数学抽象与概括方法

数学抽象与概括方法
数学抽象与概括方法

物理学一班李密学号:200907051112

数学抽象与概括方法

所谓抽象,是指从复杂的事物中,排除非本质属性,透过现象抽出其本质特征的思维过程,通过科学的抽象,人们就能更深刻、更正确、更完全地把握事物的内部联系和本质特性。抽象是数学中常用且不可少的思维方法。

所谓概括,就是将个别事物的本质特征综合起来推广到同类事物的思维过程。在数学中概括是构成概念的一种重要方法,它和抽象相互联系,密不可分。

事实上,数学中的任何一个数、一个算式、一种运算、每个概念、公理、定理、法则和有关的数学模型,无一不是抽象、概括的结果。其中,大多数概念是从直接观察事物的现象中抽象出来的。它是对事物所表现出来的特征的抽象,故称之为“表征性抽象”。如点、线、面、体、正方形、立方体、回转体等均属此类。而数学公理、原理、公式等,乃是在表征性抽象的基础上形成的一种深一层的抽象,它揭示了事物的因果性和规律性联系,故称之为“原理性抽象”。

至于与抽象相联系的概括,在数学中常常用于把某类事物的部分个体所具有的特性推广到该事物的全体上去,或是把某个特定领域的规律推广到其它领域中去。这种概括称之为“外推性概括”,对于数学概念,则常常是采取由对单一的某个事物的认识,直接上升概括为一种具有普遍性规律的认识,这种概括称之为“上升性概括”。

由于我们数学学习所认识的对象,主要是已经被前人抽象、概括了的间接知识,尽管它们无需我们再去抽象、概括,但是我们必须要在数学的学习过程中,去分析、研究,弄清它们是如何抽象、概括出来的,不仅仅限于去学习这些知识,重要的是要去学习这种抽象概括的思想方法,必须学会摆脱具体内容,从各种概念、关系运算、定理的结构中去分析,被扬弃的非本质属性是哪些?抽出的本质特征又是什么?又是怎样去概括这些本质特征的?自己也可以选择一些适当的事物做这种抽象、概括方法的训练,通过这样的深究分析,便可在学习活动中逐步培养抽象、概括的能力。

下面,我们看一个对现实世界中的具体问题,通过抽象、概括归结出一个相应的“数学模型”的生动、有趣的典型例子。

哥尼斯堡七桥问题

18世纪东普鲁士哥尼斯堡有条普莱格尔河横贯城区。这条河流有两条支流,在城中心汇成大河,中间是岛区。两个岛与河两岸建有七座桥把它们联系起来(如图所示)。

哥尼斯堡的大学生们提出这样的问题:一个人能否从任何一处为出发点,一次相继走遍这七座桥,且每桥只能走一次,然后重返到起点。即所谓七桥问题。

大学生们现场进行了多次步行尝试,终无一人取得成功。于是他们就写信给当时著名的大数学家欧拉,请他帮助解决这个问题。

1736年欧拉研究了这一问题。他把人们步行过桥的问题,抽象成为一个“一笔画”问题。他是这样想的:岛B与半岛D无非是桥梁的连接地点,两岸陆地 A 与 C也是桥梁通往的地点,这就不妨把这四处地点缩小,抽象为四个点 A、B、C、D,而把七座桥抽象成七条线段,显然未改变问题的实质。这样,原来的七桥问题,就抽象、概括成:能否一笔且无重复地画出图中右边图形的问题。这个一笔画的几何图形,就是“七桥问题”的数学模型。这个问题在拓扑学的历史发展中占有重要的地位。

接着,欧拉考虑了“一笔画”的结构特征。按照“一笔画”中每一点交会的曲线段数的奇、偶数来分,有:

①至多有两个点(即起点和终点)有可能通过奇数条曲线段;

②其它的任何一个中间点(交点),每次总是沿着一条曲线段到达这点,紧接着又必须沿另一条曲线段离开这点(用以满足“无重复”的要求)。因此,在这些中间点交会的曲线段必为偶数条;

③由于现在所要做的是封闭图形(即终点与起点必须重合),因此,可以一笔且无重复地画出某一图形的条件(充要条件)是:图中各中间点的曲线段总是偶数条。

然而,现在得出的图形中的四个交点A、B、C、D处所通过的曲线段都是奇数条,这就不符合“一笔画”所具有的特征。因此,可以断言这一图形是不可能一笔且无重复地画出。也就是说,所提的“七桥问题”不可能实现。

可以看出,欧拉正是运用了数学抽象的方法,把具体的“七桥问题”概括为一种数学结构关系,即相应的数学模型。这种数学结构(或数学模型),已经扬弃了具体事物中的非木质属性(如岛、河岸、桥等等),仅保留了对象的量的特征。这种通过抽象、概括以建立客观事物的数学模型(即数学关系结构)来揭示事物的本质特征及规律的方法,叫“数学模型方法”。

“七桥问题”的模型化方法的思路,可用下列框图表示:分析综合策略及证题方法

分析与综合是抽象思维的基本方法,也是数学学习中最基本的方法。它们同对比、分类、类比、归纳和演绎等方法并不是相互平行、完全独立的,而是彼此联系、相互渗透的,在类比和归纳中要运用分析,在比较分类中就有综合;而分析综合中又离不开比较、归纳和演绎等。

所谓分析,是将被研究对象的整体分为各个部分、方面、因素和层次,并分别加以考察认识的一种思维方法,即由整体分解为部分的一种思维方法,从心理学的角度看,分析过程是当划分的对象刺激大脑皮层时,引起大脑皮层的兴奋和抑制,大脑皮层的兴奋和抑制就是分析的心理过程的生理基础,从而把被认识的对象划分出不同的个体形式。

所谓综合,是将已有的关于研究对象的各个部分、方面、因素和层次的认识联结起来,形成一个整体认识的一种思维方法,即由部分联合为整体的一种思维方法。从心理学的角度看,综合过程是把分析过程大脑皮层的兴奋和抑制的暂时神经联系接通,这两种神经联系的接通就是综合的心理过程的生理基础,它把分析出来的不同的个体形式联合起来。

分析与综合是对立的统一,它们互相依存、互相渗透、互相转化。思维既把相互联系的要素联合为一个统一体。同样也把意识的对象分解为它的要素。没有分析就没有综合。分析的结果,也就是综合的出发点。科学认识的发展总是沿着分析——综合——新的分析——新的综合……的轨道不断前进的。

在逻辑学中,分析与综合都是思维的方法、发现的方法,是创造性思维形式的要素,而不是证明的方法,应和数学中讲的两种推理和证明的方法:“分析法”和“综合法”有所区别。分析与综合虽然不是完全独立的思维方法,但鉴于它们不仅是科学研究的方法,而且也是一种学习方法,并具有其心理特征。为了在数

学学习中更好地理解和运用分析与综合的抽象思维方法,特对它们作些必要的单独讨论。

在数学学习中,把分析与综合的思维方法运用到逻辑证明上,就形成了数学证明中的分析证法与综合证法。

1.分析证法

所谓分析证法(简称分析法),是从未知到已知的证明方法,其证明过程是由“题断”出发,逐步逆追这个结论成立的条件,直到最后找到已知的“题设”。由于它是从结果逆追到产生这一结果的原因的一种思维方法,故也可称为“执果索因法”。由于它的思考顺序是执果索国,因而它是从结论出发去步步寻找结论成立的充分条件。其证明模式为“要证……,只须证……”,人们常用分析法来寻找解题思路,特别是在解应用题、证明几何题和证明三角函数恒等式时用得较多。

若在推理过程中步步可逆时,即任何两个相邻的论断都互为充要条件(它们互为等价命题)时,把这种特殊情况下的分析法称为“逆证法”。它在代数恒等式及不等式的证明中常常用到。

但由于不能由④推出⑤,即④仅是⑤成立的必要条件,而不充分,即①与⑤不是互为充要条件,它们不可逆,故不能用逆证法。

由此可见,逆证法仅是分析法的一种特例,而分析法并不是逆证法。

2.综合证法

所谓综合证法(简称“综合法”),是从已知到未知的证明方法,其证明过程是由“题设”出发,逐步推导到这个题设可能得出的结论,直到最后推出未知“题断”为止。由于它是从原因推导到由原因产生的结果的一种思维方法,故也可称为“由因导果法”。由于它的思考顺序是“由因导果”,因而它是从题设和已知的正确命题出发,步步寻找其必要条件,直至得到探求的正确结论。其证明模式为:“因为……,所以……”。鉴于从平几学习开始,这种综合法我们已做过许多次的训练,较为熟悉,就不再赘述。

相对比较这两种方法的应用,分析法的优点是推理方向明确,充分条件易于寻找,但因是逆向思维,故容易叙述不清,且书写格式较繁;综合法的优点是顺向思维,书写证明简洁清晰,但正确推理思路不易寻找,容易导致错误思路,因

此,学习时我们最好兼取二者之长:用分析法来帮助寻找正确的解题思路,而用综合法来书写其证明过程。

3.分析——综合证法

分析法和综合法,可以概括为“执果索因”和“由因导果”,难度较大的题目单一地使用分析法或综合法去寻求解题思路难以奏效,而将两者结合起来,交替使用,时而“由因导果”,由已知看可知,再推可知,……;时而“执果索出”,由未知寻需知,再找需知,……。直至最后沟通可知与需知的渠道,解题途径也就找到了。

小学数学中的抽象与推理

小学数学中的抽象与推理 一、数学的基本思想 1、课程标准:由双基到四基(实现教育理念的转变) 过去的教育理念:以知识为本 教学大纲 关心问题是:应当教哪些内容;应当教到什么程度 考核内容是:规定的内容是否教了;学生的掌握是否达到要求 教学目标是:基础知识(概念记忆与命题理解)扎实(记忆) 基本技能(证明技能与运算技能)熟练(训练) 教学形式是:课堂、教材、教师(凯洛夫的三中心论) 现代的教育理念:以人为本、育人为本(刚要) 课程标准 以学生的发展为本 人的成功依赖:知识技能、把握机遇、思维方法 不仅要记住一些数学的知识、掌握一些数学的技能 还要培养学生的数学素养(素质教育):让学生感悟数学的基本思想积累基本活动经验:会想问题、会做事情

课程目标:基础知识、基本技能+基本思想、基本活动经验 分析问题、解决问题+发现问题、提出问题 2、什么是数学的基本思想 数学是研究数量关系和空间形式的科学 研究对象:数量、图形 研究内容:数量关系、图形关系 数学的基本思想:数学的产生与发展必须依赖的思想 学习过数学与没有学习数学的思维差异 抽象、推理、模型 数学教学的责任:会抽象、会推理 通过抽象:现实——数学 把研究对象、以及对象之间的关系形成概念 从现实世界到数学内部,数学具有一般性 通过推理:数学——数学 从假设前提出发,通过推理得到数学的结果 数学内容部的发展,数学具有逻辑性 通过模型:数学——现实 解决现实世界中的与数量和图形有关的问题 从数学内部到先生生活中的例子 二、小学数学中的抽象 数学思想:抽象、推理、模型(不是知识,不靠讲解靠感悟)教学要点:感悟什么?如何感悟?

小学数学教学中的抽象性

小学数学教学中的抽象性 抽象性可以归纳为以下三点: (1)不仅数学概念是抽象的,而且数学方法也是抽象的,并且大量使用抽象的符号。 (2)数学的抽象是逐级抽象的,下一次的抽象是以前一次的抽象材料为其具体背景。 (3)高度的抽象必然有高度的概括。 一抽象的意义与特征 1、抽象的意义 抽象是从复杂的事物中抽取一些事物的本质属性而舍弃非本质属性的思维方法。数学中的概念、性质、法则、符号都是抽象的结果。数学的抽象是具有其他学科所没有的特定的抽象特征,利用它能充分反应事物的本质属性。 2、抽象的特点 (1)概括性。概括是在认识事物属性的过程中,把所研究各部分事物得到的一般的、本质的属性联系起来,整理推广到同类的全体事物,从而形成这类事物的普遍概念。概括通常可分为经验概括和理论概括两种。在数学的学习中,我们会经常遇到要将某一属性推广到同类对象中去的思维过程。例如,从长方形面积公式的推导推广到平行四边形面积的推导,再扩展到三角形、梯形、圆的面积公式的推导中去。

数学可以说是具有高度概括性的学科,数学尽管是抽象的,但它的抽象与概括是相互联系,密不可分的。 (2)层次性。数学是揭示事物的空间形式和数量关系的科学,这样的特点决定了数学的抽象是不同于其它学科的。在对数学问题的抽象中我们会遇到很多的数量关系和空间 形式,它们无论从内容、形式、还是表达方式,都不是完全一致的过程,有些过程相对复杂,有些相对简单,有些抽象很简洁,有些却很复杂,甚至会出现在一而再,再而三抽象的特性。有些具体一些,有些则更一般、更抽象一些。从幼儿开始接触到具体的数,感受数的基本特点,再到低年级对数的认识、理解数的概念,再到高年级数的分类、自然数、奇数、偶数、素数、合数,逐渐抽象,概念的形成过程中层次性、阶段性非常明显。针对不同年龄阶段的心理特点,抽象思维需要解决的问题、所要达到的能力也有所不同。 二抽象与具体的关系 1、具体以抽象为过程 作为与生活紧密联系的具体的知识是人们在社会存在 中应当掌握的必备的知识。而现实世界是丰富多彩、千变万化的。人们不可能在短时间内掌握大量的科学知识,只能通过把现实的生活知识抽象转化为可在短时间内学会的文化、技能知识,才能很快地掌握,抽象在这一转化中起到桥梁的

如何培养高中生数学教学中的抽象概括能力

如何培养高中生数学教学中的抽象概括能力 发表时间:2017-09-26T16:30:41.437Z 来源:《中小学教育》2017年11月第296期作者:田薇 [导读] 教师要善于引导学生进行抽象概括,培养学生的抽象概括能力,学会把本质的和非本质的东西区分开,把具体问题抽象为数学问题,进而提高学生的数学能力。 田薇新疆乌鲁木齐市第六十九中学830023 摘要:数学抽象概括在数学教学的过程中无处不在。任何一个数学概念、法则、公式、规律等的学习,都要用到抽象概括。高中数学教学中,教师要善于引导学生进行抽象概括,培养学生的抽象概括能力,学会把本质的和非本质的东西区分开,把具体问题抽象为数学问题,进而提高学生的数学能力。 关键词:高中数学抽象概括 钱学森教授曾指出:“教育工作的最终机智在于人脑的思维过程。” 数学抽象概括能力是一种数学思维能力,是人脑和数学思维对象空间形式、数量关系等相互作用并按一般思维规律认识数学内容的内在理性活动的能力,是高层次的数学思维能力。 事实上,数学中的任何一个数、一个算式、一种运算,每个概念、公理、定理、法则和有关的数学模型,无一不是抽象、概括的结果。其中,大多数概念是从直接观察事物的现象中抽象出来的。 那么抽象和概括又是相互联系的。没有抽象不可能进行概括;而在抽绎对象的特性时,同时也就已经在反映对象的一般属性。一、高中阶段培养学生数学抽象概括能力的重要性 《普通高中数学课程标准》注重数学能力的培养。抽象概括能力是学好数学的重要条件,也是数学教学的任务之一。加之数学学科本身的特点,需要学生在学习中就有较强的概括能力,因此教师在教学中要注意培养学生的抽象概括能力。数学的完整性和严密性,使得数学结论和方法都具有相关性和相似性,在课堂教学中教师要充分利用这些相关性和相似性,采用类比和联想的方法,才能让学生自己探索和发现许多新的结论或新的方法。 学生抽象、概括能力越高,在学习中的迁移能力就越强,对新的知识的理解和掌握也就越快。抽象、概括是思维最重要的特点。因为只有通过抽象、概括才能使人的认识由感性上升到理性,从而掌握事物的本质和规律。因此,抽象、概括的水平在一定程度上反映了学生的思维水平。如果学生的抽象、概括能力提高了,他们的逻辑思维水平才会真正提高。 二、在数学抽象概括能力方面,不同数学能力的学生有不同的差异 高中阶段,具有数学能力的学生在收集数学材料所提供的信息时,明显表现出使数学材料形式化,能迅速地完成抽象概括的任务,同时具有概括的欲望,乐意地、积极主动地进行概括工作。数学抽象概括能力是数学思维能力,这些都不能很好地学好数学,只有注重数学思维能力的培养,才能建立良好的学习态度,培养对数学的浓厚的兴趣,这才是学好数学的有效途径在数学抽象概括能力方面,不同数学能力的学生有不同的差异。具有数学能力的学生在收集数学材料所提供的信息时,明显表现出使数学材料形式化,能迅速地完成抽象概括的任务,同时具有概括的欲望,乐意地、积极主动地进行概括工作。抽象概括能力是学习数学的基础,我们必须把握概念的本质,从而能够应用概念去解决问题。 三、解题中培养学生的概括能力 概括是指把抽象出来的若干事物的共同属性归结出来进行考察的一种思维方法,概括要以抽象为基础,它是抽象的发展,概括的过程就是从个别到一般的过程,抽象度越高,概括性就越强,所得的概念和理论运用于实际时,其迁移范围就更广,也就是说,高度的概括对事物的理解更具有一般性,则获得的理论或方法就有更普遍的指导性。概括方法在数学中得到广泛应用,并对数学的发展起了很大作用。课堂教学中根据学生的反应和内容的特点,进行教后概括,这种概括不是简单总结,而是要高于课本知识。函数单调性是指函数在给定的定义域的某一区间上,当函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行。如:例:指出函数f(x)=log2(x2+2x)的单调区间。 错解: 从上面的例题可以发现,在做题时如果学生没有在定义域的两个区间上分别考虑函数的单调性,这说明学生对函数单调性的概念一知半解,而如果能正确地先想到求解函数的定义域,然后再在定义域内研究函数的单调性说明学生的思维具有深刻性。 由此看来,在求解函数关系式、值域、最值、单调性等问题中,若能仔细地回顾思维过程,检查函数定义域是实数集还是确定的区

高考数学二轮复习 第三部分 能力篇 专题四 抽象概括能力与数据处理能力课时作业 理

2017届高考数学二轮复习 第三部分 能力篇 专题四 抽象概括能力 与数据处理能力课时作业 理 1.(2016·西安八校联考)如图所示的茎叶图是甲、乙两位同学在期 末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值分别为( ) A .2,4 B .4,4 C .5,6 D .6,4 解析:x 甲=75+82+84++x +90+93 6 =85,解得x =6,由图可知y =4,故选D. 答案:D 2.通过随机询问100名性别不同的大学生是否爱好踢毽子运动,得到如下的列联表: 附表: 随机变量K 2 = a +b c + d a +c b +d ,经计算,K 2 的观测值k 0≈4.762,参考 附表,得到的正确结论是( ) A .在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关” B .在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关” C .有97.5%以上的把握认为“爱好该项运动与性别有关” D .有97.5%以上的把握认为“爱好该项运动与性别无关” 解析:由表可知,有95%的把握认为“爱好该项运动与性别有关”,故选A. 答案:A 3.(2016·湖南五校调研)已知函数f(x)是定义在R 上的增函数,则函数y =f (|x -1|)-1的图象可能是( ) 解析:设y =g (x )=f (|x -1|)-1,

则g (0)=f (1)-1,g (1)=f (0)-1,g (2)=f (1)-1, ∴g (0)=g (2),排除A ,C ,又f (x )是定义在R 上的增函数, ∴g (0)>g (1),排除D ,选B. 答案:B 4.据我国西部各省(区,市)2016年人均地区生产总值(单位:千元)绘制的频率分布直方图如图所示,则人均地区生产总值在区间[28,38)上的频率是( ) A .0.3 B .0.4 C .0.5 D .0.7 解析:依题意,由图可估计人均地区生产总值在区间[28,38)上的频率是1-(0.08+0.06)×5=0.3,选A. 答案:A 5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2 +bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A .3.50分钟 B .3.75分钟 C .4.00分钟 D .4.25分钟 解析:由实验数据和函数模型知,二次函数p =at 2 +bt +c 的图象过点(3,0.7),(4,0.8),(5,0.5),分别代入解析式,得???? ? 0.7=9a +3b +c ,0.8=16a +4b +c , 0.5=25a +5b +c , 解得???? ? a =-0.2, b =1.5, c =-2. 所以p =- 0.2t 2 +1.5t -2=-0.2(t -3.75)2 +0.812 5,所以当t =3.75分钟时,可食用率p 最大.故

小学中年级数学抽象概念授课方法漫谈

龙源期刊网 https://www.360docs.net/doc/7610921992.html, 小学中年级数学抽象概念授课方法漫谈 作者:曹正英 来源:《学习与科普》2019年第32期 摘要:小学中年级数学抽象概念是小学数学基础知识的重要内容,是正确运算、有效解 决问题的首要条件,更是小学数学公式以及数学知识的基础;但是在实际的教学当中由于数学概念的抽象性有时很难被学生所理解,因此,加强小学中年级的抽象概念的教学就成为了当前数学教学的首要任务,下面笔者就根据自己的经验谈谈小学中年级数学抽象概念教学。 关键词:小学数学;中年级数学;抽象概念;授课方法 数学抽象概念是小学数学基础知识的重要组成部分,还是培养学生们数学能力和数学方法的重要内容;根据具体的实践研究表明,中年级的抽象概念教学是提高小学教学质量的一个非常有效的策略,根据笔者多年在一线教学的经验,现在对抽象概念教学谈谈自己的看法。 一、概念的引入 对于小学数学的抽象概念来说,建立小学数学的抽象概念一般采取的方法就是凭借式。即将抽象的数学知识通过具体的形象的事物所表现出来。在抽象概念引入的过程当中,我们的中年级数学教师应该最大程度的结合学生们的生活实际,借助充分而又感性的材料,让学生们能够全身心的融入到学习当中去。对于发展性的知识概念,大多数情况下所采取的方法就是同化式,也就是我们学生的年龄在逐渐的增长,他们对事物的认识程度也就会随着年龄的增长而不断的发生变化,所以教师就应该指导他们通过抽象的数学概念来获取新的知识,产生新的认知。比如在学习“等腰三角形”一课时,教师们在上课之前可以先让学生自己动手来剪一些等腰三角形的纸张模型,接下来可以让他们用直尺来具体的衡量一下等腰三角形模片的各条边的长,这样就可以将抽象的数学知识转化成具体,具体的分析出等腰三角形的条件以及定义。又比如,在进行梯形的教学时,在讲授梯形之前可以选择学生们已经学习过的平行四边形来导入课程,再让学生们自己来对梯形和平行四边形做出比较,这样学生们就可以轻松的理解梯形所蕴含的知识,在这种情况下就可以找出抽象概念的认知结构和已知概念的联系和区别,进而实现了知识的迁移。 二、数学抽象概念的授课策略 1.明确概念的外延 在数学抽象概念的教学当中,有很多的知识点很容易被混淆。比如,整数和位数、整除和除尽、奇数与偶数、质数与合数等等问题容易被混淆,所以在这一阶段的学习当中可以通过一定的练习,并且结合一定的抽象概念来对数学定义进行明确的分析与比较,让学生们对数学知识可以有准确清晰的概念。

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

学好数学提高抽象思维

学好数学提高抽象思维 曾经有一个非常出名的数学老师孙维刚,他教数学有一个说法:老师教给你的东西,就是过了几年,你把数学知识全部忘掉后,剩在你脑子里的东西。那么,剩下的东西是什么呢?就是思维,而这种思维,与孩子日后解决问题的能力是密切相关的。就像学做操一样,也许以后你忘记了动作,但却留下了肌肉和康健的体魄。 初中生学不好数学或是抽象思维能力未建立 为什么我的孩子升入初中以后,怎么都接受不了数学,请家教也好,上数学辅导班也罢,数学成绩就是提不上来。前不久,一位好友向河南省幼儿教育研究会研究员、智灵童儿童潜能开发中心校长荣合灵诉苦。后来,她一了解情况,发现这个孩子之所以学不好数学,和抽象思维能力没建立起来有很大关系。 “孩子在小的时候以形象思维为主,他们在数数或算加减法时总是掰着手指头查,你让他抛开手指在脑袋里空想,他想不出来。如果他看到‘3+2=?’,在脑子里一转,就得出了‘5’的答案,那么,他所运用的就是抽象思维了。”荣合灵说,开始教孩子数学时,可能更多地依靠形象思维,既简易让孩子产生兴趣,也便当他们理解。但是,如果过多地使用形象思维,把一切抽象问题都形象化,而不注意向抽象思维的过渡,孩子以后学习需要运用较高抽象思维能力的代 数、几何、高数时,就会比较困难。 其实,让幼儿学数学不单单为了学习或将来考学,数学思维作为左脑能力的一种,说简单点就是解决问题的思维,对孩子一生都起着关键作用。 荣合灵说,很多数学题都是:你有哪些已知条件,你学了哪些公式、定理(其实也是已知条件),你想达到什么样的结果。 然后,学生所要做的,就是在已知条件和结果之间,通过自己的思维、判断去找到解决问题的方法。

对高中数学核心素养——数学抽象的解读

对高中数学核心素养——数学抽象的解读 发表时间:2019-06-24T11:19:18.953Z 来源:《成功》2019年第2期作者:王秀玲 [导读] 随着新课改的大力推进,人们的教育观念从只注重成绩逐步转向关注学生核心素养的养成,国民核心素养的培育毫无疑问是至高无上的课题,对高中生而言,数学核心素养是绕不开的话题,而数学抽象是排在所有数学核心素养之首,是其他数学核心素养的基础,正如史宁中教授所说:数学在本质上研究的是抽象的东西,数学的发展所依赖的最重要的基本思想也是抽象的。那么我们如何理解数学抽象呢? 黄梅理工学校湖北黄冈 435500 随着新课改的大力推进,人们的教育观念从只注重成绩逐步转向关注学生核心素养的养成,国民核心素养的培育毫无疑问是至高无上的课题,对高中生而言,数学核心素养是绕不开的话题,而数学抽象是排在所有数学核心素养之首,是其他数学核心素养的基础,正如史宁中教授所说:数学在本质上研究的是抽象的东西,数学的发展所依赖的最重要的基本思想也是抽象的。那么我们如何理解数学抽象呢? 一、数学抽象的定义 数学抽象是指通过对数量关系与空间形式的抽象,舍去事物的一切物理属性,得到数学研究对象的素养。 从数学抽象的内涵看,数学抽象主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学符号或者数学术语予以表征。注意这里舍去的“物理属性”不是物理科学和物理理论,而是现实的物体的特殊性质。舍去的是它们的不同点,而得到的是它们的共同点,其中关于数量关系和空间形式的共同点就是数学研究对象——数学抽象。另外某些共同点是物理或者其他科学的研究对象,就是物理学或其它科学的抽象。 从数学抽象的学科价值看,数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。它具有把具体问题用简洁的数学语言符号表示、用一般的方法来解决复杂的数学文字、变表面无关的东西为奇妙的数学结构和体系。“抽象”一词几乎成为了数学的代名词,数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。 从数学抽象的教育价值看,通过数学抽象核心素养的培养,经历从具体到抽象的过程,能够感悟数学概念、命题、方法和体系的形成;能通过抽象、概括去认识、理解、把握事物的数学本质,逐渐养成一般性思考问题的习惯;能够在其他学科的学习中主动运用数学抽象的思维方式解决问题。 二、数学抽象的特点 (一)数学抽象具有抽象性特点 数学是一门研究度量、形式、图形和变化的学科,虽说它的研究对象脱不开现实原型,但可以绕开具体内容,理性地抽象出思维结果;另外我们可以用公理化的方法统一数学研究的各个领域。 (二)数学抽象具有合理性与可操作性 数学抽象的合理性表现为重点抽取对象的数量关系或空间形式,同时还表现为相对的确定性。以概率为例,我们从实际问题中抽象出各概率特点,根据对象是离散的还是连续的特点,将概率划分为古典概率与几何概率等概率模型,分别推出得出相应的判定与求解策略,而这些结论相互补充正好构成了系统而又完备的知识体系,有利于学生的理解与掌握。我们运用公理化的思想,借助合理性的数学抽象可以建立起各种数学符号体系,并借这个科学思维的智力工具,通过某些可操作的教学行为,使得学生有效地建立起形式化、统一化且具有联系性、整体性的数学知识和思想方法体系,并在解决问题的过程中不断巩固、完善和发展这一体系。这样加以规划、设计和培养数学抽象能力,可以使学生的数学学习形成良性循环。 (三)数学抽象具有层次性与可接受性 数学抽象由于抽象的对象(概念、模型、理论体系等)和过程的不同,数学抽象的发展体现出不同的层次性,正如概念的内涵与外延关系一样,越抽象概括性越强、应用性越广泛,反映人们抽象思维水平也就越高,但与之俱来的是学生接受知识的困难大大增加。 三、数学抽象水平的质量标准 依据新课标每个数学核心素养水平都是从情境与问题、知识与技能、思维与表达、交流与反思这四个方面来阐述,并且每一个数学学科核心素养划分为三个水平,数学抽象也划分为三个水平,也是从上述四个方面来说明: 水平一是高中毕业应当达到的要求,也是高中毕业的数学学业水平考试的命题依据;水平二是高考的要求,也是数学高考的命题依据;水平三是基于必修、选择性必修和选修课程的某些内容对数学学科核心素养的达成提出的要求,可以作为大学自主招生的参考。四、高中阶段数学抽象的基础载体 通过解读数学核心素养可以看出,能力的培育必须要有相应的知识土壤,这就必须明了相应的素养知识与相应的的能力载体,这是提升数学核心素养的前提。高中阶段数学抽象的基础载体主要体现在以下几个方面:集合;函数的概念与性质;三角函数;立体几何初步;概率;导数及其应用;空间向量与立体几何;平面解析几何。 五、数学抽象与其它数学核心素养的关系 最新的《普通高中数学课程标准(实验)》明确指出:数学核心素养是数学课程目标的集中体现,是在数学学习的过程中逐步形成的,是具有数学基本特征的、适应个人终身发展和社会发展需要的思维品质与关键能力。高中阶段数学核心素养是六个:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。这些数学核心素养各具独立性,又相互补充、相互交融、相互促进,形成一个有机整体,在不同情境中整体发挥作用。 六、数学抽象的具体表现 数学是以数量关系和空间形式为主要研究对象,而数量关系和空间形式正好是从现实世界中抽象出来的,我们教学的终极目标恰恰是培养学生具有初步的抽象思维,而不是让学生的思维水平停留在形象直观阶段,我们每次学习的升华无一不是抽象的过程。数学抽象的具体表现有以下几个方面:形成数学概念和规则;形成数学命题和模型;形成数学方法与思想;形成数学结构与体系。 总之,通过学习,我们可以培养学生的数学表征、抽象思考和数学理解能力,让学生能在问题中抽象出并理解数学概念、命题、方法

在抽象概括中发展思维能力

在抽象概括中发展思维能力 一、教材的变化与思考 本单元教学内容与旧教材相比,有较大的调整和变化(如下表): 从对比可以看出,原实验教材利用5个例题对四则混合运算及其顺序进行整理;而新教材仅用1个例题对四则混合运算顺序进行概括,增加了对加减乘除四则运算的意义及各部分之间关系的梳理总结。 对熟悉旧大纲版四年级下册数学教材的教师而言,这次变化颇有点“回归”的感觉。大纲版四年级下册的“整数和整数四则运算”单元,就专门对四则运算的意义及各部分之间的关系进行了整理。那么,这次“回归”用意何在?与以往的教学有什么不同? 首先,这样的编排,突出了对四则运算意义、关系的整理和概括,减少了混合运算因螺旋编排造成的循环过多、琐碎、教学步子较小、留给学生探索空间不足的问题。 其次,突出了对概念、关系等的抽象概括。实验教材为引导加强理解,改变教学中“死记硬背”的现象,淡化了对概念、法则、规律与关系等过分“形式化”的要求,但实际教学中,却容易导致对概念、法则、规律的抽象概括的忽视,

有时甚至出现基本的数量关系也模糊不清的现象。抽象性是数学的基本特征,数学的抽象概括过程对发展人的思维能力,特别是理性思维能力产生着重大影响。抽象概括也是数学建模的重要方式。因此,新教材适当重视了对基本数量关系以及有关内容的抽象与概括。如五上“小数乘法”,在引导学生用自己的语言对概念、规律、法则进行解读的基础上,引导完成文本概括(如图1所示)。本单元内容也是如此,突出对知识的梳理和抽象。 相比大纲版教材,新教材将四则运算的意义和各部分间的关系分成三部分:加、减法的意义和各部分间的关系;乘、除法的意义和各部分间的关系以及0的有关运算;运算律单独编排一个单元。这样编排更具系统性,有利于学生感悟知识之间的内在联系,构建知识框架;同时,相似的编排结构,便于学生借助已有的思维框架和认知经验,进行自主的迁移学习。 需要注意的是,教材突出对概念、关系、规律的抽象概括,目的是优化知识结构的同时,发展学生的思维能力与模型思想,重在过程。教学中要引导学生在解决问题的过程中,感悟联系、发现规律、建立模型。而不能把结果作为重点,忽视过程经历,一味强调得出概念、关系和规律,导致新的“死记硬背”的产生。 二、教学分析与建议

数学教学概论

数学教学概论 1.在古代,学校教育主要的目的是培养大大小小的官吏、僧侣。文职人员。 2.在中国,古代算学以测量田亩、计算税收等为目的,主要用于国家管理。 3.1982年,我国公布《全日制六年重点中学教学大纲(征求意见稿)》,提出了“教学中应该注意的几点”是: 1)要用辩证唯物主义观点阐述教学内容; 2)要面向全体学生,因材施教; 3)要调动学生的学习积极性; 4)要遵循认识规律进行教学; 5)要注意突出重点、解决难点、抓住关键; 6)要注意能力的培养。 4.2003年《普通高中数学课程标准(实验)》把“数学应用意识”作为高中数学课程的基本理念之一。 5.国际数学教育交流,始于1908年成立的国际数学教育委员会,简称ICMI,我国于1986年加入国际数学家联盟。 6.弗来登塔尔是世界著名数学家和数学教育家,他所认识的数学教育有五个主要特征: 1)情景问题是数学的平台; 2)数学化是数学教育的目标; 3)学生通过自己努力得到的结论和创造是教育内容的一部分; 4)“互动”是主要的学习方式。 5)学科交织是数学教育内容的呈现方式。 总的来说,可以归纳为三个词:现实、数学化、再创造。 7.在运用“现实的数学”进行教学时,必须明确认识以下几点: 第一,数学的概念、数学的运算法则以及数学的命题,归根结底都是来自于现实世界的实际需要,是现实世界的抽象反映和人类经验的总结。第二,数学研究的对象,是现实世界同一类事物或现象抽象而成的量化模式。 第三,社会需要的人才是多方面的,不同层次的、不同专业所需的数学知

识不尽相同。 8.数学化:弗赖登塔尔认为,人们在观察、认识和改造客观世界的过程中,运用数学思想和方法来分析和研究种种现象并加以整理和组织的过程,就叫做数学化。简单地说,数学地组织现实世界的过程就是数学化。 9.弗赖登塔尔说的“再创造”,其核心是数学过程再现。 10.波利亚认为中学数学教育的根本目的是“教会学生思考”,而为了教会学生思考,教师在教学时,要遵循学习过程的三个原则,即主动学习、最佳动机、循序渐进。 11.建构主义主要观点是,知识不是通过感观或交流被动获得的,而是通过认识主体的反省抽象来主动建构的;有目的的活动和认知结构的发展存在必然的联系;儿童是在与周围环境相互作用的过程中,逐步构建起关于外部世界的知识,从而使自身认知结构得到发展。 12.数学双基:数学的双基是指数学的基础知识和基本技能。 我国数学双基教学作为一个具有特定意义的名词,是以培养学生的“双基”为教学目标的教学活动,因此,“其内涵不只是限于双基本身,还包括如何在双基上谋求发展”。包括启发式教学、解题教学、数学思想方法的教学、变式教学等许多有利于学生发展的教学活动,都是和打好“数学双基”紧密结合扎起一起的。总之,中国的数学双基教学的内涵是“关于如何在双基基础上谋求发展的理论”。 13.中国数学双基教学的四个特征: 1)记忆通向理解形成直觉 2)运算速度保证高效思维 3)演绎推理坚持逻辑准确 4)依靠变式提高演练水平 14.数学双基教学由三个层次构成:双基基桩教学、双基模块教学、双基平台教学。这三个层次是学生双基学习由低水平向高水平的发展过程。 15.数学教育的基本功能:实用性功能、思维训练功能、选拔性功能。 16.学生的年龄特征是决定数学教育目标的主要依据。 17.数学教学原则可以概括为: 1)学习数学化原则;

数学抽象及其在教学中的应用

数学抽象及其在教学中的应用 抽象性是数学的基本特点之一,所有的数学知识能够说都是经过抽象得到的,小学数学中的知识和方法亦是如此。数学抽象也是一种基本的数学思想。学生学习数学,不但是要学习那些由前人抽象概括形成的数学知识,同时还要学习形成知识的抽象概括的方法。了解数学抽象的特殊性以及如何在小学数学教学中有效应用数学抽象方法就显得十分必要。本文将在分析数学抽象的内涵、分类、教育价值的基础上,探讨数学抽象在小学数学教学中的应用。 一、数学抽象的内涵和分类 1.数学抽象的内涵。 “抽象”一词源于拉丁语“abstracio”,其本意是排除、抽取的意思。现在人们对抽象的理解一般有两种,一种是用来形容那种远离具体经验,因而不太容易理解的对象性质的水准;另一种是指从具体事物中舍弃非本质属性而抽取本质属性的过程和方法。后者反映出抽象是一种思维活动。 抽象性是数学的基本特点之一,抽象也是数学活动最基本的思维方法。作为方法的数学抽象抽取的是事物在数量关系和空间形式等方面本质属性,进而提炼数学概念,构造数学模型,建立数学理论。 2.数学抽象的分类。 数学的一切活动,从概念到方法,实质上都是抽象的,大到组织一个数学体系所用的公理化方法,在实际应用中的数学模型方法,小到一个概念的给出,一个计算过程的建立,一个证明技巧的发现,甚至于一个问题的表征都需要用到数学抽象。由此也能够看出数学抽象是多种多样的,也是多层次的。了解数学抽象的分类有助于我们在教学中抓住抽象的重点和关键。 数学抽象根据抽象对象的性质能够分为“表征型抽象”“原理型抽象”和“建构型抽象”。对事物所表现出来的特征的抽象,称为“表征型抽象”。例如三角形、正方形、圆、立方体、轴对称等概念都是“表征型抽象”的结果。对事物内在因果性、规律性、关系性的抽象,称为“原理型抽象”。例如乘法分配律、三角形内角和为180o等基本数学关系都是“原理型抽象””的结果。而建立在这些抽象基础上的数学建构性活动称为“建构型抽象”。如定义质数和合数的概念的活动就是“建构型抽象”。 数学抽象还能够从抽象过程的特征上分为“理想化抽象”“等置抽象”“弱抽象”和“强抽象”。理想化抽象是指从数学研究的需要出发,人们构造出一些理想化的对象的思维过程,理想化抽象得出的数学概念包含了对于真实事物或现象的简化和完善化,因而这些概念与现实原型本身未必完全相符,如线段、射线、直线等概念都是理想化抽象的结果;又如,在解决实际问题的时候,往往用线段图来表示题目中的数量关系,而线段图也是理想化抽象的结果。理想化抽象也能够通过引进理想化元素来发现数学理论,如虚数概念的建立。等置抽象是指依据某种等价关系抽取一类对象共同特征的抽象方法。如从三个苹果、三棵树、三枚棋子……这些在数量上具有共同特征的事物中抽取出“自然数3”这个概念,就是等置抽象。弱抽象也能够叫做概念“扩张式抽象”,即

数学分类与抽象数学

纯粹数学研究从客观世界中抽象出来的数学规律的内在联系,也可以说是研究数学本身的规律。它大体上分为三大类,即 研究空间形式的几何类,研究离散系统的代数类,研究连续现象的分析类 研究空间形式的几何类 属于第一类的如微分几何、拓扑学。微分几何是研究光滑曲线、曲面等,它以数学分析、微分几何为研究工具。在力学和一些工程问题(如弹性壳结构、齿轮等方面)中有广泛的应用。拓扑学是研究几何图形在一对一的双方连续变换下不变的性质,这种性质称为“拓扑性质”。如画在橡皮膜上的图形当橡皮膜受到变形但不破裂或折叠时,曲线的闭合性、两曲线的相交性等都是保持不变的。 研究离散系统的代数类 属于第二类的如数论、近世代数。数论是研究整数性质的一门学科。按研究方法的不同,大致可分为初等数论、代数数论、几何数论、解析数论等。近世代数是把代数学的对象由数扩大为向量、矩阵等,它研究更为一般的代数运算的规律和性质,它讨论群、环、向量空间等的性质和结构。近世代数有群论、环论、伽罗华理论等分支。它在分析数学、几何、物理学等学科中有广泛的应用。 研究连续现象的分析类 属于第三类的如微分方程、函数论、泛函分析。微分方程是含有未知函数的导数或偏导数的方程。如未知函数是一元函数,则称为常微分方程,如未知函数是多元函数,则称为偏微分方程。函数论是实函数论(研究实数范围上的实值函数)和复变函数(研究在复数平面上的函数性质)的总称。泛函分析是综合运用函数论、几何学、代数学的观点来研究无限维向量空间(如函数空间)上的函数、算子和极限理论,它研究的不是单个函数,而是具有某种共同性质的函数集合。它在数学和物理中有广泛的应用。 抽象代数就是近世代数,法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数也是现代计算机理论基础之一。 简介 抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、域、模、矢量空间和代数。这些代数结构中,有的在19世纪就已经被给出了正式的定义。事实上,对抽象代数的研究是应数学更严格化的要求而发展起来的。对抽象代数的研究还使人们形成了对全部数学和自然科学的基础性逻辑假设(的复杂性)的整体认识,现今,几乎没有那一个数学分支用不到代数学的结论。此外,随着抽象代数的发展,代数学家们发现:明显不同的逻辑结构通过类比可以得到一个很简练的由公理构成的核心。这对深入研究代数的数学家是有益的,并赋予他们更大的本领。 “抽象代数”这词,是为了与“初等代数”区别开,后者教授公式和代数表达式的运算方法,其中有实数、复数和未知项。20世纪初,抽象代数有时也称为现代代数,近世代数。 在泛代数中有时用抽象代数这一称呼,但作者大多简单的称作“代数”。 定义 抽象代数是研究各种抽象的公理化代数系统的数学学科。由于代数可处理实数与复数以

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

(完整word版)数学教育概论知识点

乔治?波利亚是美籍匈牙利数学家。 他有著名的三本书:《怎样解题》(1944)、《数学的发现》(1954)、《数学与猜想》(1961)。其中《怎样解题》一书被译成17种文字。 波利亚提供的“怎样解题”表(第48-49页) 分四步:1.了解问题;2.拟订计划;3.实行计划;4.回顾。 弗赖登塔尔认识的数学教育有五个主要特征 1.情境问题是教学的平台; 2.数学化是数学教育的目标; 3.学生通过自己努力得到的结论和创造是教育内容的一部分; 4.“互动”是主要的学习方式; 5.学科交织是数学教育内容的呈现方式。 这些特征可以用三个词来概括——现实、数学化、再创造。 数学化:人们在观察、认识和改造客观世界的过和中,运用数学的思想和方法来分析和研究客观世界的种种现象并加以整理和组织的过程。 再创造:强调学生学习数学是一个经验、理解和反思的过程,是以学生为主体的学习,其核心过程是数学过程再现。 高等师范院校面临新挑战 答:高中的新课程标准让广大的高中数学教师有些望而生畏,他们感到许 多选修课的内容他们并没有学过,许多课程他们没法开设。比如,高

中选修课系列3涉及高等数学,包括数学史选讲,信息安全与密码,球面上的几何,对称与群,欧拉公式与闭曲面分类,三等分角与数域扩充等。由于新一轮的课程改革强调要让学生主动参与教学,要鼓励学生积极展开讨论,探索数学知识的来龙去脉和提出问题,因此学生提出的问题中,有许多使教师感到难堪,有的他们没法回答,有的他们回答不清楚。 基本活动经验的类型 1.直接数学活动经验;3.间接数学活动经验;3.专门设计的数学活动经验;4.意境联结性数学活动经验。 基础教育部分 一.“标准”有哪些改革目标? 1.指导思想:以邓小平同志的“教育要面向现代化,面向世界,面向未来”和江泽民同志“三个代表”重要思想为指导。 2.教育目标方面:培养爱国精神和“四有新人”等。 3.课程内容:改变课程内容“难、繁、偏、旧”和过于注重书本知识的现状。 4.课程结构方面:改变过于强调学科本位、科目过多和缺乏整合的现状,设置综合课程。 5.课程实施方面。 6.课程评价方面。 7.课程管理方面。 二.数学内容上的改革(教材内容有哪些方面发生了变化?)第158页 1.划分新的数学学习领域:将内容分为“数学与代数”、“空间与图形”、

数学抽象方法

第6章数学抽象方法 一、数学抽象方法 数学抽象方法是抽象方法在数学中的具体运用。它是从考虑的问题出发,通过对各种经验事实的观察、分析、综合和比较,在人们的思维中撇开事物现象的、外部的、偶然的东西,抽出事物本质的、在的、必然的东西,从空间形式和数量关系上揭示客观对象的本质和规律,或者在已有数学知识的基础上,抽出其某一种属性作为新的数学对象,以此达到认识事物本质和规律的目的的一种数学研究方法。 二、数学抽象的特点 抽象性并非数学所独有,但数学的抽象性有它自身的特点。 1.数学抽象的特殊容。 数学研究的对象只是现实世界的空间形式和数量关系而舍弃其他一些具体容。 2.数学抽象的特殊高度。 和一般的自然科学相比,数学抽象的又一特点在于它所达到的高度,数学的抽象程度远远超过了自然科学中的一般抽象。 首先,数学抽象往往是在其他学科抽象基础上的再抽象。 其次,数学抽象具有逐级抽象的特点。 3.数学抽象的特殊方法。 数学抽象就是一种建构的活动,数学的研究对象是通过逻辑建构活动来得到构造的,是借助于定义和推理进行的。

三、数学抽象的作用 1.有利于使认识深入到事物的本质 什么是椭圆? ——椭圆是鸡蛋的那种外形或者有点像橄榄的那种形状; ——椭圆是平面上到两定点距离之和为一定值的点的轨迹,或者椭圆是当240b ac -<时,满足方程220ax bxy cy dx ey f +++++=的点(x ,y)的集合。 2. 有利于认识一般 下面是两类不同的方程: 2212350,704 x x x x ++=+ += 20ax bx c ++= 3.有利于认识无限 什么是自然数? 1,2,3, 4,5,6,等等。 意大利数学家皮亚诺这样定义自然数集: 自然数是指满足以下性质的集合N 中的元素: (1)1是N 的一个元,它不是N 中任何元的后继者,若a 的后继者用a +表示,则对于N 中任何a ,a +≠1; (2)对于N 中任意元a ,存在而且仅存在一个后继者a +;

数学核心素养之数学抽象理解

数学核心素养之数学抽象理解 高中课程标准修订组,按照内涵、价值和表现的框架,给出的高中数学核心素养是:数学抽象、逻辑推理、数学建模、运算能力、直观想象、数据分析。 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。 数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。…… 反思1:只舍去“物理属性”,不舍去“社会属性”“形式属性”?应该是“具体属性”. 反思2:“表征”应改为“表示”,如此更通俗易懂,也更准确。表征是教育心理学的术语,是认知者在脑中重新表示反映——再表示的意思。 反思3:数量与数量关系、图形与图形关系已经属于纯数学世界的内容,由两者抽象出数学概念及关系就是所说的垂直数学化,即数学世界内部由低级向高级的发展。“从事物的具体背景中抽象出一般规律和结构”指的是从真实世界得出数学原理结构,是由真实世界到数学世界的水平数学化之一,但却少了另一种更基础的水平数学化:由真实世界抽象出数量、图形、概念等数学模式。例如:实际问题→茎叶图;力→向量;力的分解合成→向量的分解合成。 反思4:抽象是数学的特点之一,但不是数学所特有的。逻辑学、哲学、文学、艺术中的“抽象”俯拾皆是。浙江大学120周年校庆通告你读懂了多少?“庠序”“缉熙”“黾勉”不抽象吗?毕加索的画不抽象吗? 概括性才是数学更本质的特点。抽象是过程手段,是概括的基础,而概括才是最终的目的.理解数学概念、原理的本质不是理解抽象性,而是理解数学概念、原理的概括性或者说“通杀性”! 反思5:“数学抽象”是一种提炼抽取数学对象的手段,把它作为一种数学思想恰当吗?请问国际上有哪一本专著、论文把数学抽象作为数学思想之一?从定义所阐述的内容看,“数学抽象”实际上就是数学家、数学教育家早已提出的“数学化”的部分内容。 数学化是整理现实性的过程,它包括数学家的全部组织活动,比如公理化、形式化、图式化、建模,以及数学内部由低级向高级的推动过程这里的“现实性”是指真实世界和数学世界的总和,不能望文生义地理解为真实世界、现实世界. 公理化是指从少数不加定义的原始概念和不加证明的公理出发,运用逻辑推理规则把一门学科建立成为演绎系统的过程. 形式化是指“用日益有效的符号对语言的整理、修正和转化的过程.”而关于图式化,在介绍完公理化、形式化后,是这样形容的:“人们早已习惯于把经历和行为示范性地推广,从中抽象出定律和规则.形成与现实的体系相吻合的图式.最后一步就是图式化,它和公理化、形式化相对应,尤其是当考虑的是内容而不是抽象的形式或语言的时候.”.因此,可以认为,图式化就是形式内容的内化过程,其结果是一种心理意义,即心理结构. 建模是数学化的一个方面,在的术语观中,模型是不可缺少的一种中介,建模就是用模型把复杂的现实或理论来理想化或简单化,从而更易于进行形式的数学处理. 数学化被分成两种:一是水平数学化,即从生活世界中抽象概括出数学概念、数学原理等数学模式的过程,是从“生活世界”到“数学世界”的转化过程.二是垂直数学化:即从现有的数学世界中抽象概括出更高级的数学模式的过程,是从低层数学到高层数学的过程. 国内外同行早已认同了的观点:学数学就是学习数学化,教数学就是教数学化。数学化的学习就是学习数学化的过程,即学习如何进行公理化、形式化、图式化、模型化,以及学习在数学内部由低级向

相关文档
最新文档