选择性集成算法分类与比较

选择性集成算法分类与比较
选择性集成算法分类与比较

产品集成方案

目录 1产品集成计划 ............................................... 目的 .......................................................... 适用范围 ...................................................... 参考文件 ...................................................... 职责 .......................................................... 集成环境说明 .................................................. 产品集成进度 .................................................. 产品集成顺序 .................................................. 产品集成备选顺序 .............................................. 产品集成规程 .................................................. 2产品集成方案 ............................................... 2.1 ................................................................................................. 集成策略 ......................................................................................................... 资源.22 2.2.1 ................................................. 集成测试过程角色职责映射表

分类器的动态选择与循环集成方法

分类器的动态选择与循环集成方法 郝红卫;王志彬;殷绪成;陈志强 【期刊名称】《自动化学报》 【年(卷),期】2011(037)011 【摘要】In order to deal with the problems of low efficiency and inflexibility for selecting the optimal subset and combining classifiers in multiple classifier systems, a new method of dynamic selection and circulating combination (DSCC) is proposed. This method dynamically selects the optimal subset with high accuracy for combination based on the complementarity of different classification models. The number of classifiers in the selected subset can be adaptively changed according to the complexity of the objects. Circulating combination is realized according to the confidence of classifiers. The experimental results of handwritten digit recognition show that the proposed method is more flexible, efficient and accurate comparing to other classifier selection methods.%针对多分类器系统设计中最优子集选择效率低下、集成方法缺乏灵活性等问题,提出了分类器的动态选择与循环集成方法(Dynamic selection and circulating combination,DSCC).该方法利用不同分类器模型之间的互补性,动态选择出对目标有较高识别率的分类器组合,使参与集成的分类器数量能够随识别目标的复杂程度而自适应地变化,并根据可信度实现系统的循环集成.在手写体数字识别实验中,与其他常用的分类器选择方法相比,所提出的方法灵活高效,识别率更高.

食品分析方法的分类

食品分析方法的分类 Modified by JACK on the afternoon of December 26, 2020

食品分析方法的分类 对食品品质的评价,主要包括食品营养、卫生和嗜好性三个方面。食品分析所采用的分析方法主要有感观分析法、理化分析法、微生物分析法和酶分析法。 1.感观分析法感官分析又叫感观检验或感观评价,是通过人体的各种感官 器官(眼、耳、鼻、舌、皮肤)所具有的视觉、听觉、嗅觉、味觉和触觉,结合平时积累的实践经验,并借助一定的器具对食品的色、香、味、形等质量特性和卫生状况做出判定和客观评价的方法。感观检验作为食品检验的重要方法之一,具有简便易行、快速灵敏、不需要特殊器材等特点,特别适用于目前还不能用仪器定量评价的某些食品特性的检验,如水果滋味的检验、食品风味的检验以及烟、酒、茶的气味检验等。 依据所使用的感觉器官的不同,感官检验可分为视觉检验、嗅觉检验、味觉检验、触觉检验和听觉检验五种。 (1)视觉检定是鉴定者利用视觉器官,通过观察食物的外观形态、颜色光泽、透明度等,来评价食品的品质如新鲜程度、又无不良改变以及鉴别果蔬成熟度等的方法。 (2)嗅觉鉴定是通过人的嗅觉器官检验食品的气味,进而评价食品质量(如纯度、新鲜度或劣变程度) (3)味觉鉴定是利用人的味觉器官(主要是舌头),通过品尝食物的滋味和风味,从而鉴别食品品质优劣的方法。味觉检验主要用来评价食品的风味(风味是食品的香气、滋味、入口获得的香气和口感的综合构成),也是识别某些食品是否酸败、发酵的重要手段。

(4)听觉器官听觉鉴定是凭借人体的听觉器官对声音的反应来检验食品品质的方法。听觉鉴定可以用来评判食品的成熟度、新鲜度、冷冻程度及罐头食品的真空度等。 (5)触觉鉴定是通过被检食品用于鉴定者的触觉器官(手、皮肤)所产生的反应来评价食品品质的一种方法。如根据某些食品的脆性、弹性、干湿、软硬、黏度、凉热等情况,可评判食品的品质优劣和是否正常。 感官分析的方法很多,常用的检验方法有差别检验法,标度和类别检验法、分析或描述性检验法等。 感官分析法虽然简便、实用且多数情况下不受鉴定地点的限制。但也存在明显缺陷,由于感官分析是以经过培训的评价员的感觉作为一种“仪器”来测定食品的质量特性或鉴别产品之间的差异,因此判断的准确性与检验者的感觉器官的明锐程度和实践经验密切相关。同时检验者的主观因素(如健康状况、生活习惯、文化素养、情绪等),以及环境条件(如光线、声响等)都会对鉴定结果产生一定的影响。另外,感官检验的结果大多情况下只能用于比较性的用词(优、良、中、劣等)表示或用文字表述,很难给出食品品质优劣程度的确切数字。 2.理化分析法根据测定原理、操作方法等的不同,梨花分析又可分为物理分析法、化学分析法和仪器分析法三类。 (1)物理分析法通过对被测食品的某些物理性如温度、密度、折射率、旋光度、沸点、透明度的的测定,可间接求出食品中某种成分的含量,进而判断被检食品的纯度和品质。物理分析法简便、实用,在实际工作中应用广泛。

智能计算平台应用开发(中级)-第8章-机器学习基础算法建模-集成学习算法

第8章?机器学习基础算法建模

目录 1.机器学习 2.分类算法 3.回归算法 4.集成学习算法 5.聚类算法 6.关联规则算法 7.智能推荐算法

l 在机器学习的有监督学习算法中,目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往达不到理想状态,有时只能得到多个有偏好的模型(弱分类器,在某些方面表现较好)。 ?集成学习是组合多个弱分类器,得到一个更好且更全面的强分类器,即将多个分 类器聚集在一起,以提高分类的准确率。 ?这些分类器可以是不同的算法,也可以是相同的算法。如果把单个分类器比作一 个决策者,那么集成学习的方法就相当于多个决策者共同进行一项决策。 集成学习

l集成学习的作用 将多个弱分类器合并,实现更好的效果。 l分类器间存在一定的差异性,会导致分类的边界不同,可以理解为分类器是一个比较专精的专家,它有它自己一定的适用范围和特长。 l通过一定的策略将多个弱分类器合并后,即可拓展模型的适用范围,减少整体 的错误率,实现更好的效果。

l 数据过大时会导致训练一个模型太慢,而集成学习可以分别对数据集进行划分和有放回的操作,从而产生不同的数据子集,再使用数据子集训练不同的分类器, 最终再将不同的分类器合并成为一个大的分类器。 l 数据过小时则会导致训练不充分,而集成学习可以利用Bootstrap 方法进行抽样,得到多个数据集,分别训练多个模型后再进行组合。如此便可提高训练的准确度 和速度,使得之前很难利用的数据得到充分的利用。集成学习在各个规模的数据集上都有很好的策略。

将多个模型进行融合。 l对于存在多个异构的特征集的时候,很难进行融合,可以考虑使用集成学习的方式,将每个数据集构建一个分类模型,然后将多个模型进行融合。

产品集成方案模板

目录

1.目的 编写此文件的目的。 2.适用范围 指明本文件的预期应用范围。 3.参考文件 4.职责 [在具体的产品集成计划中应给出明确的人员名单及相应的角色、职责映射。开发经理、部门经理、开发工程师、配置工程师可相应承担这样的角色。]

5.集成环境说明 [ 描述集成的硬件设备环境、网络通信环境、集成支持平台环境、集成支持工具等。 ] 说明集成环境配置以及维护的注意事项。如果为硬件集成,则需说明环境方面所应采取的安全措施,例如对静电场和磁场的考虑。 6.产品集成进度 [ 集成时间表与集成策略相对应,明确在集成阶段里什么时间由集成单元负责人集成其负责的集成单元。集成过程时间表应依从项目计划中给出的集成时间表。]

说明产品集成的时间进度,及工作安排。 7.产品集成顺序 说明产品集成顺序,可使用Visio绘制。在中英文混排时,英文部分一定要用英文输入,不能采用中文输入的英文字母。流程图用Visio 绘制完成后,在WORD中采用选择性粘贴“增强型图元文件Picture (Enhanced Metafile)”的形式粘贴到Word文件中。 8.产品集成备选顺序 说明产品备选集成顺序和备选的组件,以及采用备选集成顺序的条件。

集成策略 [不论是采用结构化或面向对象方法设计实现的系统,它们的集成一般是一个递增的过程,集成策略中的主要内容是集成单元的集成顺序和接口定义。 接口定义是描述集成单元应遵守的共同约定,例如采用构件构造系统,集成单元应遵循构件系统规范(COM/DCOM/CORBAR/OMS等)。 集成顺序是集成单元的先后顺序,如哪些部分采用自顶向下集成,哪些部分测试自底向上集成,这取决于需求定义、系统体系结构等因素。 集成测试是把经过单元测试的模块放在一起形成一个功能模块或子系统来测试。着重测试模块的接口以及集成后的功能。] 9.产品集成规程 说明产品集成时注意事项。如果为硬件集成,则需说明集成方面所应采取的安全措施,例如对静电场和磁场的考虑。组织的集成步骤、及判别一个组件是否集成成功的标准。 交付的工作产品

JAVA中常用的集合类型

JAVA常用的高级数据类型——集合类型 一、JAVA语言中的集合类型主要有三种形式:Set(集)、List(列表)、Map(映射),每种类型的集合都包括三部分:接口、实现和算法。 a)集合接口实现集合的操作和集合的具体功能实现细节的相互分离—— Set接口、List接口、Map接口 b)集合的具体功能实现类实质上是各种可重用的数据结构的具体表示 List接口的实现类有ArrayList、LinkedList、Stack和Vector等 集合类,Vector 类提供了实现可增长数组的功能,随着更多元素加 入其中,数组变的更大。在删除一些元素之后,数组变小。 Set接口的实现类有HashSet、LinkedHashSet和TreeSet等集合类 Map接口的实现类有HashMap、Hashtable、LinkedHashMap、Properties和TreeMap等集合类。 c)集合的算法指可以对实现集合接口的各个集合的功能实现类提供如排 序、查找、交换和置换等方面的功能实现。 二、List接口 1.List接口代表有序的集合,可以对List接口代表的有序集合中每个元素 的插入位置进行精确地控制,并利用元素的整数索引(代表元素在集合中的位置)访问元素中的各个成员,List接口代表的集合是允许出现重复元素的。 2.List接口主要成员方法: 1)void add(int index,E element)在列表指定位置插入指定元素 2)E get(int index) 返回结合中指定位置的元素 3)E remove(int index) 移除集合中指定位置的元素 4)E set(int index,E elment) 用指定元素替换集合中指定位置的元素 5)boolean add(E o) 向列表的尾部追加指定的元素 6)boolean contains(Object o) 如果列表包含指定的元素,则返回true。 7)boolean isEmpty() 如果列表不包含元素,则返回 true。 8)int size() 返回列表中的元素数 9)Iterator iterator()返回以正确顺序在列表的元素上进行迭代的迭代器。 3.List的实现类 List在数据结构中分别表现为数组(ArrayList)、向量(Vector)、链表(LinkedList)、堆栈(Stack)和队列等形式。 Vector集合和ArrayList集合都是采用数组形式来保存对象,区别在于ArrayList集合本身不具有线程同步的特性,不能用在多线程的环境下,可以使用ArrayList集合能够节省由于同步而产生的系统性能的开销。而Vector集合实现了对线程同步的支持,因此在多线程并发访问的应用环境下,该集合本身能够保证自身具有线程安全性。在多线程的并发访问中,可以将Vector集合的对象实例设计为类中的成员属性,而应该将ArrayList 集合的对象实例设计为局部对象。 public class UserInfo{ List oneVector=new Vector(); public void execute(){

3-决策树与集成算法

树模型 决策树:从根节点开始一步步走到叶子节点(决策) 所有的数据最终都会落到叶子节点,既可以做分类也可以做回归

树的组成 根节点:第一个选择点 非叶子节点与分支:中间过程叶子节点:最终的决策结果

决策树的训练与测试 训练阶段:从给定的训练集构造出来一棵树(从跟节点开始选择特征,如何进行特征切分) 测试阶段:根据构造出来的树模型从上到下去走一遍就好了 一旦构造好了决策树,那么分类或者预测任务就很简单了,只需要走一遍就可以了,那么难点就在于如何构造出来一颗树,这就没那么容易了,需要考虑的问题还有很多的!

如何切分特征(选择节点) 问题:根节点的选择该用哪个特征呢?接下来呢?如何切分呢? 想象一下:我们的目标应该是根节点就像一个老大似的能更好的切分数据(分类的效果更好),根节点下面的节点自然就是二当家了。 目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点,以此类推。

衡量标准-熵 熵:熵是表示随机变量不确定性的度量 (解释:说白了就是物体内部的混乱程度,比如杂货市场里面什么都有那肯定混乱呀,专卖店里面只卖一个牌子的那就稳定多啦) 公式:H(X)=-∑ pi * logpi, i=1,2, ... , n 一个栗子:A集合[1,1,1,1,1,1,1,1,2,2] B集合[1,2,3,4,5,6,7,8,9,1] 显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些 而B中类别太多了,熵值就会大很多。(在分类任务中我们希望通过节点分支后数据类别的熵值大还是小呢?)

衡量标准-熵 熵:不确定性越大,得到的熵值也就越大 当p=0或p=1时,H(p)=0,随机变量完全没有不确定性当p=0.5时,H(p)=1,此时随机变量的不确定性最大 如何决策一个节点的选择呢? 信息增益:表示特征X使得类Y的不确定性减少的程度。(分类后的专一性,希望分类后的结果是同类在一起)

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

预测方法的分类

预测方法的分类 郑XX 预测方法的分类 由于预测的对象、目标、内容和期限不同,形成了多种多样的预测方法。据不完全统计,目前世界上共有近千种预测方法,其中较为成熟的有150多种,常用的有30多种,用得最为普遍的有10多种。 1-1预测方法的分类体系 1)按预测技术的差异性分类 可分为定性预测技术、定量预测技术、定时预测技术、定比预测技术和评价预测 技术,共五类。 2)按预测方法的客观性分类 可分为主观预测方法和客观预测方法两类。前者主要依靠经验判断,后者主要借 助数学模型。 3)按预测分析的途径分类 可分为直观型预测方法、时间序列预测方法、计量经济模型预测方法、因果分析 预测方法等。 4)按采用模型的特点分类 可分为经验预测模型和正规的预测模型。后者包括时间关系模型、因果关系模 型、结构关系模型等。 1-2 常用的方法分类 1)定性分析预测法 定性分析预测法是指预测者根据历史与现实的观察资料,依赖个人或集体的经验与智慧,对未来的发展状态和变化趋势作出判断的预测方法。 定性预测优缺点 定性预测的优点在于: 注重于事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单的迅速,省时省费用。

定性预测的缺点是: 易受主观因素的影响,比较注重于人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其是缺乏对事物发展作数量上的精确描述。 2)定量分析预测法 定量分析预测法是依据调查研究所得的数据资料,运用统计方法和数学模型,近似地揭示预测对象及其影响因素的数量变动关系,建立对应的预测模型,据此对预测目标作出定量测算的预测方法。通常有时间序列分析预测法和因果分析预测法。 ⅰ时间序列分析预测法 时间序列分析预测法是以连续性预测原理作指导,利用历史观察值形成的时间数列,对预测目标未来状态和发展趋势作出定量判断的预测方法。

(完整word版)系统集成及分类

系统集成 科技名词定义 中文名称:系统集成 英文名称:system integration 定义:将不同的系统,根据应用需要,有机地组合成一个一体化的、功能更加强大的新型系统的过程和方法。 所属学科:测绘学(一级学科);摄影测量与遥感学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 系统集成是在系统工程科学方法的指导下,根据用户需求,优选各种技术和产品,将各个分离的子系统连接成为一个完整可靠经济和有效的整体,并使之能彼此协调工作,发挥整体效益,达到整体性能最优。 目录 概念 新兴的服务方式 从业人员素质要求 特点 系统集成商的发展 系统集成分类 概念 新兴的服务方式 从业人员素质要求 特点 系统集成商的发展 系统集成分类 展开

所谓系统集成(SI,System Integration),就是通过结构化的综合布线系统和计算机网络技术,将各个分离的设备(如个人电脑)、功能和信息等集成到相互关联的、统一和协调的系统之中,使资源达到充分共享,实现集中、高效、便利的管理。系统集成应采用功能集成、网络集成、软件界面集成等多种集成技术。系统集成实现的关键在于解决系统之间的互连和互操作性问题,它是一个多厂商、多协议和面向各种应用的体系结构。这需要解决各类设备、子系统间的接口、协议、系统平台、应用软件等与子系统、建筑环境、施工配合、组织管理和人员配备相关的一切面向集成的问题。 新兴的服务方式 系统集成作为一种新兴的服务方式,是近年来国际信息服务业中发展势头最猛的一个行业。系统集成的本质就是最优化的综合统筹设计,一个大型的综合计算机网络系统,系统集成包括计算机软件、硬件、操作系统技术、数据库技术、网络通讯技术等的集成,以及不同厂家产品选型,搭配的集成,系统集成所要达到的目标-整体性能最优,即所有部件和成分合在一起后不但能工作,而且全系统是低成本的、高效率的、性能匀称的、可扩充性和可维护的系统,为了达到此目标,系统集成商的优劣是至关重要的。 从业人员素质要求 这就对系统集成技术人员提出了很高的要求:不仅要精通各个厂商的产品和技术,能够提出系统模式和技术解决方案。更要对用户的业务模式、组织结构等有较好的理解。同时还要能够用现代工程学和项目管理的方式,对信息系统各个流程进行统一的进程和质量控制,并提供完善的服务。 特点 系统集成有以下几个显著特点: 1:系统集成要以满足用户的需求为根本出发点。 2:系统集成不是选择最好的产品的简单行为,而是要选择最适合用户的需求和投资规模的产品和技术。 3:系统集成不是简单的设备供货,它体现更多的是设计、调试与开发的技术和能力。 4:系统集成包含技术、管理和商务等方面,是一项综合性的系统工程。技术是系统集成工作的核心,管理和商务活动是系统集成项目成功实施的可靠保障。 5:性能性价比的高低是评价一个系统集成项目设计是否合理和实施是否成功的重要参考因素。

最新C语言常用算法集合汇总

C语言常用算法集合

1.定积分近似计算: /*梯形法*/ double integral(double a,double b,long n) { long i;double s,h,x; h=(b-a)/n; s=h*(f(a)+f(b))/2; x=a; for(i=1;i

if(n==1||n==2) *s=1; else{ fib(n-1,&f1); fib(n-2,&f2); *s=f1+f2; } } 3.素数的判断: /*方法一*/ for (t=1,i=2;i0;n/=10) k=10*k+n%10; return k; } /*求回文数*/

统计分析分类以及SPSS分析方法

统计分析分类以及SPSS分析方法 一、统计分析内容的分类 人类对客观事物的理解是多种多样的,这些理解能够是企业生产的规模,能够是企业生产机器的稳定性,能够是一个地区的教学质量,能 够是市场经济的规律,也能够是一个时期的经济形势或环境等等。撇 开这些形形色色的形式内容,人们对客观事物的理解从目的来看可分 为表面理解和本质理解两种。本文将这种从形式内容中抽象出来的对 客观事物的理解称之为统计分析内容。表面理解就是对客观事物表面 特征的理解;本质理解是从客观事物表面特征出发,最终得到超越客 观事物表面特征的本质特征的理解。同样,与统计分析内容相对应的 统计分析(方法)就可分为表面分析和本质分析两种。在统计分析方 法的使用上,形式内容的理解与统计分析方法的关联不大,反而是在 统计分析内容理解(对客观事物表面理解和本质理解)上,分析方法 的使用差别较大,所以本文主要从统计分析方法的角度对统计分析内 容加以细分。在SPSS中,横向叫个案,所有个案组成样本;纵向叫变量,一个变量代表客观事物的某方面特征。表面理解在SPSS中主要对 应于样本理解,目的是理解样本所代表的具体事物的特征(当然样本 的特征离不开变量,但目的不在变量)。本质理解则以样本数据为基础,总结出同类事物的普遍特征,这些特征就是变量自身的特征(它 从样本出发,但又超越样本),所以本质理解能够认为就是对变量的 理解。统计分析内容的划分与人们对客观事物的理解规律也密不可分。人类对客观事物的理解都是由浅入深、由外及里的。这种由浅入深、 由外及里的理解过程正好体现了表面理解和本质理解两个过程。统计 分析的两种内容既是人们对客观事物理解的两个方面,也是人们对客 观事物理解的两个过程,但它们能够是相互独立的。因为人类出于理 解目的的需要能够只理解客观事物的表面,也能够只理解客观事物的 规律。 (一)表面理解

集成电路分类及其特点

时间:2014春季学期班级:1208101 学号:1120810102 姓名:王云 集成电路分类及其特点 摘要:集成电路根据不同的功能用途分为模拟和数字两大类别,而具体功能更是数不胜数,其应用遍及人类生活的方方面面。集成电路根据内部的集成度分为大规模、中规模、小规模三类。其封装也有许多形式:“双列直插”和“单列直插”的最为常见。消费类电子产品中用软封装的IC,精密产品中用贴片封装的IC等。对于CMOS型IC,特别要注意防止静电击穿IC,最好也不要用未接地的电烙铁焊接。集成电路型号众多,随着技术的发展,又有更多的功能更强、集成度更高的集成电路涌现,为电子产品的生产制作带来了方便。 关键词:集成电路 分类 特点 发展趋势 关键技术 一、概述 集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。 集成电路发明者为杰克·基尔比--基于锗的集成电路 和罗伯特·诺伊思--基于硅的集成电路(当今半导体工业大多数应用的是基于硅的集成电路)。仅仅在其开发后半个世纪,集成电路变得无处不在,电脑,手机和其他数字电器成为现代社会结构不可缺少的一部分。这是因为,现代计算,交流,制造和交通系统,包括互联网,全都依赖于集成电路的存在。甚至很多学者认为有集成电路带来的数字革命是人类历史中最重要的事件。 二、分类及其特点 集成电路有很多种分类方法,常见的有以下几种: 1. 按使用功能分类 按使用功能主要分为模拟集成电路和数字集成电路两大类别。 (1)模拟集成电路。 模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。主要有集成稳压器、运算放大器、功率放大器及专用集成电路等。其主要类型如下图1:

机器学习实战之分类算法

机器学习实战之分类算法 第一章机器学习概论 (4) 机器学习基本概念 (4) 机器学习的主要任务以及相应的算法 (4) 如何选择合适的算法? (4) 机器学习应用的步骤 (5) 第二章 K近邻算法(KNN) (5) 工作原理 (5) 实现步骤 (6) K近邻算法的优缺点 (6) 第三章决策树 (7) 基本思路 (7) 集合无序程度测量 (7) 应用场景 (7) 优缺点 (7) 第四章朴素贝叶斯分类 (8) 基本思路 (8) 基本假设 (8) 条件概率 (8) 词袋模型和词集模型 (9) 优缺点 (10) 标称型和数值型数据的区别 (10)

主要应用及步骤 (10) 第五章逻辑回归 (12) 基本思想 (12) 使用场景 (12) 优缺点 (12) Sigmoid函数 (13) 回归系数 (13) 梯度上升法 (14) 特征缺失处理 (14) 标签缺失处理 (14) 第六章支持向量机SVM (14) 基本思想 (14) SVM第一层理解 (15) 超平面的确定 (15) 函数间隔和几何间隔 (15) 最大间隔分类器 (16) SMO优化算法 (16) 核函数 (19) 应用场景 (19) 第七章 AdaBoost分类 (19) Bagging (20) Boosting (20) Adaboost (20) Adaboost的优点 (20)

Adaboost实现步骤 (21) 第八章非均衡分类问题 (23) 分类性能指标 (23) 混淆矩阵 (23) ROC曲线 (24) 处理非均衡问题的数据抽样 (24)

第一章机器学习概论 机器学习基本概念 机器学习就是将无序的数据转化为有用的信息。一个实例有n个特征,由n列组成。机器学习最主要的任务就是分类,另一个就是回归,回归中比较典型的就是线性拟合。分类和回归都属于监督学习,因为这类算法必须知道要预测什么,即已知目标变量的分类信息。与监督学习对应的是无监督学习,此时数据没有类别信息,也不会给定目标值,将数据集合分成由类似的对象组成的多个类的过程叫做聚类。将描述数据统计值的过程称之为密度估计。分类首先要进行训练,训练样本集必须确定目标变量的值,以便发现特征与目标变量之间的关系。特征或者属性通常是训练样本集的列,他们是独立测量得到的结果,多个特征联系在一起共同组成一个训练样本。 机器学习的主要任务以及相应的算法 如何选择合适的算法? 如果要预测目标变量的值:

集成学习的多分类器动态组合方法

2008年12月 December 2008 计 算 机 工 程Computer Engineering 第34 第24期 Vol 卷.34 No.24 ·人工智能及识别技术·文章编号:1000—3428(2008)24—0218—03 文献标识码:A 中图分类号:TP391.4 集成学习的多分类器动态组合方法 陈 冰,张化祥 (山东师范大学信息科学与工程学院,济南 250014) 摘 要:为了提高数据的分类性能,提出一种集成学习的多分类器动态组合方法(DEA)。该方法在多个UCI 标准数据集上进行测试,并与文中使用的基于Adaboost 算法训练出的各个成员分类器的分类效果进行比较,证明了DEA 的有效性。 关键词:多分类器;聚类;动态分类器组合;Adaboost 算法 Dynamic Combinatorial Method of Multiple Classifiers on Ensemble Learning CHEN Bing, ZHANG Hua-xiang (College of Information Science and Engineering, Shandong Normal University, Jinan 250014) 【Abstract 】In order to improve the classification performance of dataset, a dynamic combinatorial method of multiple classifiers on ensemble learning DEA is proposed in the paper. DEA is tested on the UCI benchmark data sets, and is compared with several member classifiers trained based on the algorithm of Adaboost. In this way, the utility of DEA can be proved. 【Key words 】multiple classifiers; clustering; dynamic classifier ensemble; Adaboost algorithm 1 概述 近年来,多分类器组合(DEA)技术在各个领域已经得到了广泛的应用,如模式识别中的人脸识别、网络安全、语言学中的词义消歧[1]等。 关于多分类器系统的研究越来越多,大量的理论和实验结果表明,通过多分类器组合不但可以提高分类的正确率,而且能够提高模式识别系统的效率和鲁棒性。尽管在各个方面提出了不同的分类器组合方法,但这些方法都或多或少地存在某些缺陷,它们或者先利用聚类对数据集进行处理,再直接用同种类型的分类器来分类[2];或者采用不同类型的分类器,而不对数据集做任何处理[1];更多的是利用不同的融合算法来训练生成同种类型的分类器,再利用它们对数据分类。另外,通常所使用的分类方法如决策树、K-近邻、Bayes 等都是有导师信息的机器学习过程。但实际中存在着大量的数据没有标记样本类别,如果再运用这些分类方法,其操作性就比较差了。而聚类等非监督学习能自适应地处理大量的未知类别的样本。基于监督学习与非监督学习的优势互补,将两者结合起来各取所长,一定能够收到很好的效果。另外值得注意的一点:目标识别中利用不同的分类器可以得到不同的分类识别结果,而且结果之间具备相当的互补性,从而可以提高分类的效果,克服单分类器存在的问题。 2 多分类器动态组合流程 图1是DEA 方法一次随机取样的流程。这里,小样本集 1,2,…,k 是对训练数据集按照类别标号得到的k 个小集合;分类器组合1,2,…,k 表示的是由训练数据集训练出的分类器对每个小样本集合分类根据分类错误率得到的k 组性能较好(错误率较低)的分类器组合。其中,总的分类器是在Adaboost 基础上每次随机地生成以决策树、贝叶斯、k-近邻中的一个作为基分类器,直到生成50个为止。接下来利用这k 组分类器去分类类别标号相对应的测试数据中的聚类集合(为了表示的方便,图中假设小样本集与聚类集合是一一对应的)。最后用每个聚类集中被错误分类的样本数之和除以测试数据总数,即得一次采样的错误率。 图1 多分类器动态组合流程 3 多分类器动态组合 3.1 集成学习 集成学习[3]方法是根据样本训练多分类器来完成分类任务的方法,这些分类器具有一定的互补功能,在减少分类误 基金项目:山东省科技攻关计划基金资助项目(2005GG4210002);山东省青年科学家科研奖励基金资助项目(2006BS01020);山东省教育厅科技计划基金资助项目(J07YJ04);山东省自然科学基金资助项目(Y2007G16) 作者简介:陈 冰(1981-),女,硕士研究生,主研方向:数据挖掘,机器学习;张化祥,教授、博士 收稿日期:2008-04-14 E-mail :zyxcscb@https://www.360docs.net/doc/7d9034033.html, —218 —万方数据

数字集成电路的分类

数字集成电路的分类 数字集成电路有多种分类方法,以下是几种常用的分类方法。 1.按结构工艺分 按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。图如下所示。 世界上生产最多、使用最多的为半导体集成电路。半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。 ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。双极型集成电路主要有TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。其中TTL电路的性能价格比最佳,故应用最广泛。

ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。它是利用运放原理通过晶体管射极耦合实现的门电路。在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。这种门电路输出阻抗低,负载能力强。它的主要缺点是抗干扰能力差,电路功耗大。 MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。 MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。CMOS数字集成电路电路主要分为4000(4500系列)系列、54HC/74HC系列、54HCT/74HCT系列等,实际上这三大系列之间的引脚功能、排列顺序是相同的,只是某些参数不同而已。例如,74HC4017与CD4017为功能相同、引脚排列相同的电路,前者的工作速度高,工作电源电压低。4000系列中目前最常用的是B 系列,它采用了硅栅工艺和双缓冲输出结构。 Bi-CMOS是双极型CMOS(Bipolar-CMOS)电路的简称,这种门电路的特点是逻辑部分采用CMOS结构,输出级采用双极型三极管,因此兼有CMOS电路的低功耗和双极型电路输出阻抗低的优点。 (1)TTL类型 这类集成电路是以双极型晶体管(即通常所说的晶体管)为开关元件,输入级采用多发射极晶体管形式,开关放大电路也都是由晶体管构成,所以称为晶体管-晶体管-逻辑,即Transistor-Transistor-Logic,缩写为TTL。TTL电路在速度和功耗方面,都处于现代数字集成电路的中等水平。它的品种丰富、互换性强,一般均以74(民用)或54(军用)为型号前缀。 ①74LS系列(简称LS,LSTTL等)。这是现代TTL类型的主要应用产品系列,也是逻辑集成电路的重要产品之一。其主要特点是功耗低、品种多、价格便宜。 ②74S系列(简称S,STTL等)。这是TTL的高速型,也是目前应用较多的产品之一。

数据挖掘分类算法的研究与应用

首都师范大学 硕士学位论文 数据挖掘分类算法的研究与应用 姓名:刘振岩 申请学位级别:硕士 专业:计算机应用技术 指导教师:王万森 2003.4.1

首都师范入学硕.卜学位论Z数据挖掘分类算法的研究与应用 摘要 , f随着数据库技术的成熟应用和Internet的迅速发展,人类积累的数据量正在以指数速度增长。科于这些数据,人{}j已经不满足于传统的查询、统计分析手段,而需要发现更深层次的规律,对决策或科研工作提供更有效的决策支持。正是为了满足这种要求,从大量数据中提取出隐藏在其中的有用信息,将机器学习应用于大型数据库的数据挖掘(DataMining)技术得到了长足的发展。 所谓数据挖掘(DataMining,DM),也可以称为数据库中的知识发现(KnowledgeDiscoverDat曲鹅e,KDD),就是从大量的、不完全的、有噪声的、模糊的、随机的数据r},,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是数据库研究中的一个很有应用价值的新领域,它又是一门广义的交叉学科,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。 分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。{乍多分类的方法已被机器学习、专家系统、统计学和神经生物学方面的研究者提}H。本论文主要侧重数据挖掘中分类算法的研究,并将分类算法划分为急切分类和懒散分类,全部研究内容基本围绕着这种划分方法展开。.1本文的主要研究内容:, l,讨论了数掂挖掘中分类的基本技术,包括数据分类的过程,分类数据所需的数据预处理技术,以及分类方法的比较和评估标准;比较了几种典 型的分类算法,包括决策树、k.最近邻分类、神经网络算法:接着,引 出本文的研究重点,即将分类算法划分为急切分类和懒散分类,并基于 这种划分展歼对数据挖掘分类算法的研究。 2.结合对决簸树方法的研究,重点研究并实现了一个“懒散的基于模型的分类”思想的“懒散的决策树算法”。在决策树方法的研究中,阐述了决 策树的基本概念以及决策树的优缺点,决策树方法的应用状况,分析了 决策树算法的迸一步的研究重点。伪了更好地满足网络环境下的应用需 求,结合传统的决策树方法,基于Ⅶ懒散的基于模型的分类”的思想, 实现了一个网络环境下基于B/S模式的“懒散的决策树算法”。实践表明: 在WEB应fH程序叶i采用此算法取得了很好的效果。、 ≯ 3.选取神经H络分类算法作为急切分类算法的代表进行深入的研究。在神经网络中,重点分析研究了感知器基本模型,包括感知器基本模型的构 造及其学习算法,模型的几何意义及其局限性。并针对该模型只有在线 性可分的情况一F彳‘能用感知器的学习算法进行分类的这一固有局限性, 研究并推广了感知器模型。

相关文档
最新文档