定下列统计量的分布: (1)3113i i X =∑;(2)2 3119i i X =?? ???∑;(3)() 2 31 13i i X X =-∑;(4 X 解:(1)由抽样分布定理,3 1 1~(0,1)3i i X X N ==∑ (2)因311~(0,1)3i i X N =∑,故2 2 332 1111~(1)39i i i i X X χ==????= ? ????? ∑∑ (3)由抽样分布定理, ()() () 2 2 23 3 21 1 31211~(2)3 323i i i i S X X X X χ==-=?-=-∑∑ (4)因()222~(0,1), ~23 X N S χ,X 与2S ()~2X t 。 二、在某个电视节目的收视率调查中,随机调查了1000人,有633人收看了该节目,试根 据调查结果,解答下列问题: (1)用矩估计法给出该节目收视率的估计量; (2)求出该节目收视率的最大似然估计量,并求出估计值; (3)判断该节目收视率的最大似然估计是否是无偏估计; (4)判断该节目收视率的最大似然估计是否是有效估计。 解:总体X 为调查任一人时是否收看,记为~(1,)X B p ,其中p 为收视率 (1)因EX p =,而^ E X X =,故收视率的矩估计量为^ X p = (2)总体X 的概率分布为() 1()1,0,1x x f x p p x -=-= 11 11 ()(1)(1) (1)ln ()ln (1)ln(1)ln ()(1) 01n n i i i i i i n x n x x x n X n n X i L p p p p p p p L p nX p n X p d L p nX n X dp p p ==- --=∑∑=-=-=-=+---=-=-∏

数理统计复习题第八章

第七章 假设检验 三、典型题解 例1:某车间用一台包装机包装葡萄糖, 包得的袋装糖重是一个随机变量, 它服从正态分布.当机器正常时, 其均值为0.5千克, 标准差为0.015千克.某日开工后为检验包装机是否正常, 随机地抽取它所包装的糖9袋, 称得净重为(千克): 0.498 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常? 解: 根据样本值判断5.05.0≠=μμ还是.提出两个对立假设 0100:5.0:μμμμ≠==H H 和 选择统计量:)1,0(~/0 N n X Z σμ-= 取定0.05a =,则/20.025 1.96,z z a ==又已知 9, 0.015, n s ==由样本计算得0.511x =, 2.2 1.96=>,于是拒绝假设 0H , 认为包装机工作不正常. 例2:某工厂生产的固体燃料推进器的燃烧率服从正态分布),(2 σμN , s cm s cm /2,/40==σμ,现用新方法生产了一批推进器,从中随机取25n =只,测得燃 烧率的样本均值为s cm x /25.41=.设在新方法下总体均方差仍为s cm /2,问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显著的提高?(取显著性水平05.0=α) 解:根据题意需要检验假设 00 :40H m m ?(即假设新方法没有提高了燃烧率), 10 :H m m >(即假设新方法提高了燃烧率), 这是右边检验问题,拒绝域为 0.05 1.645x z z = ?,由 3.125 1.645 x z = =>可得z 值落到拒绝域中故在显著性水平0.05 a =下拒绝0 H . 即认为这批推进器的燃烧率较以往有显著提高. 例3:某切割机在正常工作时, 切割每段金属棒的平均长度为10.5cm, 标准差是0.15cm, 今

典型相关分析SPSS例析

典型相关分析 典型相关分析(Canonical correlation )又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,而不是两个变量组个别变量之间的相关。 典型相关与主成分相关有类似,不过主成分考虑的是一组变量,而典型相关考虑的是两组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的成分使之与另一组的成分具有最大的线性关系。 典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共线性。典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因变量。 典型相关会找出一组变量的线性组合**=i i j j X a x Y b y =∑∑与 ,称 为典型变量;以使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。i a 和j b 称为典型系数。如果对变量进 行标准化后再进行上述操作,得到的是标准化的典型系数。 典型变量的性质 每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;原来所有变量的总方差通过典型变量而成为几个相互独立的维度。一个典型相关系数只是两个典型变量之间的相关,不能代

表两个变量组的相关;各对典型变量构成的多维典型相关,共同代表两组变量间的整体相关。 典型负荷系数和交叉负荷系数 典型负荷系数也称结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数,交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关,两者有很大区别。 重叠指数 如果一组变量的部分方差可以又另一个变量的方差来解释和预测,就可以说这部分方差与另一个变量的方差之间相重叠,或可由另一变量所解释。将重叠应用到典型相关时,只要简单地将典型相关系数平方(2 CR),就得到这对典型变量方差的共同比例,代表一个典型变量的方差可有另一个典型变量解释的比例,如果将此比例再乘以典型变量所能解释的本组变量总方差的比例,得到的就是一组变量的方差所能够被另一组变量的典型变量所能解释的比例,即为重叠系数。 例1:CRM(Customer Relationship Management)即客户关系管理案例,有三组变量,分别是公司规模变量两个(资本额,销售额),六个CRM实施程度变量(WEB网站,电子邮件,客服中心,DM 快讯广告Direct mail缩写,无线上网,简讯服务),三个CRM绩效维度(行销绩效,销售绩效,服务绩效)。试对三组变量做典型相关分析。

2017年广东财经大学807概率论与数理统计硕士学位研究生入学考试试卷

欢迎报考广东财经大学硕士研究生,祝你考试成功!(第 1 页 共 3 页) 1广东财经大学硕士研究生入学考试试卷 考试年度:2017年 考试科目代码及名称:807-概率论与数理统计(自命题) 适用专业:071400 统计学 [友情提醒:请在考点提供的专用答题纸上答题,答在本卷或草稿纸上无效!] 一、填空题(10题,每题2分,共20分) 1. 已知P (A )=a , P (B )=b , P (A +B )=c ,则P ()= 。AB 2. 设有10个零件,其中3个是次品,任取2个,2个中至少有1个是正品的概率为 。 3. 如果每次实验的成功率都是p ,并且已知在三次独立重复试验中至少成功一次的概率为26/27,则p = 。 4. 设连续型随机变量X 的分布函数为,则当时,X 的概率密度? ??≤>-=-0,00,1)(3x x e x F x 0>x 。 =)(x p 5. 设二维随机变量(X , Y )的概率密度函数为 ()()2 03,01,0 c x y x y p x y ?+<<<

昆明理工大学2007级硕士研究生数理统计考题

2007硕士研究生《数理统计》考题 题中可能涉及的值:645.105.0=z ,1824.3)3(025.0=t ,3534.2)3(05.0=t ,5706.2)5(025.0=t , 7459.1)16(05.0=t ,44.3)8,8(05.0=F ,)2(205.0χ=5.991,)3(205.0χ=7.815 一.填空题(每题3分,共36分) 1.向某一目标发射炮弹,设炮弹的弹着点到目标的距离为R 单位 , R 服从瑞利分布,其概率 密度为?? ???≤>=-0,00,252)(25/2r r e r r f r R ,若弹着点离目标不超过5个单位时,目标被摧毁。则(1) 发射一发炮弹能摧毁目标的概率为_______(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.95, 则最少需要发射的炮弹数为________枚。 2.已知3,2,1,=i X i ,相互独立,且i X D i /1)(=,若 ∑==311i i a , ∑==31i i i X a Y ,要使)(Y D 达到最大,则1a =_________;2a =__________. 3.设总体)1,0(~N X ,161,,X X 是其一简单随机样本,2 S 为样本方差))((22σ=S E , 则)(2S D =________; ~ (2162) 1X X ++________;~/1516221∑=i i X X ___________. 4.某批电子元件的寿命服从均值为θ的指数分布,现从中抽取n 个元件在0=t 时同时投入寿命实验,截止时刻为T ,且已知到T 为止共有r 个元件损坏。(1)若此r 个元件具体损坏时刻未知,则θ的最大似然估计为__________;(2)若此r 个元件具体损坏时刻分别为r t t t ≤≤≤ 21,则θ的最大似然估计为__________. 5.对于具有s 个水平的单因素A 实验方差分析(水平i A 对应的总体为),(2σμi N , (i=1,2,…,s ),现取样,设各水平下的样本容量之和为n,以T E A S S S ,,分别表示因素A 的效 应平方和、误差平方和、总偏差平方和,则(1)T E A S S S ,,之间的关系是___________; (2)在s μμ==...1成立的条下,~) /()1/(s n S s S E A --___________;(3)在显著性水平α下,假 设“s H μμ==...:10,s H μμ,...,:11不全相等”的拒绝域形式是_________ 二.(10分)已知甲乙两地新生婴儿身高都是服从正态分布的随机变量,分别以X ,Y 表示,假设),(~),,(~2 221σμσμN Y N X (参数均未知),且相互独立,现从两总体中分别取样,容量均为9,样本值分别为46,47,…,54和51,52,…,59.(1)求21μμ-的置信水平

2014级硕士研究生数理统计试卷A

昆明理工大学2014级硕士研究生 《数理统计》试卷A 满分100分 考试时间:2小时30分钟 学院:____专业:____学号:____姓名:____ 一、填空题(每空4分,共40分) 1. 设总体12,,,n X X X 是来自于正态总体2~(,)X N μσ的样本,2S 是样本方差,则2()D S = (2b^4)/(n-1) . 2. 11,,,m m m n X X X X ++ 为来自正态总体2~(0,)X N σ的样本,则统计量 m i X 服从 分布,自由度为 . 3. 设总体X 具有如下分布律, , 已知取得样本值为 1231,2,1x x x ===,则θ的矩估计值为 . 4. 设n X X X ,,,21 是来自正态总体2~(,)X N μσ的简单随机样本,2,μσ均未知,记 21 1 1, ()n n i i i i X X Q X X n ====-∑∑,则假设0:0H μ=的T 检验应使用的检验统计量 为 . 5. 设n X X X ,,,21 和12,,,m Y Y Y 是分别来自于正态总体(,1)N μ和2(,2)N μ的两个样本,μ的一个无偏估计具有形式1 1 n m i j i j T a X b Y ===+∑∑,则a 和b 应满足条 件 ;当a =_________,b =__________时,T 最有效. 6. 正交表)2(78L 中,其中数字“2” 表示 , 数字“7”表示 . 22123 2(1)(1) k X θθθθ--p

二、(10分)某电子元件寿命(以小时计)T 服从双参数的指数分布,其概率密 度函数为(c)/1()0 t e t c f t θ θ--?≥?=???其他,其中,c θ(0,0c θ>>)为未知参数,自一批 这种元件中随机的取n 件进行寿命试验,设它们的失效时间依次为12n x x x ≤≤ ,求参数,c θ的最大似然估计。 三、(10分)根据某市公路交通部门一年中前6个月的交通事故记录统计得一周 中周一至周日发生交通事故的次数如下,问交通事故的发生是否与周几无 关? (222 10.0510.050.050.05,(6)12.59,(7)14.07,(6) 1.64,αχχχ--====) 四、(15分)在钢线炭含量对电阻的效应的研究中,得到如下数据: (1) 求出回归方程y a bx =+ ;(2)求2σ的估计;(3)检验回归系数的显著; (4)若回归效果显著,求参数b 的水平为0.95的置信区间。 (05.0=α,0.975(5) 2.5706t =,0.95(1,5) 6.61F =)。解题过程中所用的中间数据: 7 1 3.8i i x ==∑,71 145.4i i y ==∑,72 1 2.595i i x ==∑,72 1 3104.2i i y ==∑,7 1 85.61i i i x y ==∑ 五、(10分)一药厂生产一种新的止痛药,厂方希望验证服用新药后至开始起作 用的时间间隔较原来的止痛药至少缩短一半,因此厂方提出如下假设检 验:012112:2, :2H H μμμμ≤>。其中12,μμ分别是服用原止痛药和服用新止痛 药后至起作用的时间间隔的总体均值,设两总体均为正态总体且方差已知,分别 为21σ和22σ,现分别从两总体中抽取样本112,,,n X X X 和212,,,n Y Y Y 且两样本独 %0.100.300.400.550.700.800.951518192122.623.8 26 碳含量 x ()电阻 y 1234567 36232931346025星期次数

数理统计典型例题分析

典型例题分析 例1.分别从方差为20和35的正态总抽取容量为8和10的两个样本,求第一个样本方差是第二个样本方差两倍的概率的范围。 解 以21 S 和22 S 分别表示两个(修正)样本方差。由22 22 12σσy x S S F =知统计量 22 2 1222175.13520S S S S F == 服从F 分布,自由度为(7,9)。 1) 事件{}2 2 212S S =的概率 {}{}05.32035235 20222221222122 2 1 ===??? ????==??????===F P S S P S S P S S P 因为F 是连续型随机变量,而任何连续型随机变量取任一给定值的概率都等于0。 2) 现在我们求事件{}二样本方差两倍第一样本方差不小于第=A 的概率: {} {}5.322 221≥=≥=F P S S P p 。 由附表可见,自由度9,721==f f 的F 分布水平α上侧分位数),(21f f F α有如下数值: )9,7(20.45.329.3)9,7(025.005.0F F =<<=。 由此可见,事件A 的概率p 介于0.025与0.05之间;05.0025.0<

解 由随机变量2χ分布知,随机变量σ/12S n )(-服从2χ分布,自由度 1-=n v ,于是,有 {}{}95.0)1(5.1)1(5.1)1(2,05.0222 2=≤≥-≤=? ?????-≤-=v v v P n P n S n P χχχσ 其中2v χ表示自由度1-=n v 的2χ分布随机变量,2 ,05.0v χ是自由度为1-=n v 的水 平05.0=α的2χ分布上侧分位数(见附表)。我们欲求满足 2,05.015.1v n χ≥-)( 的最小1+=v n 值,由附表可见 2 26,05.0885.3839)127(5.1χ=>=-, 22505.0652.375.401265.1,)(χ=<=-。 于是,所求27=n 。 例3.假设随机变量X 在区间[]1,+θθ上有均匀分布,其中θ未知: )(1n X X ,, 是来自X 的简单随机样本,X 是样本的均值,{} n X X X ,,min 1)1( =是最小观察值。证明 21?1-=X θ 和 11?12+-=n X ) (θ 都是θ的无偏估计量。 解 由X 在[]1,+θθ上均匀分布,知2/)12(+==θEX EX i 。 1) 由 θθθθ=-+=-+=-=∑∑==2 121212221211?111n i n i i n EX n E , 可见1?θ是θ的无偏估计量。 2) 为证明2?θ是θ的无偏估计。我们先求统计量)1(X 的概率分布。

SPSS典型相关分析及结果解释

SPSS典型相关分析及结果解释 SPSS 11.0 - 23.0 典型相关分析 1方法简介 如果要研究一个变量和一组变量间的相关,则可以使用多元线性回归,方程的复相关系数就是我们要的东西,同时偏相关系数还可以描述固定其他因素时某个自变量和应变量间的关系。但如果要研究两组变量的相关关系时,这些统计方法就无能为力了。比如要研究居民生活环境与健康状况的关系,生活环境和健康状况都有一大堆变量,如何来做?难道说做出两两相关系数?显然并不现实,我们需要寻找到更加综合,更具有代表性的指标,典型相关(Canonical Correlation)分析就可以解决这个问题。 典型相关分析方法由Hotelling提出,他的基本思想和主成分分析非常相似,也是降维。即根据变量间的相关关系,寻找一个或少数几个综合变量(实际观察变量的线性组合)对来替代原变量,从而将二组变量的关系集中到少数几对综合变量的关系上,提取时要求第一对综合变量间的相关性最大,第二对次之,依此类推。这些综合变量被称为典型变量,或典则变量,第1对典型变量间的相关系数则被称为第1典型相关系数。一般来说,只需要提取1~2对典型变量即可较为充分的概括样本信息。 可以证明,当两个变量组均只有一个变量时,典型相关系数即为简单相关系数;当一组变量只有一个变量时,典型相关系数即为复相关系数。故可以认为典型相关系 1

数是简单相关系数、复相关系数的推广,或者说简单相关系数、复相关系数是典型相关系数的特例。 2引例及语法说明 在SPSS中可以有两种方法来拟合典型相关分析,第一种是采用Manova过程来拟合,第二种是采用专门提供的宏程序来拟合,第二种方法在使用上非常简单,而输出的结果又非常详细,因此这里只对它进行介绍。该程序名为Canonical correlation.sps,就放在SPSS的安装路径之中,调用方式如下: INCLUDE 'SPSS所在路径\Canonical correlation.sps'. CANCORR SET1=第一组变量的列表 /SET2=第二组变量的列表. 在程序中首先应当使用include命令读入典型相关分析的宏程序,然后使用cancorr名称调用,注意最后的“.”表示整个语句结束,不能遗漏。 这里的分析实例来自曹素华教授所著《实用医学多因素统计分析方法》第176页:为了研究兄长的头型与弟弟的头型间的关系,研究者随机抽查了25个家庭的两兄弟的头长和头宽,数据见文件canonical lianxiti.sav,希望求得两组变量的典型变量及典型相关系数。显然,代表兄长头形的变量为第一组变量,代表弟弟头形的变量为第二组变量,这里希望求得的是两组变量间的相关性,在语法窗口中键入的程序如下: INCLUDE 'D:\SpssWin\Canonical correlation.sps'. 请使用时改为各自相应的安装目录 CANCORR SET1=long1 width1 列出第一组变量 2

研究生数理统计第三章习题答案

习 题 三 1.正常情况下,某炼铁炉的铁水含碳量( )2 4.55,0.108 X N .现在测试了5炉铁水,其含 碳量分别为4.28,4.40,4.42,4.35,4.37.如果方差没有改变,问总体的均值有无显著变化?如果均值没有改变,问总体方差是否有显著变化()0.05α=? 解 由题意知,()2 4.55,0.108X N ,5n =,5 1 1 4.3645i i x x ===∑,0.05α=, ()52 2 01 10.095265i i s x μ==-=∑. 1)当00.108σ=已知时, ①设统计假设0010: 4.55,: 4.55H H μμμμ==≠=. ②当0.05α=时,0.97512 1.96u u α - ==,临界值12 0.108 1.960.09475 c u n ασ - = = ?=, 拒绝域为000{}{0.0947}K x c x μμ=->=->. ③004.364 4.550.186x K μ-=-=∈,所以拒绝0H ,接受1H ,即认为当方差没有改变时,总体的均值有显著变化. 2)当0 4.55μ=已知时, ①设统计假设2 2 2 2 2 2 0010:0.108,:0.108H H σσσσ==≠=. ②当0.05α=时,临界值 ()()()()222210.02520.975122 111150.1662,5 2.566655c n c n n n ααχχχχ-= =====, 拒绝域为2 2 2 2 0212 2 2 2 0000{ }{ 2.56660.1662}s s s s K c c σσσσ=><=><或 或 . ③ 2 02 2 00.09526 8.16700.108 s K σ= =∈,所以拒绝0H ,接受1H ,即均值没有改变时,总体方差有显著变化. 2.一种电子元件,要求其寿命不得低于1000h .现抽取25件,得其均值950x h =.已知该种元件寿命( )2 ,100 X N μ ,问这批元件是否合格()0.05α=?

广西大学数理统计试卷2004-2005

广西大学研究生课程考试试卷 2004 --- 2005 学年度第二学期 课程名称:数理统计试卷类型:A 卷 命题教师签名:院长(系主任)签名: 注:考试过程不允许将试卷拆开! 一、填空题(本大题共6小题,每小题3分,共18分) 1、假设子样 9 2 1 , , ,X X X 来自正态母体) 81 .0, (μ N,测得样本均值5 = x, 则μ的置信度是95 .0的置信区间为。(96 .1 025 .0 = u) 2、假设子样 n X X X, , , 2 1 来自正态母体) , (2 σ μ N,μ与2σ未知,计算得75 . 14 16 116 1 = ∑ =i i X,则原假设 H:15 = μ的t检验选用的统计量为。3、 某产品以往废品率为5%,今抽取一个子样检验这批产品废品率是否低于5%, 此问题的原假设为。 6、设 n X X X , , 2 1 为母体X的一个子样,如果) , , ( 2 1n X X X g ,则称) , , ( 2 1n X X X g 为统计量。

二、选择题(本大题共6小题,每小题2分,共12分) 1、母体均值的区间估计中,正确的是 ( ① ) ① 置信度α-1一定时,样本容量增加,则置信区间长度变短 ② 置信度α-1一定时,样本容量增加,则置信区间长度变长 ③ 置信度α-1增大,则置信区间长度变短 ④ 置信度α-1减少,则置信区间长度变短 2、对于给定的正数α,10<<α,设αz 是标准正态分布的α上侧分位数,则有( ④ ) ① αα-=<1)(2 u U P ② αα=<)|(|2 u U P ③ αα-=>1)(2 u U P ④ αα=>)|(|2 u U P 3、设n x x x ,,,21 为来自),(~2 σμN X 的子样观察值,2 ,σμ未知,∑==n i i x n x 1 1 则2 σ的矩估计值为 ( ② ) ① ∑=-n i i x x n 12)(1② ∑=-n i i x x n 1)(1 ③ ∑=--n i i x x n 12)(11 ④∑=--n i i x x n 1 )(11 4、在假设检验中,记0H 为原假设,则犯第二类错误是( ③) ① 0H 成立而接受0H ② 0H 成立而拒绝0H ③ 0H 不成立而接受0H ④ 0H 不成立而拒绝0H 5、假设母体X 的数学期望μ的置信度是95.0,置信区间上下限分别为样本函数 ),(1n X X b 与 ),,(1n X X a ,则该区间的意义是( ① ) ① 95.0)(=<

相关文档
最新文档