高中数学 一些有趣的数字组合素材

高中数学 一些有趣的数字组合素材
高中数学 一些有趣的数字组合素材

▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 有趣的数字组合

数学是自然科学的皇后,数论则是皇冠上的明珠,几乎每一位数学家都曾对数论发生过浓厚的 兴趣。为激发学生学习热情,丰富第二课堂,本人通过研究,发现数字存在下列有趣的组合。 1 有趣的“加法”

有些加法等式,它的“被加数、加数、和”恰好由0~9这十个数字组成,如:

289 + 746 = 1035 289 + 764 = 1053 829 + 476 = 1305 829 + 674 = 1503 2967 + 84 = 3051

2967 + 48 = 3015 4927 + 86 = 5013 5943 + 78 = 6021 1978 + 56 = 2034 1978 + 65 = 2043

1987 + 56 = 2043 … …其中前6个等式中的2、3、4分别同5、6、7互换,所得结果仍是等式: 589 + 473 = 1062 589 + 437 = 1026 859 + 743 = 1602 859 + 347 = 1206 5934 + 87 = 6021

5934 + 78 = 6012 由于被加数与加数的个位数字互换 、或十位数字互换、或百位数字互换其和不变,所以由一个等式可变出多个等式。如由289 + 746 = 1035可得: 286 + 749 = 1035 246 + 789 = 1035 249 + 786 = 1035

2 有趣的“乘法 ”

有些乘法等式,它的“被乘数、乘数、积”恰好由0~9这十个数字组成:

39 × 402 = 15678 52 × 367 = 19084 78 × 345 = 26910 36 × 495 = 45× 396 = 17820 另外下面的“乘法”也十分“有趣”: 12 × 483 = 42 × 138 = 5796

3 有趣的“除法”

有些除法等式,它的“被除数、除数”恰好由 0~9这十个数字组成,并且能整除。 经过研 究,本人发现这类等式成千上万,限于篇幅,这里只列出几类有趣的式子。

3.1 具有顺序相反的结构

804513680451362751408805147227088101586948203322977923963966315408631540880415722741508797421264116043956792297693693========??????????????4087512215780480514722741508

,,,3963963963964081572275180480574122147508,,,3963963963964057812218750480415722751408,,,3963963963964051872278150480475122157,,,396396396a A b B c C d D e E f F g G h H =====

===========设:

408396,,,,,a e E A c g G C b f F B d h H D a b c d A B C D e f g h E F G H

a f c h A F C H

a b A B c d C D e f E F g h G H

-=-=-=--=-=-=-+=++=++=++=++=++=++++=+++=+++=+++则:

▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓

22

223.27032963516480175824967032483516024175815847923960158479239607096323548163548160108345654172805417281584792079279239639603.3354816035792????== ? ?????

????== ? ?????

-具有比例中项的形式

,,具有美妙和谐的关系221648048153603548160792792792108345610438568563104658310415364804815360635184079279279279279279279270329670963296307251630486351048158415841584792792

3072969076321584158??=- ?????+=-+= ???+++=+,,,36907253610486153048,41584792792

145728080415724815360530481663154085384016,396693792792297792

615384063518401536480536184051638403516480,792792792792792792

8045136631540863154082972977++=+++=+++=++-+80451364013856658310492792792792

18540723548160307296,3967921584

21578042741508204375640257364023756396396198198198

215740827815044051872.396396396-+-=-++++-=++ 其中⑨式等号左边各分子分母同乘以2,结果也是由0~9这十个数字组成的等式。

3.4具有“可调数位”的性质

如果不考虑整除性,容易验证: 153648018453601648350153846016453801846350792792792792792792

++=++??????⑴ 等式⑴具有“可调数位”的性质:将其中一个分子的数位顺序按另一种方式重新排列(最高位上不能是0),其余分子的数位顺序也相应按这种方式排列,所得结果仍是等式。

例如将⑴式各分子的个位与千位互换,其余数位不变,我们得到等式:

153048618403651640358153046816403851840356792792792792792792

.,:

307296369072329670307692329076369270158415841584158415841584++=++++=++??????将⑴式各分子乘以02各分母乘以2得等式⑵

▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 等式⑵也具有可调数位的性质(最高位上不能是0)。另外,3.3中的等式⑦也具有这种性质。 对于下面的等式⑶:

1758242417584175822396039603960

351648483516835164+,.792079207920

70329.696703.2167032.8+=158415841584

+=??????????????????⑶,将⑶式的分子分母都乘以得:=⑷将⑷式的分子分母再乘以02得:⑸。等式⑶、⑷、⑸均具有“个位、百位、万位之间可调”和“十位、千位、十万位之间可调”的性质。

3.5具有“互换位置”的性质 将等式⑶各分子都乘以

6k 得: 293044029369597+396039603960

k k k =。 当k= 4 时, 117216161172278388+396039603960

= ,被加数的分子与加数的分子恰好是 “1172”与“16”互换位置。当k= 5时,146520201465347985396039603960+=,也具有 “1465”与“20”互换位置的性质。容易验证:当k= 4、5、6......24时,上面的性质

高中数学知识清单完整版

一、集合的含义与表示 (1)集合中元素的三个特征:确定性、互异性、无序性。 (2)元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“?”表示)。 (3)常用数集及其表示符号 (4)集合的表示法:列举法;描述法;图示法。 二、集合间的基本关系 三、集合的基本运算 x x } x B ∈ x x } x B ∈ (1)A A ?=; (2)A A A =; A B B = B A =? A (1)A?=? (2)A A A =; A B B = (4)A B A =? A B ? () U C A= () U U C A= (4)()( U C A B= (5)()( U C A B= 知识拓展: 设有限集合A中元素的个数为n,则(1) (1)A的子集个数是2n; (2)A的真子集个数是2n-1; (3)A的非空子集个数是2n-1; (4)A的非空真子集个数是2n-2。

一、不等式的定义 用数学符号“>、<、≤、≥、≠”连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,称为不等式。 二、不等式的基本性质 三、比较大小的基本方法 作差法: 理论依据:0;0;0a b a b a b a b a b a b ->?>-?? >?的解集为}{x x b >;(2)x a x b ?? ?的解集为? 2、二次函数、一元二次方程与一元二次不等式 2y ax bx =+(0)a >的图像3、绝对值不等式 (1)当0a >时,有{ x a x x a >?>或}x a <;{ }x a x a x a ?≠;0x

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

(完整版)高一数学集合练习题及答案(人教版)

一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤

9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分) 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|2 0x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题(每题10分,共40分) 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高中数学讲义微专题80 排列组合中的常见模型

微专题80 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只 需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。 3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步: 确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有 213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

人教版高中数学集合教案

1.1.1 集合 教学目标: 1、理解集合的概念和性质. 2、了解元素与集合的表示方法. 3、熟记有关数集. 4、培养学生认识事物的能力. 教学重点:集合概念、性质 教学难点:集合概念的理解 教学过程: 1、定义: 集合:一般地,某些指定的对象集在一起就成为一个集合(集). 元素:集合中每个对象叫做这个集合的元素. 由此上述例中集合的元素是什么? 例(1)的元素为1、3、5、7, 例(2)的元素为到两定点距离等于两定点间距离的点, 例(3)的元素为满足不等式3x-2> x+3的实数x, 例(4)的元素为所有直角三角形, 例(5)为高一·六班全体男同学. 一般用大括号表示集合,{ …}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为…… 为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5} 2

(1)确定性;(2)互异性;(3)无序性. 3、元素与集合的关系:隶属关系 元素与集合的关系有“属于∈”及“不属于?(? 也可表示为 )两种。 如A={2,4,8,16},则4∈A ,8∈A ,32 A. 集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作 a ∈A ,相反,a 不属于集A 记作 a ?A (或a A ) 注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q …… 元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q …… 2、“∈”的开口方向,不能把a ∈A 颠倒过来写。 4 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N *或N + 。Q 、Z 、R 等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0的集,表示成Z * 请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。 1.1.2 集合间的基本关系 教学目标:1.理解子集、真子集概念; 2.会判断和证明两个集合包含关系; 3 . 理解 ”、“?”的含义; 4.会判断简单集合的相等关系; 5.渗透问题相对的观点。 教学重点:子集的概念、真子集的概念 教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算 教学过程: 观察下面几组集合,集合A 与集合B 具有什么关系? (1) A={1,2,3},B={1,2,3,4,5}. (2) A={x|x>3},B={x|3x-6>0}. (3) A={正方形},B={四边形}. (4) A=?,B={0}. ∈?∈

高中数学知识清单完整版

一、集合的含义与表示 (1)集合中元素的三个特征:确定性、互异性、无序性。 (2)元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“?” 表示)。 (3)常用数集及其表示符号 (4)集合的表示法:列举法;描述法;图示法。 二、集合间的基本关系 三、集合的基本运算

x x }x B ∈ x x }x B ∈ (1)A A ?=(2)A A A =; A B B =A B A =? (1)A ?=?(2)A A A =; A B B =; (4) A B A =? A B ? ()U C A =()U U C A =(4)()(U C A B =(5)U C 知识拓展: 设有限集合A 中元素的个数为n ,则(1) (1)A 的子集个数是2n ; (2)A 的真子集个数是2n -1; (3)A 的非空子集个数是2n -1; (4)A 的非空真子集个数是2n -2。 一、不等式的定义 用数学符号“> 、< 、≤ 、≥ 、≠ ”连接两个数或代数式以表示它 们之间的不等关系,含有这些不等号的式子,称为不等式。 二、不等式的基本性质

三、比较大小的基本方法 作差法: 理论依据:0;0;0 a b a b a b a b a b a b ->?>- ? ? > ? 的解集为} {x x b>;(2)x a x b < ? ? < ? 的解集为} {x x a<; (3)x a x b > ? ? < ? 的解解为} {x a x b <<;(4) x a x b < ? ? > ? 的解集为? 2、二次函数、一元二次方程与一元二次不等式 二次函 2 y ax bx =+

(完整版)人教版高中数学《排列组合》教案

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

(完整)高中数学排列组合专题复习

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置.

高中数学史集黄金分割素材

黄金分割 (浙江省宁波市镇海区外语实验学校 315200)余满龙 在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其 中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1) 世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现: 在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比, 那么这一比值就等于…,用式子表示就是: 618.0215=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早就存在了,我们 从 Andros 神庙(公元前10000年)就可以看出,而Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论着。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中, Kheops (公元前Q C P 图1

莱奥纳多·达·芬奇 相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。 文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,着名的有帕奇欧里、丢勒、达芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。 1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子问题”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则) 1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为2 15 的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一个 正方形后,余下的矩形与原来的矩形相似,仍是 一个黄金分割形的矩形”,这使人们产生一种 “和谐”的感觉。 后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣赏的重点转到使线段构成中外比的分割,而不是中外比本身,提出了“黄金分割”这一名称。这一命名一直延用至今。 欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商

人教版高中数学必修1集合教案

一集合(§1.1.1 集合) 教学时间 :第一课时 课题:§1.1.1 集合 教学目标: 1、理解集合的概念和性质. 2、了解元素与集合的表示方法. 3、熟记有关数集. 4、培养学生认识事物的能力. 教学重点:集合概念、性质 教学难点:集合概念的理解 教学方法:尝试指导 教具准备:投影片(3张) 教学过程: (I)引入新课 同学们好!首先,我祝贺大家能升入苍梧第一高级中学进行高中学习。下面我想初步了解一下同学们的情况。请来自××中学的同学站起来。依次询问他们的名字,并板书。同样询问来自另一学校学生情况。××同学你为什么不站起来?来自××中学的三位虽然性别不同,年龄有差异,但他们有一个共同的性质——来自××中学。所以,在数学上可以把他们看作为有3个元素的集合(板书课题:集合,并将其姓名用{ }括起来),同样,××中学的二位同学也可看作有2个元素的集合。显然,刚才抽到的××同学如果作为一个元素就不属于上面这两个集合了。同学们!这节课我们将系统地研究集合的一些概念。讲四个问题:(1)集合和元素;(2)集合的分类;(3)集合的表示方法;(4)为什么要学习集合的表示方法? (II)复习回顾 师生共同回顾初中代数中涉及“集合”提法. (Ⅲ)讲授新课

通过以上实例,教师指出: 1、定义: 集合:一般地,某些指定的对象集在一起就成为一个集合(集). 师:进一步指出: 元素:集合中每个对象叫做这个集合的元素. 由此上述例中集合的元素是什么? 生:例(1)的元素为1、3、5、7, 例(2)的元素为到两定点距离等于两定点间距离的点, 例(3)的元素为满足不等式3x-2> x+3的实数x, 例(4)的元素为所有直角三角形, 例(5)为高一·六班全体男同学. 师:请同学们另外举出三个例子,并指出其元素. 生:略.(教师给予评议)。 师:一般用大括号表示集合,{ …}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为…… 为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5} 2 生:在师指导下一一回答上述问题. 师:由以上四个问题可知, 集合元素具有三个特征: (1)确定性;(2)互异性;(3)无序性. 3、元素与集合的关系:隶属关系 ∈师:元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。

高中数学拓展知识一戴德金分割

高中数学拓展知识 戴德金分割 无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金(Dedekind )从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。 事实上,实数系的逻辑结构问题在19世纪后叶才引起数学家的重视。欧几里得(Euclid )关于比的理论的发展,两个无公度比的相等,只是在几何上可以适用。尽管如此,他的理论已经具备定义无理数的基本思想了。实际上,戴德金(Dedekind )定义无理数的方法确实借鉴了这种思想。 戴德金(Dedekind )是在直线划分的启发下来定义无理数的。他注意到把直线上的点划分为两类,使一类中的每一个点位于另一类中每一个点的左边,就必有一个且只有一个点产生这个划分。这一事实使得直线是连续的。他把这个思想运用到数系上来,就得到戴德金(Dedekind )划分。 将一切有理数的集合划分为两个非空不相交的子集1A 和2A ,使得1A 中的每一个元素小于2A 中的每一个元素,这时戴德金把这个划分定义为有理数的一个分割。即(1A ,2A )表示这个分割。 用数学语言表述戴德金分割:设1A 和2A 是满足以下三个条件的Q 的两个子集: (1)1A 和2A 都不是空集; (2)1A ∪2A Q =; (3)若1α∈1A ,2α∈2A ,则21αα<(从而1A ∩2A =φ)。

我们称序对(1A ,2A )为一个分割,并分别称1A 和2A 为该分割的下类和上类。 在一些分割中,或者1A 有最大数,或者2A 有最小数,这样的分割由一个有理数确定。 例如,对任一Q α∈,令A 1={x ∈Q|x<α},2A x Q|x α={∈≥},则(1A ,2A )显然是一个分割。 又令1B x Q|x α={∈≤},2B x Q|x α={∈>},显然(1B ,2B )也是一个分割。其中,(1A ,2A )的上类A 2有最小数α,(1B ,2B )的下类有最大数α,我们把这种分割称为有端分割。 有端分割对应所有的有理数。 下类无最大数且上类无最小数的分割称为无端分割。 无端分割是存在的。例如213C x Q|x ={∈<},223C x Q|x ={∈>}。 显然(C 1,C 2)的下类C 1无最大数,上类C 2无最小数。 对每一个可能的Q 的无端分割,都定义一个新数来填补Q 中的空隙;反之,每一个新数()Q α?也可对应Q 的一个无端分割: {}A x Q x α=∈<, {}A x Q x α'=∈>。 正是因为无端分割与新数一一对应的,所以不妨把无端分割本身用来充当新数。 我们称Q 的全体分割为分割集,用R 表示。 其中R 中任意两个元素(,)A A α'=与(,)B B β'=之间的序关系可定义如下: 在下类A 与B 都无最大元的约定下,若A B ≠ ?,则说αβ<;若A B =,则说αβ=;若A B ≠ ?,则说αβ>。

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示. pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m 表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m. 排列Pnmn为下标,m为上标 Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n 组合Cnmn为下标,m为上标 Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

高中数学拓展知识一欧拉公式

欧拉公式 等式i e cos i sin θθθ=+称为复数的欧拉公式(Euler's complex number formula )。 1714年,英国数学家科兹(1682-1716),首先发表了下述定理(用现代+, +, +, 在的展开式中把x 换成±ix . i =,4()i ±

3423(1-+)(-+)!3!4!2!1!3! x x x x x i +±=±, ix e cos x i sin x ±=±, ix e cos x i sin x =+ (x R ∈), 这个等式有一种直观的几何解释。一个实数在实数轴上可以用一个向量表示,旋转这个向量,就相当于乘以一个虚数i 。据此建立一个以实数为横轴,虚数为纵轴的坐标系。实单位向量,每次逆时针旋转2 π, 可以分别得到结果1,i ,-1,-i ,1, 即转4次以后就回到了原位。而当实单位向量保持长度不变旋转θ角度,得到的向量就是:θθsin cos i +。 根据欧拉公式 θθθsin cos i e i +=可以看出θi e 就代表实单位向量1旋转θ角后而得到的向量。所以πi e 意味着单位向量逆时针旋转了π,结果显然是-1。

用积分的方法也可以证明欧拉公式。 设复数()z cos x i sin x,x R =+∈,两边对x 求导数,得 2dz sin x i cos x i sin x i cos x i(cos x i sin x )iz dx =-+=+=+=, 分离变量并对两边积分,得 1即dz idx,ln z ix C z ==+??, 取0x =得0C =,故有ln z ix =,即ix e cos x i sin x =+。 欧拉公式被称为“世界上最杰出的公式”,关于它也有一个好玩的故事。欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。一次,俄女皇邀请法国哲学家狄德罗访问。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。 “先生,10ei π+=,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。 图3-1 意味着单位向量逆时针旋转了π

高中数学拓展知识-e的来历

读读Euler,读读Euler,他是我们大家的老师。 P.S.Laplace e的来历 e是数学中最重要的数学常数之一,称为自然常数,是自然对数的底数。 它最先由瑞士数学家欧拉在1727年使用。 e进入人们的研究视野经历了一个漫长的过程。这个过程如下表: 表3-1 时间事件 1618年约翰?纳皮尔于出版的对数著作附录中的一张表 第一次提到常数e,但它没有记录这常数,只有由 它为底计算出的一张自然对数列表,通常认为是 由威廉?奥特雷德(William?Oughtred)制作。1683年雅各?伯努利(Jacob?Bernoulli) 第一次把e看为 常数 1690年和1691年莱布尼茨给惠更斯的通信中第一次用到常数e并 以b表示。 1727年欧拉开始用e来表示这常数 1736年e第一次在出版物用到是欧拉的《力学》 (Mechanica)。 1737年Euler基本证明了e和e2是无理数 1873年夏尔?埃尔米特(Charles?Hermite)证明e是超越 数。 e是什么?e是增长的极限! 假设一个单细胞,每20分钟分裂一次。我们以20分钟为一个单位时间。 显然,这种细胞的数量增长如下表:

x0123… y1248… 因此,我们得到y=2x。 将上式改写为y=(1+100%)x,其中,1表示原有数量,100%表示单位时间内的增长率。 假设这种细胞10分钟后分裂的半个细胞就可以继续分裂,那么这种细胞的数量增长就分为每10分钟一个阶段,每个阶段的数量增长率为50%。因此,20分钟后这种细胞的数量 y=(1+100% 2 )2=2.25。 也就是说,20分钟后,我们一共得到了2.25个细胞。其中,1个是原有的,1个是新生的,另外的0.25个是新生细胞分裂到一半的。 假设这种细胞5分钟后分裂的半个细胞就可以继续分裂,那么这种细胞的数量增长就分为每5分钟一个阶段,每个阶段的数量增长率为25%。因此,20分钟后这种细胞的数量 y=(1+100% 4 )4=2.44140625。 一般地,如果我们进一步假设,这种细胞分裂是连续不断进行的,新生细胞每分每秒都具备继续分裂的能力,那么20分钟最多可以得到多少个细胞呢? 实际上,这种细胞的数量y=(1+ 1 n )n。 当n→+∞时,这个式子的极值等于e=2.718281828…。 即 1 (1)n n e n lim →+∞ +=。 因此,当增长率为100%保持不变时,我们在单位时间内最多只能得到2.71828个细胞。数学家把这个数就称为e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值。

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

相关文档
最新文档