一种新的分类器选择集成算法

一种新的分类器选择集成算法
一种新的分类器选择集成算法

分类器的动态选择与循环集成方法

分类器的动态选择与循环集成方法 郝红卫;王志彬;殷绪成;陈志强 【期刊名称】《自动化学报》 【年(卷),期】2011(037)011 【摘要】In order to deal with the problems of low efficiency and inflexibility for selecting the optimal subset and combining classifiers in multiple classifier systems, a new method of dynamic selection and circulating combination (DSCC) is proposed. This method dynamically selects the optimal subset with high accuracy for combination based on the complementarity of different classification models. The number of classifiers in the selected subset can be adaptively changed according to the complexity of the objects. Circulating combination is realized according to the confidence of classifiers. The experimental results of handwritten digit recognition show that the proposed method is more flexible, efficient and accurate comparing to other classifier selection methods.%针对多分类器系统设计中最优子集选择效率低下、集成方法缺乏灵活性等问题,提出了分类器的动态选择与循环集成方法(Dynamic selection and circulating combination,DSCC).该方法利用不同分类器模型之间的互补性,动态选择出对目标有较高识别率的分类器组合,使参与集成的分类器数量能够随识别目标的复杂程度而自适应地变化,并根据可信度实现系统的循环集成.在手写体数字识别实验中,与其他常用的分类器选择方法相比,所提出的方法灵活高效,识别率更高.

智能计算平台应用开发(中级)-第8章-机器学习基础算法建模-集成学习算法

第8章?机器学习基础算法建模

目录 1.机器学习 2.分类算法 3.回归算法 4.集成学习算法 5.聚类算法 6.关联规则算法 7.智能推荐算法

l 在机器学习的有监督学习算法中,目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往达不到理想状态,有时只能得到多个有偏好的模型(弱分类器,在某些方面表现较好)。 ?集成学习是组合多个弱分类器,得到一个更好且更全面的强分类器,即将多个分 类器聚集在一起,以提高分类的准确率。 ?这些分类器可以是不同的算法,也可以是相同的算法。如果把单个分类器比作一 个决策者,那么集成学习的方法就相当于多个决策者共同进行一项决策。 集成学习

l集成学习的作用 将多个弱分类器合并,实现更好的效果。 l分类器间存在一定的差异性,会导致分类的边界不同,可以理解为分类器是一个比较专精的专家,它有它自己一定的适用范围和特长。 l通过一定的策略将多个弱分类器合并后,即可拓展模型的适用范围,减少整体 的错误率,实现更好的效果。

l 数据过大时会导致训练一个模型太慢,而集成学习可以分别对数据集进行划分和有放回的操作,从而产生不同的数据子集,再使用数据子集训练不同的分类器, 最终再将不同的分类器合并成为一个大的分类器。 l 数据过小时则会导致训练不充分,而集成学习可以利用Bootstrap 方法进行抽样,得到多个数据集,分别训练多个模型后再进行组合。如此便可提高训练的准确度 和速度,使得之前很难利用的数据得到充分的利用。集成学习在各个规模的数据集上都有很好的策略。

将多个模型进行融合。 l对于存在多个异构的特征集的时候,很难进行融合,可以考虑使用集成学习的方式,将每个数据集构建一个分类模型,然后将多个模型进行融合。

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

3-决策树与集成算法

树模型 决策树:从根节点开始一步步走到叶子节点(决策) 所有的数据最终都会落到叶子节点,既可以做分类也可以做回归

树的组成 根节点:第一个选择点 非叶子节点与分支:中间过程叶子节点:最终的决策结果

决策树的训练与测试 训练阶段:从给定的训练集构造出来一棵树(从跟节点开始选择特征,如何进行特征切分) 测试阶段:根据构造出来的树模型从上到下去走一遍就好了 一旦构造好了决策树,那么分类或者预测任务就很简单了,只需要走一遍就可以了,那么难点就在于如何构造出来一颗树,这就没那么容易了,需要考虑的问题还有很多的!

如何切分特征(选择节点) 问题:根节点的选择该用哪个特征呢?接下来呢?如何切分呢? 想象一下:我们的目标应该是根节点就像一个老大似的能更好的切分数据(分类的效果更好),根节点下面的节点自然就是二当家了。 目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点,以此类推。

衡量标准-熵 熵:熵是表示随机变量不确定性的度量 (解释:说白了就是物体内部的混乱程度,比如杂货市场里面什么都有那肯定混乱呀,专卖店里面只卖一个牌子的那就稳定多啦) 公式:H(X)=-∑ pi * logpi, i=1,2, ... , n 一个栗子:A集合[1,1,1,1,1,1,1,1,2,2] B集合[1,2,3,4,5,6,7,8,9,1] 显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些 而B中类别太多了,熵值就会大很多。(在分类任务中我们希望通过节点分支后数据类别的熵值大还是小呢?)

衡量标准-熵 熵:不确定性越大,得到的熵值也就越大 当p=0或p=1时,H(p)=0,随机变量完全没有不确定性当p=0.5时,H(p)=1,此时随机变量的不确定性最大 如何决策一个节点的选择呢? 信息增益:表示特征X使得类Y的不确定性减少的程度。(分类后的专一性,希望分类后的结果是同类在一起)

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

机器学习入门 - 感知器

机器学习入门- 感知器(PERCEPTRON) POSTED IN 学术_STUDY, 机器学习 本文是基于马里兰大学教授Hal Dame III(Blogger)课程内容的笔记。 感知器(Perceptron)这个词会成为Machine Learning的重要概念之一,是由于先辈们对于生物神经学科的深刻理解和融会贯通。 对于神经(neuron)我们有一个简单的抽象:每个神经元是与其他神经元连结在一起的,一个神经元会受到多个其他神经元状态的冲击,并由此决定自身是否激发。(如下图) Neuron Model (From Wikipedia) 这玩意儿仔细想起来可以为我们解决很多问题,尤其是使用决策树和KNN算法时解决不了的那些问题: ?决策树只使用了一小部分知识来得到问题的答案,这造成了一定程度上的资源浪费。 ?KNN对待数据的每个特征值都是一样的,这也是个大问题。比如一组数据包含100种特征值,而只有其中的一两种是起最重要作用的话,其他的特征值就变成了阻碍我们找到最好答案的噪声(Noise)。 根据神经元模型,我们可以设计这样一种算法。对于每种输入值(1 - D),我们计算一个权重。当前神经元的总激发值(a)就等于每种输入值(x)乘以权重(w)之和。 neuron sum 我们还可以推导出以下几条规则: ?如果当前神经元的某个输入值权重为零,则当前神经元激发与否与这个输入值无关?如果某个输入值的权重为正,它对于当前神经元的激发值a 产生正影响。反之,如果权重为负,则它对激发值产生负影响。

接下来我们要将偏移量(bias)的概念加入这个算法。有时我们希望我们的神经元激发量a 超过某一个临界值时再激发。在这种情况下,我们需要用到偏移量b。 neuron sum with bias 偏移量b 虽然只是附在式子后面的一个常数,但是它改变了几件事情: ?它定义了神经元的激发临界值 ?在空间上,它对决策边界(decision boundary) 有平移作用,就像常数作用在一次或二次函数上的效果。这个问题我们稍后再讨论。 在了解了神经元模型的基本思路之后,我们来仔细探讨一下感知器算法的具体内容。 感知器算法虽然也是二维分类器(Binary Classifier),但它与我们所知道的决策树算法和KNN都不太一样。主要区别在于: ?感知器算法是一种所谓“错误驱动(error-driven)”的算法。当我们训练这个算法时,只要输出值是正确的,这个算法就不会进行任何数据的调整。反之,当输出值与实际值异号,这个算法就会自动调整参数的比重。 ?感知器算法是实时(online)的。它逐一处理每一条数据,而不是进行批处理。 perceptron algorithms by Hal Dame III 感知器算法实际上是在不断“猜测”正确的权重和偏移量: ?首先,感知器算法将所有输入值的权重预设为0。这意味着,输入值预设为对结果不产生任何影响。同时,偏移量也被预设为0。 ?我们使用参数MaxIter。这个参数是整个算法中唯一一个超参数(hyper-parameter)。 这个超参数表示当我们一直无法找到准确答案时,我们要最多对权重和偏移量进行几次优化。

感知器的学习算法

感知器的学习算法 1.离散单输出感知器训练算法 设网络输入为n 维向量()110-=n x x x ,,, X ,网络权值向量为()110-=n ωωω,,, W ,样本集为(){}i i d ,X ,神经元激活函数为f ,神经元的理想输出为d ,实际输出为y 。 算法如下: Step1:初始化网络权值向量W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()d ,X ,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =WX f y ; (2.1.3)若d y ≠,则当0=y 时,X W W ?+=α;否则X W W ?-=α。 2.离散多输出感知器训练算法 设网络的n 维输入向量为()110-=n x x x ,,, X ,网络权值矩阵为{}ji n m ω=?W ,网络理想输出向量为m 维,即()110-=m d d d ,,, D ,样本集为(){}i i D X ,,神经元激活函数为f , 网络的实际输出向量为()110-=m y y y ,,, Y 。 算法如下: Step1:初始化网络权值矩阵W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()D X ,,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =XW Y f ; (2.1.3)对于输出层各神经元j (110-=m j ,,, )执行如下操作: 若j j d y ≠,则当0=j y 时,i ji ji x ?+=αωω,110-=n i ,,, ; 否则i ji ji x ?-=αωω,110-=n i ,,, 。

感知器算法实验--1

感知器算法实验--1

一.实验目的 1.理解线性分类器的分类原理。 2.掌握感知器算法,利用它对输入的数据进行 分类。 3.理解BP算法,使用BP算法对输入数据进 行分类。 二. 实验原理 1.感知器算法 感知器算法是通过训练模式的迭代和学习算法,产生线性可分的模式判别函数。感知器算法就是通过对训练模式样本集的“学习”得出判别函数的系数解。在本次实验中,我们主要是采用硬限幅函数进行分类。 感知器的训练算法如下: 设输入矢量{x1,x2,…,x n}其中每一个模式类别已知,它们分别属于ω1类和ω2类。 (1)置步数k=1,令增量ρ为某正的常数,分别赋给初始增广权矢量w(1)的各分量较小的任意值。 (2)输入训练模式x k,计算判别函数值 w T(k) x k。 (3)调整增广权矢量,规则是:

a.如果x k ∈ω1和w T (k) x k ≤0,则w(k+1)=w(k)+ ρx k ; b.如果x k ∈ω2和w T (k) x k ≥0,则w(k+1)=w(k)-ρx k ; c.如果x k ∈ω1和w T (k) x k >0,或x k ∈ω2和w T (k) x k <0,则w(k+1)=w(k) (4)如果k 0分类正确,则为第一个表达式,如果w T (k) x k ≤0错误分类则为第二个表达式。 在全部模式训练完一轮之后只要还有模式分类错误,则需要进行第二轮迭代,再用全部训练模式训练一次,建立新的权矢量。如果对训练模式还有错分,则进行第三轮迭代依此类推,直

集成学习的多分类器动态组合方法

2008年12月 December 2008 计 算 机 工 程Computer Engineering 第34 第24期 Vol 卷.34 No.24 ·人工智能及识别技术·文章编号:1000—3428(2008)24—0218—03 文献标识码:A 中图分类号:TP391.4 集成学习的多分类器动态组合方法 陈 冰,张化祥 (山东师范大学信息科学与工程学院,济南 250014) 摘 要:为了提高数据的分类性能,提出一种集成学习的多分类器动态组合方法(DEA)。该方法在多个UCI 标准数据集上进行测试,并与文中使用的基于Adaboost 算法训练出的各个成员分类器的分类效果进行比较,证明了DEA 的有效性。 关键词:多分类器;聚类;动态分类器组合;Adaboost 算法 Dynamic Combinatorial Method of Multiple Classifiers on Ensemble Learning CHEN Bing, ZHANG Hua-xiang (College of Information Science and Engineering, Shandong Normal University, Jinan 250014) 【Abstract 】In order to improve the classification performance of dataset, a dynamic combinatorial method of multiple classifiers on ensemble learning DEA is proposed in the paper. DEA is tested on the UCI benchmark data sets, and is compared with several member classifiers trained based on the algorithm of Adaboost. In this way, the utility of DEA can be proved. 【Key words 】multiple classifiers; clustering; dynamic classifier ensemble; Adaboost algorithm 1 概述 近年来,多分类器组合(DEA)技术在各个领域已经得到了广泛的应用,如模式识别中的人脸识别、网络安全、语言学中的词义消歧[1]等。 关于多分类器系统的研究越来越多,大量的理论和实验结果表明,通过多分类器组合不但可以提高分类的正确率,而且能够提高模式识别系统的效率和鲁棒性。尽管在各个方面提出了不同的分类器组合方法,但这些方法都或多或少地存在某些缺陷,它们或者先利用聚类对数据集进行处理,再直接用同种类型的分类器来分类[2];或者采用不同类型的分类器,而不对数据集做任何处理[1];更多的是利用不同的融合算法来训练生成同种类型的分类器,再利用它们对数据分类。另外,通常所使用的分类方法如决策树、K-近邻、Bayes 等都是有导师信息的机器学习过程。但实际中存在着大量的数据没有标记样本类别,如果再运用这些分类方法,其操作性就比较差了。而聚类等非监督学习能自适应地处理大量的未知类别的样本。基于监督学习与非监督学习的优势互补,将两者结合起来各取所长,一定能够收到很好的效果。另外值得注意的一点:目标识别中利用不同的分类器可以得到不同的分类识别结果,而且结果之间具备相当的互补性,从而可以提高分类的效果,克服单分类器存在的问题。 2 多分类器动态组合流程 图1是DEA 方法一次随机取样的流程。这里,小样本集 1,2,…,k 是对训练数据集按照类别标号得到的k 个小集合;分类器组合1,2,…,k 表示的是由训练数据集训练出的分类器对每个小样本集合分类根据分类错误率得到的k 组性能较好(错误率较低)的分类器组合。其中,总的分类器是在Adaboost 基础上每次随机地生成以决策树、贝叶斯、k-近邻中的一个作为基分类器,直到生成50个为止。接下来利用这k 组分类器去分类类别标号相对应的测试数据中的聚类集合(为了表示的方便,图中假设小样本集与聚类集合是一一对应的)。最后用每个聚类集中被错误分类的样本数之和除以测试数据总数,即得一次采样的错误率。 图1 多分类器动态组合流程 3 多分类器动态组合 3.1 集成学习 集成学习[3]方法是根据样本训练多分类器来完成分类任务的方法,这些分类器具有一定的互补功能,在减少分类误 基金项目:山东省科技攻关计划基金资助项目(2005GG4210002);山东省青年科学家科研奖励基金资助项目(2006BS01020);山东省教育厅科技计划基金资助项目(J07YJ04);山东省自然科学基金资助项目(Y2007G16) 作者简介:陈 冰(1981-),女,硕士研究生,主研方向:数据挖掘,机器学习;张化祥,教授、博士 收稿日期:2008-04-14 E-mail :zyxcscb@https://www.360docs.net/doc/f24556333.html, —218 —万方数据

数据挖掘分类算法的研究与应用

首都师范大学 硕士学位论文 数据挖掘分类算法的研究与应用 姓名:刘振岩 申请学位级别:硕士 专业:计算机应用技术 指导教师:王万森 2003.4.1

首都师范入学硕.卜学位论Z数据挖掘分类算法的研究与应用 摘要 , f随着数据库技术的成熟应用和Internet的迅速发展,人类积累的数据量正在以指数速度增长。科于这些数据,人{}j已经不满足于传统的查询、统计分析手段,而需要发现更深层次的规律,对决策或科研工作提供更有效的决策支持。正是为了满足这种要求,从大量数据中提取出隐藏在其中的有用信息,将机器学习应用于大型数据库的数据挖掘(DataMining)技术得到了长足的发展。 所谓数据挖掘(DataMining,DM),也可以称为数据库中的知识发现(KnowledgeDiscoverDat曲鹅e,KDD),就是从大量的、不完全的、有噪声的、模糊的、随机的数据r},,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是数据库研究中的一个很有应用价值的新领域,它又是一门广义的交叉学科,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。 分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。{乍多分类的方法已被机器学习、专家系统、统计学和神经生物学方面的研究者提}H。本论文主要侧重数据挖掘中分类算法的研究,并将分类算法划分为急切分类和懒散分类,全部研究内容基本围绕着这种划分方法展开。.1本文的主要研究内容:, l,讨论了数掂挖掘中分类的基本技术,包括数据分类的过程,分类数据所需的数据预处理技术,以及分类方法的比较和评估标准;比较了几种典 型的分类算法,包括决策树、k.最近邻分类、神经网络算法:接着,引 出本文的研究重点,即将分类算法划分为急切分类和懒散分类,并基于 这种划分展歼对数据挖掘分类算法的研究。 2.结合对决簸树方法的研究,重点研究并实现了一个“懒散的基于模型的分类”思想的“懒散的决策树算法”。在决策树方法的研究中,阐述了决 策树的基本概念以及决策树的优缺点,决策树方法的应用状况,分析了 决策树算法的迸一步的研究重点。伪了更好地满足网络环境下的应用需 求,结合传统的决策树方法,基于Ⅶ懒散的基于模型的分类”的思想, 实现了一个网络环境下基于B/S模式的“懒散的决策树算法”。实践表明: 在WEB应fH程序叶i采用此算法取得了很好的效果。、 ≯ 3.选取神经H络分类算法作为急切分类算法的代表进行深入的研究。在神经网络中,重点分析研究了感知器基本模型,包括感知器基本模型的构 造及其学习算法,模型的几何意义及其局限性。并针对该模型只有在线 性可分的情况一F彳‘能用感知器的学习算法进行分类的这一固有局限性, 研究并推广了感知器模型。

分类算法综述

《数据挖掘》 数据挖掘分类算法综述 专业:计算机科学与技术专业学号:S2******* 姓名:张靖 指导教师:陈俊杰 时间:2011年08月21日

数据挖掘分类算法综述 数据挖掘出现于20世纪80年代后期,是数据库研究中最有应用价值的新领域之一。它最早是以从数据中发现知识(KDD,Knowledge Discovery in Database)研究起步,所谓的数据挖掘(Data Mining,简称为DM),就从大量的、不完全的、有噪声的、模糊的、随机的、实际应用的数据中提取隐含在其中的、人们不知道的但又有用的信息和知识的过程。 分类是一种重要的数据挖掘技术。分类的目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器)。该模型能把未知类别的样本映射到给定类别中的一种技术。 1. 分类的基本步骤 数据分类过程主要包含两个步骤: 第一步,建立一个描述已知数据集类别或概念的模型。如图1所示,该模型是通过对数据库中各数据行内容的分析而获得的。每一数据行都可认为是属于一个确定的数据类别,其类别值是由一个属性描述(被称为类别属性)。分类学习方法所使用的数据集称为训练样本集合,因此分类学习又可以称为有指导学习(learning by example)。它是在已知训练样本类别情况下,通过学习建立相应模型,而无指导学习则是在训练样本的类别与类别个数均未知的情况下进行的。 通常分类学习所获得的模型可以表示为分类规则形式、决策树形式或数学公式形式。例如,给定一个顾客信用信息数据库,通过学习所获得的分类规则可用于识别顾客是否是具有良好的信用等级或一般的信用等级。分类规则也可用于对今后未知所属类别的数据进行识别判断,同时也可以帮助用户更好的了解数据库中的内容。 图1 数据分类过程中的学习建模 第二步,利用所获得的模型进行分类操作。首先对模型分类准确率进行估计,例如使用保持(holdout)方法。如果一个学习所获模型的准确率经测试被认为是可以接受的,那么就可以使用这一模型对未来数据行或对象(其类别未知)进行分类。例如,在图2中利用学习获得的分类规则(模型)。对已知测试数据进行模型

感知器的训练算法实例

感知器的训练算法实例 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 1)T, x②=(0 1 1)T, x③=(-1 0 -1)T, x④=(-1 -1 -1)T 第一轮迭代:取C=1,w(1)= (0 0 0)T 因w T(1)x①=(0 0 0)(0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 1)T 因w T(2)x②=(0 0 1)(0 1 1)T=1>0,故w(3)=w(2)=(0 0 1)T 因w T(3)x③=(0 0 1)(-1 0 -1)T=-1≯0,故w(4)=w(3)+x③=(-1 0 0)T 因w T(4)x④=(-1 0 0)(-1 -1 -1)T=1>0,故w(5)=w(4)=(-1 0 0)T 这里,第1步和第3步为错误分类,应“罚”。 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T(5)x①=(-1 0 0)(0 0 1)T=0≯0,故w(6)=w(5)+x①=(-1 0 1)T 因w T(6)x②=(-1 0 1)(0 1 1)T=1>0,故w(7)=w(6)=(-1 0 1)T 因w T(7)x③=(-1 0 1)(-1 0 -1)T=0≯0,故w(8)=w(7)+x③=(-2 0 0)T 因w T(8)x④=(-2 0 0)(-1 -1 -1)T=2>0,故w(9)=w(8)=(-2 0 0)T 需进行第三轮迭代。 第三轮迭代: 因w T(9)x①=(-2 0 0)(0 0 1)T=0≯0,故w(10)=w(9)+x①=(-2 0 1)T

《管理统计学》不定项选择练习题

综合 1、统计的含义包括()。ACD A.统计资料 B.统计指标 C.统计工作 D.统计学 E.统计调查 2、统计研究运用各种专门的方法,包括()。ABCDE A.大量观察法 B.统计分组法 C.综合指标法 D.统计模型法 E.统计推断法 3、全国第5次人口普查中()。BCE A.全国人口数是统计总体? B.总体单位是每一个人 C.全部男性人口数是统计指标 D.人口性别比是总体的品质标志 E.人的年龄是变量 4、下列各项中,属于连续变量的有()。ACD A.基本建设投资额 B.岛屿个数 C.国民生产总值中3次产业比例 D.居民生活费用价格指数 E.就业人口数 5、下列指标中,属于数量指标的有()。AC A.国民生产总值 B.人口密度 C.全国人口数 D.投资效果系数 E.工程成本降低率 6、下列标志中,属于品质标志的有()。BE A.工资 B. 所有制 C.旷课次数 D.耕地面积 E.产品质量 7、下列各项中,哪些属于统计指标?()ACDE A.我国2005年国民生产总值 B.某同学该学期平均成绩 C.某地区出生人口总数 D.某企业全部工人生产某种产品的人均产量 E.某市工业劳动生产率 8、统计指标的表现形式有()。BCE A.比重指标 B.总量指标 C.相对指标 D.人均指标 E.平均指标 9、总体、总体单位、标志、指标间的相互关系表现为()。ABCD A.没有总体单位也就没有总体,总体单位也不能离开总体而存在 B.总体单位是标志的承担者 C.统计指标的数值来源于标志

D.指标是说明总体特征的,标志是说明总体单位特征的 E.指标和标志都能用数值表示 10、国家统计系统的功能或统计的职能有()。ABCD A.收集信息职能 B.提供咨询职能 C.实施监督职能 D.支持决策职能 E.组织协调职能 11、当人们谈及什么是统计时,通常可以理解为()ACD A.统计工作 B.统计整理 C.统计资料 D.统计学 E.统计学科 12、调查得到的经过整理具有信息价值的统计资料包括()ABDE A.统计数据 B.统计图标 C.统计软件 D.统计年鉴 E.统计报告 13、以下关于统计学的描述,正确的有()ACD A.统计学是一门收集、整理和分析统计数据的方法论科学 B.统计学是一门收集、整理和分析统计数据的实质性科学 C.统计学的研究目的是探索数据的内在数量规律性 D.统计学提供了探索数据内在规律的一套方法 E.统计学提供了探索数据内在规律的一套软件 14、统计数据按其采用的计量尺度不同可以分为()ABC A.分类数据 B.顺序数据 C.数值型数据 D.截面数据 E.扇面数据 15、统计数据按其收集方法不同,可以分为()AB A.观测数据 B.实验数据 C.时序数据 D.混合数据 E.顺序数据 16、统计数据按被描述的对象和时间的关系不同分为()ABD A.截面数据 B.时间序列数据 C.观测数据 D.混合数据 E.扇面数据 17、从统计方法的构成看,统计学可以分为()AD A.描述统计学 B.理论统计学 C.应用统计学 D.推断统计学 E.管理统计学 18、如果要研究某市987家外资企业的基本情况,下列属于统计指标的有()ABD A.所有外资企业的职工平均工资 B.所有外资企业的平均利润 C.甲企业的固定资产原值 D.所有外资企业平均职工人数 E.部分外资企业平均职工人数 统计数据的收集 1、普查是一种()。BCD A.非全面调查 B.专门调查 C.全面调查 D.一次性调查 E.经常性调查 2、某地对集市贸易个体户的偷漏税情况进行调查,1月5日抽选5%样本检查,5月1日抽选10%样本检查,这种调查是()。ABC

数据挖掘中的文本挖掘的分类算法综述

数据挖掘中的文本挖掘的分类算法综述 摘要 随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。本文首先对数据挖掘进行了概述包括数据挖掘的常用方法、功能以及存在的主要问题;其次对数据挖掘领域较为活跃的文本挖掘的历史演化、研究现状、主要内容、相关技术以及热点难点问题进行了探讨;在第三章先分析了文本分类的现状和相关问题,随后详细介绍了常用的文本分类算法,包括KNN 文本分类算法、特征选择方法、支持向量机文本分类算法和朴素贝叶斯文本分类算法;;第四章对KNN文本分类算法进行深入的研究,包括基于统计和LSA降维的KNN文本分类算法;第五章对数据挖掘、文本挖掘和文本分类的在信息领域以及商业领域的应用做了详细的预测分析;最后对全文工作进行了总结和展望。 关键词:数据挖掘,文本挖掘,文本分类算法 ABSTRACT With the development of Web 2.0, the number of documents on the Internet increases exponentially. One important research focus on how to deal with these great capacity of online documents. Text classification is one crucial part of information management. In this paper we first introduce the basic information of data mining, including the methods, contents and the main existing problems in data mining fields; then we discussed the text mining, one active field of data mining, to provide a basic foundation for text classification. And several common algorithms are analyzed in Chapter 3. In chapter 4 thorough research of KNN text classification algorithms are illustrated including the statistical and dimension reduction based on LSA and in chapter 5 we make some predictions for data mining, text mining and text classification and finally we conclude our work. KEYWORDS: data mining, text mining, text classification algorithms,KNN 目录 摘要 (1) ABSTRACT (1) 目录 (1)

分类算法综述

分类算法综述 1 分类算法分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。分类可描述如下:输入数据,或称训练集(Training Set),是一条条的数据库记录(Record)组成的。每一条记录包含若干个属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(Class Label)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…, vn ;c)。在这里vi表示字段值,c表示类别。分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新

数据所属的类。注意是预测,而不能肯定,因为分类的准确率不能达到百分之百。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 2 典型分类算法介绍解决分类问题的方法很多,下面介绍一些经典的分类方法,分析 各自的优缺点。 2.1 决策树分类算法决策树(Decision Tree)是一种有向无环图(Directed Acyclic Graphics,DAG)。决策树方法是利用信息论中 的信息增益寻找数据库中具有最大信息量的属性字段,建立决策树的一个结点,在根据该属性字段的 不同取值建立树的分支,在每个子分支子集中重复 建立树的下层结点和分支的一个过程。构造决策树 的具体过程为:首先寻找初始分裂,整个训练集作 为产生决策树的集合,训练集每个记录必须是已经 分好类的,以决定哪个属性域(Field)作为目前最 好的分类指标。一般的做法是穷尽所有的属性域, 对每个属性域分裂的好坏做出量化,计算出最好的 一个分裂。量化的标准是计算每个分裂的多样性(Diversity)指标。其次,重复第一步,直至每个叶 节点内的记录都属于同一类且增长到一棵完整的树。

模式识别第三章-感知器算法

模式识别第三章 感知器算法 一.用感知器算法求下列模式分类的解向量w : })0,1,1(,)1,0,1(,)0,0,1(,)0,0,0{(:1T T T T ω })1,1,1(,)0,1,0(,)1,1,0(,)1,0,0{(:2T T T T ω 将属于2ω的训练样本乘以(-1),并写成增广向量的形式: T x )1,0,0,0(1 =,T x )1,0,0,1(2=,T x )1,1,0,1(3=,T x )1,0,1,1(4 = T x )1,1-,0,0(5-=,T x )1,1-,1-,0(6-=,T x )1,0,1-,0(7-=,T x )1,1-,1-,1-(8-= 第一轮迭代:取1=C ,T )0,0,0,0()1(=ω 因0)1,0,0,0)(0,0,0,0()1(1==T T x ω不大于0,故T x )1,0,0,0()1()2(1=+=ωω 因1)1,0,0,1)(1,0,0,0()2(2==T T x ω大于0,故T )1,0,0,0()2()3(==ωω 因1)1,1,0,1)(1,0,0,0()3(3==T T x ω大于0,故T )1,0,0,0()3()4(==ωω 因1)1,0,1,1)(1,0,0,0()4(4==T T x ω大于0,故T )1,0,0,0()4()5(==ωω 因1)1,1-,0,0)(1,0,0,0()5(5-=-=T T x ω不大于0,故T x )0,1-,0,0()5()6(5 =+=ωω 因1)1,1-,1-,0)(0,1-,0,0()6(6=-=T T x ω大于0,故T )0,1-,0,0()6()7(==ωω 因0)1,0,1-,0)(0,1-,0,0()7(7=-=T T x ω不大于0,故T x )1-,1-,1,0()7()8(7-=+=ωω 因3)1,1-,1-,1-)(1-,1-,1,0()8(8=--=T T x ω大于0,故T )1-,1-,1,0()8()9(-==ωω 第二轮迭代: 因1)1,0,0,0)(1-,1-,1,0()9(1-=-=T T x ω不大于0,故T x )0,1-,1,0()9()10(1-=+=ωω 因0)1,0,0,1)(0,1-,1-,0()10(2==T T x ω不大于0,故T x )1,1,1,1()10()11(2--=+=ωω 因1)1,1,0,1)(1,1,1,1()11(3=--=T T x ω大于0,故T )1,1,1,1()11()12(--==ωω 因1)1,0,1,1)(1,1,1,1()12(4=--=T T x ω大于0,故T )1,1,1,1()12()13(--==ωω

数据挖掘分类算法研究综述终板

数据挖掘分类算法研究综述 程建华 (九江学院信息科学学院软件教研室九江332005 ) 摘要:随着数据库应用的不断深化,数据库的规模急剧膨胀,数据挖掘已成为当今研究的热点。特别是其中的分类问题,由于其使用的广泛性,现已引起了越来越多的关注。对数据挖掘中的核心技术分类算法的内容及其研究现状进行综述。认为分类算法大体可分为传统分类算法和基于软计算的分类法两类。通过论述以上算法优缺点和应用范围,研究者对已有算法的改进有所了解,以便在应用中选择相应的分类算法。 关键词:数据挖掘;分类;软计算;算法 1引言 1989年8月,在第11届国际人工智能联合会议的专题研讨会上,首次提出基于数据库的知识发现(KDD,Knowledge DiscoveryDatabase)技术[1]。该技术涉及机器学习、模式识别、统计学、智能数据库、知识获取、专家系统、数据可视化和高性能计算等领域,技术难度较大,一时难以应付信息爆炸的实际需求。到了1995年,在美国计算机年会(ACM)上,提出了数据挖掘[2](DM,Data Mining)的概念,由于数据挖掘是KDD过程中最为关键的步骤,在实践应用中对数据挖掘和KDD这2个术语往往不加以区分。 基于人工智能和信息系统,抽象层次上的分类是推理、学习、决策的关键,是一种基础知识。因而数据分类技术可视为数据挖掘中的基础和核心技术。其实,该技术在很多数据挖掘中被广泛使用,比如关联规则挖掘和时间序列挖掘等。因此,在数据挖掘技术的研究中,分类技术的研究应当处在首要和优先的地位。目前,数据分类技术主要分为基于传统技术和基于软计算技术两种。 2传统的数据挖掘分类方法 分类技术针对数据集构造分类器,从而对未知类别样本赋予类别标签。在其学习过程中和无监督的聚类相比,一般而言,分类技术假定存在具备环境知识和输入输出样本集知识的老师,但环境及其特性、模型参数等却是未知的。 2.1判定树的归纳分类 判定树是一个类似流程图的树结构,其中每个内部节点表示在一个属性上的测试,每个分支代表一个测试输出,而每个树叶节点代表类或类分布。树的最顶层节点是根节点。由判定树可以很容易得到“IFTHEN”形式的分类规则。方法是沿着由根节点到树叶节点的路径,路径上的每个属性-值对形成“IF”部分的一个合取项,树叶节点包含类预测,形成“THEN”部分。一条路径创建一个规则。 判定树归纳的基本算法是贪心算法,它是自顶向下递归的各个击破方式构造判定树。其中一种著名的判定树归纳算法是建立在推理系统和概念学习系统基础上的ID3算法。 2.2贝叶斯分类 贝叶斯分类是统计学的分类方法,基于贝叶斯公式即后验概率公式。朴素贝叶斯分类的分类过程是首先令每个数据样本用一个N维特征向量X={X1,X2,?X n}表示,其中X k是属性A k的值。所有的样本分为m类:C1,C2,?,C n。对于一个类别的标记未知的数据记录而言,若P(C i/X)>P(C j/X),1≤ j≤m,j≠i,也就是说,如果条件X下,数据记录属于C i类的概率大于属于其他类的概率的话,贝叶斯分类将把这条记录归类为C i类。 建立贝叶斯信念网络可以被分为两个阶段。第一阶段网络拓扑学习,即有向非循环图的——————————————————— 作者简介:程建华(1982-),女,汉族,江西九江,研究生,主要研究方向为数据挖掘、信息安全。

相关文档
最新文档