超几何分布教案

超几何分布教案
超几何分布教案

丰润区第二中学高二年级数学人教版选修2-3导学案

游戏,在一个口袋中装有

高三数学一轮复习学案概率统计

高三数学一轮复习学案概率统计 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然咨询题的方法, 在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用咨询题取材的范畴,概率的运算、离散型随机变量的分布列和数学期望的运算及应用差不多上考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式显现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识不等知识为主的综合题,以考生比较熟悉的实际应用咨询题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识不及概率运算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必定思想的运用. 由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和差不多方法.该部分在高考试卷中,一样是2—3个小题和一个解答题.【考点透析】概率统计的考点要紧有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估量,正态分布,线性回来等.【例题解析】 题型1 抽样方法 【例1】在1000个有机会中奖的号码〔编号为000999-〕中,在公证部门监督下按照 随机抽取的方法确定后两位数为的号码为中奖号码,该抽样运用的抽样方法是 〔 〕A .简单随机抽样 B .系统抽样 C . 分层抽样 D .以上均不对 分析:实际〝间隔距离相等〞的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288, 388,488,588,688,788,888,988.答案B . 点评:关于系统抽样要注意如下几个咨询题:〔1〕系统抽样是将总体分成均衡几个部 分,然按照预先定出的规那么从每一部分抽取一个个体,得到所需要的样本的一种抽样 方法.〔2〕 系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一 段中用简单随机抽样确定起始的个体编号;④按事先研究的规那么抽取样本.〔3〕适用范畴:个体数较多的总体. 例2〔2018年高考广东卷理3〕某校共有学生2000名,各年级男、女生人数如表.在 全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校 抽取64名学生,那么应在三年级抽取的学生人数为〔 〕 A .24 B .18 C .16 D .12 分析:依照给出的概领先求出x 的值,如此就能够明白三年级的学生人数,咨询题就解决了.占全校学生总数的19%, 解析:C 二年级女生即20000.19380x =?=,如此一年级和二年级学生的总数是 3733773803701500+++=,三年级学生有500人,用分层抽样抽取的三年级学生 一年级 二年级 三年级 女 生 373 x y 男生 377 370 z

超几何分布与二项分布的联系与区别

在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型,并能运用两模型解决一些实际问题。然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布,学生对这两模型的定义不能很好的理解,一遇到含“取”或“摸”的题型,就认为是超几何分布,不加分析,随便滥用公式。事实上,超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量X的分布列为 ,其中,则称X服从超几何分 布,记为。其概率分布表为: 对于二项分布的定义是这样的:若随机变量X的分布列为 ,其中则称X服从参数为n,p的二项分布,记为。其概率分布表为: 超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量 X的取值都从0连续变化到l,对应概率和N,n,l三个值密切相关……可见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。 如在2.2节有这样一个例题:高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球、20个白球,这些球除颜色外完全相同,一次从中摸出5个球,摸到4个红球

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

二项分布与超几何分布 专题训练

超几何分布与二项分布的区别 [知识点]关键是判断超几何分布与二项分布 判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含 有两种不同的事物()A M 个、 ()B N M -个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分 布列()k n k M N M n N C C P X k C --==(0,1,2,,k m =)进行处理就可以了. 二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生的概率都是同一常数p ,事件A 发生的概率为1p -. 1、某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为2 3.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率; (Ⅱ) 随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.

2、第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”, 且只有“女高个子”才担任“礼仪小姐”. (Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人, 再从这5人中选2人,那么至少有一人是“高个子”的概率是多少? (Ⅱ)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担 任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期

超几何分布和二项分布的区别

关于超几何分布和二项分布的小题 超几何分布:在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=k 则P(X=k) 此时我们称随机变量X 服从超几何分布(hypergeometric distribution ) 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n 上述超几何分布记作X~H(n ,M ,N)。 二项分布:二项分布(Binomial Distribution ),即重复n 次的伯努力试验(Bernoulli Experiment ), 用ξ表示随机试验的结果. 如果事件发生的概率是P,则不发生的概率q=1-p ,N 次独立重 复试验中发生k 次的概率是k n k k n q p k P C -= =)(ξ 上述二项分布记作),(~p n B ξ 下面我通过几个例子说明一下两者的区别 【例1】某人参加一次英语考试,已知在备选题的10道试题中能答出其中的4道题,规定每次考试从备选题中随机抽取3题进行测试,求答对题数ξ的分布列 解:由题意得0=ξ,1,2,3.ξ服从参数为10=N ,4=M ,3=n 的超几何分布. 6112020)0(3 103 6 === =C C P ξ 2112060)1(3 10 2 6 14==?==C C C P ξ 10312036)2(3 10 1 624 ==?==C C C P ξ 3011204)3(3 10 3 4=== =C C P ξ 故ξ的分布列 把事件发生的概率看做是。 【例2】甲乙两人玩秒表游戏,按开始键,然后随机按暂停键,观察秒表最后一位数,若出现0,1,2,3则甲赢,若最后一位出现6,7,8,9则乙赢,若最后一位出现4,5是平局.玩三次,记甲赢的次数为变量X ,求X 的分布列 解:由题意得:0=X ,1,2,3 216.06 .0)0(3 3 == =C X P 432.04.06.0)1(21 3=??==C X P 288.04.06.0)2(22 3=??==C X P 064.04.0)3(33 3===C X P 故X 的分布列

二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均 为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ???? ==?= ? ????? ∴; 12 13 1448(1)55125 P X C ???? ==?= ? ?????; 21 231412(2)55125P X C ???? ==?= ? ?????; 3 33 141(3)55125 P X C ???? ==?= ? ?????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101 (2)15 C C P Y C ===. 因此,Y 的分布列为 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 超几何分布和二项分布都是离散型分布 超几何分布和二项分布的区别:

随机变量及其分布列经典例题教程文件

随机变量及其分布列 经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表: 为离散型随机变量X P (X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *. 三.二项分布 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发

超几何分布与二项分布学案

超几何分布与二项分布 学习目标: 1、掌握超几何分布和二项分布的概念; 2、通过典例,学生能运用核心文字提取的方法准确破解超几何分布和二项分布; 3、熟记两种分布的期望公式,理解它们之间的关系。 学习重点:超几何分布和二项分布的区别。 学习难点:超几何分布和二项分布的数学期望之间的关系。 一.知识梳理 1.超几何分布 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件?X=k?发生的概率为:P(X=k)= ,k= 0,1,2,3,??,m;其中,m = min?M,n?,且n≤N , M≤ N 2.二项分布 在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为: P(X=k)= (k=0,1,2,3,?,n),此时称随机变量X服从二项分布. 记作: 3.“二项分布”与“超几何分布”所满足的条件 (1)“二项分布”所满足的条件 每次试验中,事件发生的概率是的;是一种抽样. 各次试验中的事件是;●每次试验只有两种结果,事件要么,要么;?随机变量是这n次独立重复试验中事件发生的 . (2)“超几何分布”的本质:在每次试验中某一事件发生的概率,是抽样, 二.典例分析(小组交流、展示结果) 例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 例2、某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.

超几何分布和二项分布的联系和区别精编版

超几何分布和二项分布的联系和区别 开滦一中 张智民 在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢? 好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释. 诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的 教材中的定义: (一)超几何分布的定义 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k) =n N k -n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布 (二)独立重复试验和二项分布的定义 1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则 P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率 为P,则P(X=k)=k n k p p --)1(C k n (k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。 1.本质区别 (1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题; (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题 2.计算公式 超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计) 教学目标 知识与技能: 理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。 过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。 情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。 教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 教学难点:二项分布模型的构建。 教学过程: 一、复习回顾: 1、条件概率:在事件A 发生的条件下,事件B 发生的 条件概率:()(|)() P AB P B A P A

2、事件的相互独立性:事件A 与事件B 相互独立,则: P ( AB ) = P ( A ) P ( B ) , 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立 二、创设情景,新课引入: 三个臭皮匠顶个诸葛亮的故事 已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.6,老二为0.6,老三为0.6,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为 三、师生互动,新课讲解: 1、分析下面的试验,它们有什么共同特点? (1)投掷一个骰子投掷5次; (2)某人射击1次,击中目标的概率是0.8,他射击10次; (3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛); (4)抛硬币实验。 在研究随机现象时,经常需要在相同的条件下重复 1()10.40.40.40.9360.8 P A B C -??=-??=>

超几何分布与二项分布的区别与联系

二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。 一、超几何分布与二项分布的定义 1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为 P (X=k)= C M k C n-m n-k C N ,k=0,1,2,…,m 其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。其分布列为超几何分布列。如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。 2.一般地,在相同条件下重复做的n 次试验称为n 次 独立重复试验。在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 P (X=k)=C n k P k (1-p ) n-k ,k=0,1,2,…,n 。此时 称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。 二、超几何分布与二项分布的区别 从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。实质上,超几何分布是古典概型的一种特例。二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。这就是二者之间的区别。本文笔者举例说明: 例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。 解:(1)是不放回地抽取,X 服从超几何分布。从10个球中任取2球的结果数为C 102 ,从10个球中任取2 个,其中恰有k 个黑球的结果数为C 4k C 62-k ,那么从10个球中任取2个,其中恰有k 个黑球的概率为 P (X=k )= C 4k C 62-k C 10 2 ,k=0,1,2。 所以随机变量X 的分布列是 (2)是有放回地抽取,每次抽到黑球的概率相同,X ~B (2,0.4)。那么从10个球中任取2个,其中恰有k 个黑球的概率为 P (X=k )=C 2K ·0.4K ·0.62-K ,k=0,1,2。所以随机变量X 的分布列是 三、超几何分布与二项分布的联系 例2某批n 件产品的次品率为2%,现从中任意地抽出3件进行检验。问:当n=500,5000,50000时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率各是多少? 解:(1)当有放回地抽取时,次品数X ~B (3,0.02) P (X=1)=C 3 1 ·0.02·(1-0.02)2≈0.057624(2)无放回地抽取时,X 服从超几何分布 n=500时,P (X=1)= C 101C 4902 C 500 3 ≈0.057853n=5000时,P (X=1)= C 1001 C 49002C 5000 3≈0.057647n=50000时,P (X=1)= C 10001 C 49000 2 C 50000 3 ≈0.057626 说明:当产品总数很大而抽出的产品较少时,每次抽出产品后,次品率近似不变,这样就可以近似看成每次抽样的结果是相互独立的,抽出产品中的次品件数近似服从二项分布。 总之,在教学过程中,教师要让学生深刻体会超几何分布与二项分布的区别与联系,引导学生发掘题中所给的隐含条件,抓住实质,从而能够正确解题,并能利用所学知识解决一些实际问题。 超几何分布与二项分布的区别与联系 X 012P 0.36 0.48 0.16

二项分布、超几何分布、正态分布总结归纳与练习

二项分布?还是超几何分布 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列; ( 2)不放回抽样时,取到黑球的个数Y的分布列. 解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率 均为1 , 3 次取球可以看成 3 次独立重复试验,则 1 ,.5X~B 35 0312 ∴ P(X 0) C301 464 ;P(X 1)C31 1 448 ; 5512555125 21 P(X 3) C33 130 P(X 2) C321 412 ;4 1 .5512555125 因此, X 的分布列为 X0123 P 6448121 125125125125 (2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有: P(Y 0)C20C837 ;P(Y1)C21C82 7 ;P(Y2)C22C81 1 . C10315C10315C10315 因此, Y 的分布列为 Y012 771 P 1515 15 例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4 ( 1)根据频率分布直方图,求重量超过505 克的产品数量 , ( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克 的产品数量,求Y 的分布列; ( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505 克的概率。

2021版新高考数学(山东专用)一轮学案:第九章第七讲离散型随机变量及其分布列

第七讲 离散型随机变量及其分布列 ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测 知识梳理 知识点一 离散型随机变量 随着试验结果变化而变化的变量称为__随机变量__,所有取值可以一一列出的随机变量,称为__离散型__随机变量. 知识点二 离散型随机变量的分布列及性质 (1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表 X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n __概率分布列__ (2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑n i =1p i =__p 1+p 2+…+p n __=1. 知识点三 常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,其分布列为 X 0 1 P 1-p p 其中p =P (X =1)(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布. X 0 1 … m P C 0M C n - 0N -M C n N C 1M C n - 1 N -M C n N … C m M C n - m N -M C n N 重要结论 1.若X 是随机变量,则Y =aX +b (a ,b 是常数)也是随机变量. 2.随机变量ξ所取的值分别对应的事件是两两互斥的. 双基自测

超几何分布与二项分布

超几何分布 一.超几何分布的两个特点 (1)超几何分布是不放回抽样问题. (2)随机变量为抽到的某类个体的个数. 二.超几何分布的应用条件 (1)考察对象分两类. (2)已知各类对象的个数. (3)从中抽取若干个个体,考察某类个体个数ξ的概率分布. 1.已知10件产品中有3件次品,从中任取2件,取到次品的件数为随机变量ξ,那么ξ服从_______分布.ξ的可能取值为________.次品数少于2件的概率是________. 2.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数的人数X服从_______分布.X的可能取值为________ .不超过1人的概率是________.

3.10个排球中有6个正品。从10个排球中抽取4个,求正品数比次品数少的概率. 4.从含有2个红球和4个黑球的盒子中任意摸出4个球,假设每个球被摸到的可能性相同,记摸出的4个球中黑球数与红球数的差的绝对值为ξ,求ξ的分布列.

二项分布 判断某概率模型是否服从二项分布P n(X=k)=C k n p k(1-p)n-k的三个条件 (1)在一次试验中某事件A发生的概率是一个常数p. (2)n次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的. (3)该公式表示n次试验中事件A恰好发生了k次的概率. 1.小王通过英语听力测试的概率是1 3 ,他连续测试3次,那么其中恰有1次 获得通过的概率是________. 2.若同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,则在3次试验中至少有1次成功的概率是()

3.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X的分布列; (2)求至少出现两次正面向上的概率.解(1)X的可能取值为0,1,2,3. P(X=0)=C03 23 =1 8 ;P(X=1)=C13 23 =3 8 ;P(X=2)=C23 23 =3 8 ;P(X=3)=C33 23 =1 8. 所以X的分布列如下. (2)至少出现两次正面向上的概率为P(X≥2)=P(X=2)+P(X=3)=3 8 +1 8 =1 2. 阅读理解 为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1 -分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1 -分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.求X的分布列;

北师大版数学高二-《学案导学》选修2-3练习2.2超几何分布

§2 超几何分布 一、基础过关 1. 在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( ) A.1 50 B.125 C.1 825 D.14 950 2. 从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( ) A.C 34C 2 48C 552 B.C 348C 2 4C 552 C .1-C 148C 44 C 552 D.C 34C 248+C 44C 148C 5 52 3. 一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白 球的个数记为X ,则下列概率等于C 122C 14+C 2 22 C 226 的是 ( ) A .P (0

超几何分布与二项分布的联系与区别

这时发现发现两种不同的分布其对应的概率之间的差距进一步缩小了,我们做出这样的猜想:样本个数越大超几何分布和二项分布的对应概率相差就越小,当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布!也就是说。下面我们对以上猜想作出证明: 产品个数N无限大,设废品率为p,则, 以上的证明与我们的直观思想相吻合:在废品为确定数M的足够多的产品中,任意抽取n个(由于产品个数N无限多,无返回与有返回无区别,故可看作n次独立试验)中含有k 个废品的概率当然服从二项分布。在这里,超几何分布转化为二项分布的条件是(1)产品个数应无限多,否则无返回地抽取n件产品是不能看作n次独立试验的.(2)在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。 对于超几何分布的数学期望,二项分布的数学期望,当我们将“不返回”改为“返回”时,,两种分布的数学期望相等,方差之间没有相等关系。超几何分布和二项分布的数学期望和方差是否也具有我们以上猜想并证明的极限关系呢? 事实上超几何分布的数学期望,方差当这两个极限值分别是二项分布的数学期望与方差。需要指明的是这一性质并非只为超几何分布与二项分布之间所具有,一般地,如果随机变量依分布收敛于随机变量,则随机变量的数学期望和方差分别是随机变量的数学期望和方差的极限。这样超几何分布与二项分布达到了统一。 一般说来,有返回抽样与无返回抽样计算的概率是不同的,特别在抽取对象数目不大时更是如此。但当被抽取的对象数目较大时,有返回抽样与无返回抽样所计算的概率相差不大,人们在实际工作中常利用这一点,把抽取对象数量较大时的无返回抽样(例如破坏性试验发射炮弹;产品的寿命试验等),当作有返回来处理。 那么,除了在有无“返回”上做文章,有没有什么办法快速实现超几何分布向二项分布的转化呢? 设想N件产品装在一个大袋中,其中M件为废品,无返回地从中抽取n件,那么其中废

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

超几何分布导学案

主备人:审核:包科领导:年级组长:使用时间: §2超几何分布 【学习目标】 1.理解超几何分布及推导过程。 2.理解并会运用超几何分布概率模型 【重点、难点】 理解并会运用超几何分布概率模型 【使用说明与学法指导】 1.根据学习目标,自学课本内容,限时独立完成导学案; 2.用红笔勾画出疑难点,提交小组讨论; 3、带※为选做题; 【自主探究】 超几何分布列: 一般地,设有N件产品,其中M件次品。从中任取n 件,用X表示取出的n件产品中次品的件数,那么p(X=k)=------------------------------------------------------------------------ 如果一个随机变量的分布列由上式确定,则称X 服从参数为N ,M,n的超几何分布。 【合作探究】 1、学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人,假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率. 2、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率. 3、在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等 奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值(元)的概率分布列。 【巩固提高】 1、某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用 表示这6

人中“三好生”的人数,则概率等于6 1237 35C C C 的是( ) . A .)2(=ξP B .)3(=ξP C .)2(≤ξP D .)3(≤ξP 2、盒中装有8个乒乓球,其中6个新的,2个旧的,从盒中任取2个来用,用完后装回盒中,此时盒中旧球个数是一个随机变量,请填写以下的分布列: 3、从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A 的概率 4、一批零件中有9个合格品与3个不合格品.从这批零件中任取一个,如果取到的是不合格品,就不再放回去,求在取得合格品以前已取出的不合格品数的分布列. 课堂小结——————————————————————————————

2.2 超几何分布-王后雄学案

张喜林制 2.2 超几何分布 教材知识检索 考点知识清单 1.-般地,若一个随机变量X 的分布列为,)(N r n M N r M C C C r X P --==其中},,min{,,,3,2,1,0M n l l r == ,,,,,+∈≤≤N N M n N M N n 则称X 服从超几何分布,n N r n M N r M C C C r X P --==)(中的N 代表 ,M 代表 ,n 代表 ,r 代表 2.对一般情形,一批产品共N 件,其中有M 件次品,从中随机取出的n 件产品中,次品数x 的概率分布如下表所示: 则① ,② ,③ ,④ . 要点核心解读 1.超几何分布的概念 (1)-般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件}{r X =发生的概 率为==)(r X P n N r n M N r M C C C --,,,2,1,0l r =(其中},,min{n M l =且,,,n N M N n ≤≤),,+∈N N M 称该分布列为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (2)超几何分布这一模型在高考、统考中应用广泛,在使用时要注意以下几点: ①可以借助概率分布,观察其中的规律,再把这种规律推广到一般情形,即求出从含有M 件次品的 )(M N N ≥件产品中任取n 件,取到次品数X 的概率分布,而不必生搬硬套公式(容易记错). ②要注意解释超几何分布的引入背景.如“在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品……”,这里“任取n 件”等价于从所有的产品中依次不放回地任取n 件, ③思考在一般情况下表示次品件数的随机变量x 的取值范围是什么,以得到概率分布列的完整的解析 表达式==)(r X P ,,,2,1,0,l r C C C n N r n M N r M =--其中}.,min{M n l =解题时要标明随机变量的取值范围. 2.超几何分布的应用 (1)超几何分布是一种常见的随机变量的分布,要熟记公式,正确应用公式解题.

相关文档
最新文档