快速多分类器集成算法研究

快速多分类器集成算法研究
快速多分类器集成算法研究

数据包的分类

数据包的分类 刘杰 111220065 引言: 传统上,网络路由器通过同样的方式处理到来的数据包来提供最大努力地服务。随着新应用的出现,网络服务供应商希望路由器向不同的应用提供不同的服务质量(QoS)级别。为了满足这些服务质量(QoS)需求,路由器需要实现新的机制,例如许可控制,资源预约,每个数据流的排队,和均衡调度。然而,要实行这些机制的先决条件是路由器要能够对进入的数据流量进行甄别并分类成不同的数据流。我们称这些路由器为流量感知的路由器。一个流量感知的路由器与传统路由器的区别是,它能够持续地跟踪通过的流量并且针对不同的流量应用不同级别的服务。 所有的流量通过不同的规则来加以指定,每一条规则都是由一些通过用特定的值与分组字段进行比较的操作组成。我们称一个规则的集合为分类器。它的形成主要基于一些标准,而这些标准将要用来将不同的数据包分类到一个给定的网络应用。既然一个分类器要定义数据包的属性或者内容,那么数据包分类就是一个识别某个规则或者一个数据包符合或匹配的规则集合的过程。为了详细说明一个具有数据包分类能力的流量感知路由器所提供的各种各样的服务,我们运用了一个在表3.1中展示的示例分类器。假设在图3.1中显示的示例网络中,这个分类器被安装于路由器R中。

在示例分类器中只有四条规则,路由器X提供以下的服务: 数据包过滤:规则R1阻塞所有从外部进入网络A的远程登录连接,其中A可能是一个私有的用于研究的网络。 策略路由:在网络B到D的通过图3.1底部的ATM网络的应用层中,规则R2能够利用实时传输协议(RTP)让路由器传送所有的实时通信量。 流量监管:规则R3限制由C到B的所有传输协议(TCP)的流量速率不超过10Mbps。 有关规则、分类器和包分类的正式描述是在Lakshman 和Stiliadis的工作中给出

分类器的动态选择与循环集成方法

分类器的动态选择与循环集成方法 郝红卫;王志彬;殷绪成;陈志强 【期刊名称】《自动化学报》 【年(卷),期】2011(037)011 【摘要】In order to deal with the problems of low efficiency and inflexibility for selecting the optimal subset and combining classifiers in multiple classifier systems, a new method of dynamic selection and circulating combination (DSCC) is proposed. This method dynamically selects the optimal subset with high accuracy for combination based on the complementarity of different classification models. The number of classifiers in the selected subset can be adaptively changed according to the complexity of the objects. Circulating combination is realized according to the confidence of classifiers. The experimental results of handwritten digit recognition show that the proposed method is more flexible, efficient and accurate comparing to other classifier selection methods.%针对多分类器系统设计中最优子集选择效率低下、集成方法缺乏灵活性等问题,提出了分类器的动态选择与循环集成方法(Dynamic selection and circulating combination,DSCC).该方法利用不同分类器模型之间的互补性,动态选择出对目标有较高识别率的分类器组合,使参与集成的分类器数量能够随识别目标的复杂程度而自适应地变化,并根据可信度实现系统的循环集成.在手写体数字识别实验中,与其他常用的分类器选择方法相比,所提出的方法灵活高效,识别率更高.

智能计算平台应用开发(中级)-第8章-机器学习基础算法建模-集成学习算法

第8章?机器学习基础算法建模

目录 1.机器学习 2.分类算法 3.回归算法 4.集成学习算法 5.聚类算法 6.关联规则算法 7.智能推荐算法

l 在机器学习的有监督学习算法中,目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往达不到理想状态,有时只能得到多个有偏好的模型(弱分类器,在某些方面表现较好)。 ?集成学习是组合多个弱分类器,得到一个更好且更全面的强分类器,即将多个分 类器聚集在一起,以提高分类的准确率。 ?这些分类器可以是不同的算法,也可以是相同的算法。如果把单个分类器比作一 个决策者,那么集成学习的方法就相当于多个决策者共同进行一项决策。 集成学习

l集成学习的作用 将多个弱分类器合并,实现更好的效果。 l分类器间存在一定的差异性,会导致分类的边界不同,可以理解为分类器是一个比较专精的专家,它有它自己一定的适用范围和特长。 l通过一定的策略将多个弱分类器合并后,即可拓展模型的适用范围,减少整体 的错误率,实现更好的效果。

l 数据过大时会导致训练一个模型太慢,而集成学习可以分别对数据集进行划分和有放回的操作,从而产生不同的数据子集,再使用数据子集训练不同的分类器, 最终再将不同的分类器合并成为一个大的分类器。 l 数据过小时则会导致训练不充分,而集成学习可以利用Bootstrap 方法进行抽样,得到多个数据集,分别训练多个模型后再进行组合。如此便可提高训练的准确度 和速度,使得之前很难利用的数据得到充分的利用。集成学习在各个规模的数据集上都有很好的策略。

将多个模型进行融合。 l对于存在多个异构的特征集的时候,很难进行融合,可以考虑使用集成学习的方式,将每个数据集构建一个分类模型,然后将多个模型进行融合。

机器学习常见算法分类汇总

机器学习常见算法分类汇总 ?作者:王萌 ?星期三, 六月25, 2014 ?Big Data, 大数据, 应用, 热点, 计算 ?10条评论 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习:

在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习:

3-决策树与集成算法

树模型 决策树:从根节点开始一步步走到叶子节点(决策) 所有的数据最终都会落到叶子节点,既可以做分类也可以做回归

树的组成 根节点:第一个选择点 非叶子节点与分支:中间过程叶子节点:最终的决策结果

决策树的训练与测试 训练阶段:从给定的训练集构造出来一棵树(从跟节点开始选择特征,如何进行特征切分) 测试阶段:根据构造出来的树模型从上到下去走一遍就好了 一旦构造好了决策树,那么分类或者预测任务就很简单了,只需要走一遍就可以了,那么难点就在于如何构造出来一颗树,这就没那么容易了,需要考虑的问题还有很多的!

如何切分特征(选择节点) 问题:根节点的选择该用哪个特征呢?接下来呢?如何切分呢? 想象一下:我们的目标应该是根节点就像一个老大似的能更好的切分数据(分类的效果更好),根节点下面的节点自然就是二当家了。 目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点,以此类推。

衡量标准-熵 熵:熵是表示随机变量不确定性的度量 (解释:说白了就是物体内部的混乱程度,比如杂货市场里面什么都有那肯定混乱呀,专卖店里面只卖一个牌子的那就稳定多啦) 公式:H(X)=-∑ pi * logpi, i=1,2, ... , n 一个栗子:A集合[1,1,1,1,1,1,1,1,2,2] B集合[1,2,3,4,5,6,7,8,9,1] 显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些 而B中类别太多了,熵值就会大很多。(在分类任务中我们希望通过节点分支后数据类别的熵值大还是小呢?)

衡量标准-熵 熵:不确定性越大,得到的熵值也就越大 当p=0或p=1时,H(p)=0,随机变量完全没有不确定性当p=0.5时,H(p)=1,此时随机变量的不确定性最大 如何决策一个节点的选择呢? 信息增益:表示特征X使得类Y的不确定性减少的程度。(分类后的专一性,希望分类后的结果是同类在一起)

快速流分类算法研究综述

快速流分类算法研究综述 李振强 (北京邮电大学信息网络中心,北京 100876) 摘要 本文对流分类算法进行了综述,包括流分类的定义,对流分类算法的要求,以及各种流分类算法的分析比较。文章的最后指出了在流分类方面还没有得到很好解决的问题,作为进一步研究的方向。 关键词 流分类;服务质量;IP 背景 当前的IP网络主要以先到先服务的方式提供尽力而为的服务。随着Internet的发展和各种新业务的出现,尽力而为的服务已经不能满足人们对Internet的要求,IP网络必须提供增强的服务,比如:SLA(Service Level Agreement)服务,VPN(Virtual Private Network)服务,各种不同级别的QoS (Quality of Service)服务,分布式防火墙,IP安全网关,流量计费等。所有这些增强服务的提供都依赖于流分类,即根据包头(packet header)中的一个或几个域(field)决定该包隶属的流(flow)。典型的,包头中可以用来分类的域包括:源IP地址(Source IP Address)、目的IP地址(Destination IP Address)、协议类型(Protocol Type)、源端口(Source Port)和目的端口(Destination Port)等。 流分类算法描述 首先定义两个名词:规则(rule)和分类器(classifier)。用来对IP包进行分类的由包头中若干域组成的集合称之为规则,而若干规则的集合就是分类器。构成规则的域(我们称之为组件component)的值可以是某个范围,例如目的端口大于1023。流分类就是要确定和每个包最匹配的规则。表1是由6条规则组成的一个分类器。我们说这是一个5域分类器,因为每条规则由5个组件构成。我们假定分类器中的规则是有优先级的,越靠前的规则优先级越高,即规则1的优先级最高,规则6的最低。

R语言常用包分类

1、聚类 ?常用的包:fpc,cluster,pvclust,mclust ?基于划分的方法: kmeans, pam, pamk, clara ?基于层次的方法: hclust, pvclust, agnes, diana ?基于模型的方法: mclust ?基于密度的方法: dbscan ?基于画图的方法: plotcluster, plot.hclust ?基于验证的方法: cluster.stats 2、分类 ?常用的包: rpart,party,randomForest,rpartOrdinal,tree,marginTree, maptree,survival ?决策树: rpart, ctree ?随机森林: cforest, randomForest ?回归, Logistic回归, Poisson回归: glm, predict, residuals ?生存分析: survfit, survdiff, coxph 3、关联规则与频繁项集 ?常用的包:

arules:支持挖掘频繁项集,最大频繁项集,频繁闭项目集和 关联规则 DRM:回归和分类数据的重复关联模型 ?APRIORI算法,广度RST算法:apriori, drm ?ECLAT算法:采用等价类,RST深度搜索和集合的交集:eclat 4、序列模式 ?常用的包:arulesSequences ?SPADE算法:cSPADE 5、时间序列 ?常用的包:timsac ?时间序列构建函数:ts ?成分分解: decomp, decompose, stl, tsr 6、统计 ?常用的包:Base R, nlme ?方差分析: aov, anova ?密度分析: density ?假设检验: t.test, prop.test, anova, aov ?线性混合模型:lme

三种包分类算法的实现 SX1116090

简单实现包分类算法 概要 包分类是VPNs、下一代路由器、防火墙等设备的关键技术。包分类算法研究具有十分重要的意义,是目前的热点之一。本文介绍了常用的包分类算法,分析了它们的优缺点,并简单实现线性、Hicuts 和Hypercut三种基本算法,对这三种算法进行性能对比。

一、包分类算法背景 路由器的主要功能是将一个网络的IP数据报(包)Packet转发到另一个网络。传统路由器仅根据数据包的目的地址对数据包进行转发,提供未加区分的尽力服务(Best Effort Service),这是一维报文分类的典型形式:对所有的用户报文一视同仁的处理。但是,随着因特网规模的不断扩大和应用技术的进步,越来越多的业务需要对数据包进行快速有效的分类以便区别处理提供不同级别的服务,因此路由器还需要对数据包进行进一步的处理。最常见的是根据安全性需要,对包进行过滤,阻止有安全隐患的数据包通过。因此,研究高速包分类算法具有十分重要的意义。 因特网是由许许多多的主机及连接这些主机的网络组成,主机间通过TCP /IP协议交换数据包。数据包从一个主机穿过网络到达另一个主机,其中就需要路由器提供数据包转发服务。近年来,因特网己经从主要连接教育机构的低速网络迅速成为重要的商业基础设施。现在,因特网正呈现两方面的新变化:一方面,因特网上的用户正在呈现爆炸性增长,Web站点正在迅速增加,需要宽带网络的多媒体应用正在日益普及,因特网的通信量也正在呈现爆炸性增长,因特网正日益变得拥挤:另一方面,因特网上的用户正呈现许多不同的种类,从以浏览和下载资料为主的普通家庭用户到经营电子商务的大型企业等等,这些用户从安全、性能、可靠性方面对因特网的期望是不同的。人们希望路由器能够具有诸如数据包过滤、区分服务、QoS、多播、流量计费等额外功能。所有这些处理都需要路由器按某些规则将数据包进行分类,分类后的数据构成许多“流’’,再对每一个流分别进行处理。对于网络流量的不断增长问题,由于光纤技术和DWDM 技术的发展使得链路的速率不再成为瓶颈,已经满足了大流量传输的需求,这就使得路由器的处理速度成为网络整体速度的一个瓶颈。这主要由于路由器需要对每个输入包执行许多操作,包括十分复杂的分类操作。例如,它们需要对每个输入包执行最长前缀匹配以发现其下一跳地址:需要对每个输入包执行多维包分类以便在执行缓冲器管理、QoS调度、防火墙、网络地址翻译、多播服务、虚拟专用网、速率限制、流量计费等任务时区别对待不同的包。因此,为了满足服务快速性和服务多样性这两方面的需要,就必须研究相应的快速包分类算法应用到实际路由中。

集成学习的多分类器动态组合方法

2008年12月 December 2008 计 算 机 工 程Computer Engineering 第34 第24期 Vol 卷.34 No.24 ·人工智能及识别技术·文章编号:1000—3428(2008)24—0218—03 文献标识码:A 中图分类号:TP391.4 集成学习的多分类器动态组合方法 陈 冰,张化祥 (山东师范大学信息科学与工程学院,济南 250014) 摘 要:为了提高数据的分类性能,提出一种集成学习的多分类器动态组合方法(DEA)。该方法在多个UCI 标准数据集上进行测试,并与文中使用的基于Adaboost 算法训练出的各个成员分类器的分类效果进行比较,证明了DEA 的有效性。 关键词:多分类器;聚类;动态分类器组合;Adaboost 算法 Dynamic Combinatorial Method of Multiple Classifiers on Ensemble Learning CHEN Bing, ZHANG Hua-xiang (College of Information Science and Engineering, Shandong Normal University, Jinan 250014) 【Abstract 】In order to improve the classification performance of dataset, a dynamic combinatorial method of multiple classifiers on ensemble learning DEA is proposed in the paper. DEA is tested on the UCI benchmark data sets, and is compared with several member classifiers trained based on the algorithm of Adaboost. In this way, the utility of DEA can be proved. 【Key words 】multiple classifiers; clustering; dynamic classifier ensemble; Adaboost algorithm 1 概述 近年来,多分类器组合(DEA)技术在各个领域已经得到了广泛的应用,如模式识别中的人脸识别、网络安全、语言学中的词义消歧[1]等。 关于多分类器系统的研究越来越多,大量的理论和实验结果表明,通过多分类器组合不但可以提高分类的正确率,而且能够提高模式识别系统的效率和鲁棒性。尽管在各个方面提出了不同的分类器组合方法,但这些方法都或多或少地存在某些缺陷,它们或者先利用聚类对数据集进行处理,再直接用同种类型的分类器来分类[2];或者采用不同类型的分类器,而不对数据集做任何处理[1];更多的是利用不同的融合算法来训练生成同种类型的分类器,再利用它们对数据分类。另外,通常所使用的分类方法如决策树、K-近邻、Bayes 等都是有导师信息的机器学习过程。但实际中存在着大量的数据没有标记样本类别,如果再运用这些分类方法,其操作性就比较差了。而聚类等非监督学习能自适应地处理大量的未知类别的样本。基于监督学习与非监督学习的优势互补,将两者结合起来各取所长,一定能够收到很好的效果。另外值得注意的一点:目标识别中利用不同的分类器可以得到不同的分类识别结果,而且结果之间具备相当的互补性,从而可以提高分类的效果,克服单分类器存在的问题。 2 多分类器动态组合流程 图1是DEA 方法一次随机取样的流程。这里,小样本集 1,2,…,k 是对训练数据集按照类别标号得到的k 个小集合;分类器组合1,2,…,k 表示的是由训练数据集训练出的分类器对每个小样本集合分类根据分类错误率得到的k 组性能较好(错误率较低)的分类器组合。其中,总的分类器是在Adaboost 基础上每次随机地生成以决策树、贝叶斯、k-近邻中的一个作为基分类器,直到生成50个为止。接下来利用这k 组分类器去分类类别标号相对应的测试数据中的聚类集合(为了表示的方便,图中假设小样本集与聚类集合是一一对应的)。最后用每个聚类集中被错误分类的样本数之和除以测试数据总数,即得一次采样的错误率。 图1 多分类器动态组合流程 3 多分类器动态组合 3.1 集成学习 集成学习[3]方法是根据样本训练多分类器来完成分类任务的方法,这些分类器具有一定的互补功能,在减少分类误 基金项目:山东省科技攻关计划基金资助项目(2005GG4210002);山东省青年科学家科研奖励基金资助项目(2006BS01020);山东省教育厅科技计划基金资助项目(J07YJ04);山东省自然科学基金资助项目(Y2007G16) 作者简介:陈 冰(1981-),女,硕士研究生,主研方向:数据挖掘,机器学习;张化祥,教授、博士 收稿日期:2008-04-14 E-mail :zyxcscb@https://www.360docs.net/doc/b312116874.html, —218 —万方数据

分类算法

分类算法 摘要:分类算法是数据挖掘中的最重要的技术之一。通过对当前提出的最新的具有代表性的分类算法进行分析和比较,总结每类算法的各方面特性,从而便于研究者对已有的算法进行改进,提出具有更好性能的新的分类算法,同时方便使用者在应用时对算法的选择和使用。 关键词:分类算法决策树基于规则贝叶斯人工神经网络支持向量机 分类是挖掘数据的一个重要技术,是数据挖掘中最有应用价值的技术之一,其应用遍及社会各个领域。分类任务就是通过学习得到一个目标函数(通常也称作分类模型,即分类器),把每个属性集映射到一个预先定义的类标号。分类和回归都可以用于预测。和回归方法不同的是,分类的类标号是离散属性,而预测建模的回归的目标属性是连续的。 构造分类器的过程一般分为训练和测试两个阶段。在构造模型之前,要求将数据集随机地分为训练数据集和测试数据集。在训练阶段,分析训练数据集的属性,为每个属性产生一个对相应数据集的属性描述或模型。在测试阶段,利用属性描述或模型对测试数据集进行分类,测试其分类准确度。一般来说,测试阶段的代价远远低于训练阶段。 为了提高分类的准确性、有效性和可伸缩性,在进行分类之前,通常要对数据进行预处理,包括: (1)数据清理。其目的是消除或减少数据噪声,处理空缺值。 (2)相关性分析。由于数据集中的许多属性可能与分类任务不相关,若包含这些属性将减慢和可能误导学习过程。相关性分析的目的就是删除这些不相关或冗余的属性。 (3)数据变换。数据可以概化到较高层概念。比如,连续值属性“收入”的数值可以概化为离散值:低,中,高。又比如,标称值属性“市”可概化到高层概念“省”。此外,数据也可以规范化, ,规范化将给定属性的值按比例缩放,落入较小的区间,比如[0,1]等。 分类模型的构造方法有决策树类、基于规则类、最近邻类、贝叶斯类、人工神经网络类等。 1决策树分类算法 1.1决策树基本概念 决策树是一种由结点和有向边组成的层次结构,树中包含三种结点;根结点、内部结点和叶结点(终结点)。它采用自顶向下的递归方式,在根结点使用属性将训练数据集区分开,在内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,树的每个叶结点都赋予一个类标号,即在叶结点得到结论。决策树是实例的分类器。从根到叶结点的一条路径就对应着一条规则,整个决策树就对应着一组析取表达式规则。可将实例分到多个分类(≥2)并以析取范式(DNF)形式重写为规则。这种具有预测功能的系统叫决策树分类器。 1.2常用的决策树算法 决策树分类算法从提出以来,出现了很多算法,比较常用的有:1986年Quinlan提出了著名的ID3算法。ID3算法体现了决策树分类的优点:算法的理论清晰,方法简单,学习能力较强。其缺点是:只对比较小的数据集有效,且对噪声比较敏感,当训练数据集加大时,决策树可能会随之改变,并且在测试属性选择时,它倾向于选择取值较多的属性。 在ID3算法的基础上,1993年Quinlan又自己提出了改进算法—C4. 5算法。为了适应处理大规模数据集的需要,后来又提出了若干改进的算法,其中SLIQ(su-pervised learning in quest)和SPRINT (scalable parallelizable induction of decision trees)是比较有代表性的两个算法,PUBLIC (Pruning and

数据挖掘分类算法的研究与应用

首都师范大学 硕士学位论文 数据挖掘分类算法的研究与应用 姓名:刘振岩 申请学位级别:硕士 专业:计算机应用技术 指导教师:王万森 2003.4.1

首都师范入学硕.卜学位论Z数据挖掘分类算法的研究与应用 摘要 , f随着数据库技术的成熟应用和Internet的迅速发展,人类积累的数据量正在以指数速度增长。科于这些数据,人{}j已经不满足于传统的查询、统计分析手段,而需要发现更深层次的规律,对决策或科研工作提供更有效的决策支持。正是为了满足这种要求,从大量数据中提取出隐藏在其中的有用信息,将机器学习应用于大型数据库的数据挖掘(DataMining)技术得到了长足的发展。 所谓数据挖掘(DataMining,DM),也可以称为数据库中的知识发现(KnowledgeDiscoverDat曲鹅e,KDD),就是从大量的、不完全的、有噪声的、模糊的、随机的数据r},,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是数据库研究中的一个很有应用价值的新领域,它又是一门广义的交叉学科,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。 分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。{乍多分类的方法已被机器学习、专家系统、统计学和神经生物学方面的研究者提}H。本论文主要侧重数据挖掘中分类算法的研究,并将分类算法划分为急切分类和懒散分类,全部研究内容基本围绕着这种划分方法展开。.1本文的主要研究内容:, l,讨论了数掂挖掘中分类的基本技术,包括数据分类的过程,分类数据所需的数据预处理技术,以及分类方法的比较和评估标准;比较了几种典 型的分类算法,包括决策树、k.最近邻分类、神经网络算法:接着,引 出本文的研究重点,即将分类算法划分为急切分类和懒散分类,并基于 这种划分展歼对数据挖掘分类算法的研究。 2.结合对决簸树方法的研究,重点研究并实现了一个“懒散的基于模型的分类”思想的“懒散的决策树算法”。在决策树方法的研究中,阐述了决 策树的基本概念以及决策树的优缺点,决策树方法的应用状况,分析了 决策树算法的迸一步的研究重点。伪了更好地满足网络环境下的应用需 求,结合传统的决策树方法,基于Ⅶ懒散的基于模型的分类”的思想, 实现了一个网络环境下基于B/S模式的“懒散的决策树算法”。实践表明: 在WEB应fH程序叶i采用此算法取得了很好的效果。、 ≯ 3.选取神经H络分类算法作为急切分类算法的代表进行深入的研究。在神经网络中,重点分析研究了感知器基本模型,包括感知器基本模型的构 造及其学习算法,模型的几何意义及其局限性。并针对该模型只有在线 性可分的情况一F彳‘能用感知器的学习算法进行分类的这一固有局限性, 研究并推广了感知器模型。

《管理统计学》不定项选择练习题

综合 1、统计的含义包括()。ACD A.统计资料 B.统计指标 C.统计工作 D.统计学 E.统计调查 2、统计研究运用各种专门的方法,包括()。ABCDE A.大量观察法 B.统计分组法 C.综合指标法 D.统计模型法 E.统计推断法 3、全国第5次人口普查中()。BCE A.全国人口数是统计总体? B.总体单位是每一个人 C.全部男性人口数是统计指标 D.人口性别比是总体的品质标志 E.人的年龄是变量 4、下列各项中,属于连续变量的有()。ACD A.基本建设投资额 B.岛屿个数 C.国民生产总值中3次产业比例 D.居民生活费用价格指数 E.就业人口数 5、下列指标中,属于数量指标的有()。AC A.国民生产总值 B.人口密度 C.全国人口数 D.投资效果系数 E.工程成本降低率 6、下列标志中,属于品质标志的有()。BE A.工资 B. 所有制 C.旷课次数 D.耕地面积 E.产品质量 7、下列各项中,哪些属于统计指标?()ACDE A.我国2005年国民生产总值 B.某同学该学期平均成绩 C.某地区出生人口总数 D.某企业全部工人生产某种产品的人均产量 E.某市工业劳动生产率 8、统计指标的表现形式有()。BCE A.比重指标 B.总量指标 C.相对指标 D.人均指标 E.平均指标 9、总体、总体单位、标志、指标间的相互关系表现为()。ABCD A.没有总体单位也就没有总体,总体单位也不能离开总体而存在 B.总体单位是标志的承担者 C.统计指标的数值来源于标志

D.指标是说明总体特征的,标志是说明总体单位特征的 E.指标和标志都能用数值表示 10、国家统计系统的功能或统计的职能有()。ABCD A.收集信息职能 B.提供咨询职能 C.实施监督职能 D.支持决策职能 E.组织协调职能 11、当人们谈及什么是统计时,通常可以理解为()ACD A.统计工作 B.统计整理 C.统计资料 D.统计学 E.统计学科 12、调查得到的经过整理具有信息价值的统计资料包括()ABDE A.统计数据 B.统计图标 C.统计软件 D.统计年鉴 E.统计报告 13、以下关于统计学的描述,正确的有()ACD A.统计学是一门收集、整理和分析统计数据的方法论科学 B.统计学是一门收集、整理和分析统计数据的实质性科学 C.统计学的研究目的是探索数据的内在数量规律性 D.统计学提供了探索数据内在规律的一套方法 E.统计学提供了探索数据内在规律的一套软件 14、统计数据按其采用的计量尺度不同可以分为()ABC A.分类数据 B.顺序数据 C.数值型数据 D.截面数据 E.扇面数据 15、统计数据按其收集方法不同,可以分为()AB A.观测数据 B.实验数据 C.时序数据 D.混合数据 E.顺序数据 16、统计数据按被描述的对象和时间的关系不同分为()ABD A.截面数据 B.时间序列数据 C.观测数据 D.混合数据 E.扇面数据 17、从统计方法的构成看,统计学可以分为()AD A.描述统计学 B.理论统计学 C.应用统计学 D.推断统计学 E.管理统计学 18、如果要研究某市987家外资企业的基本情况,下列属于统计指标的有()ABD A.所有外资企业的职工平均工资 B.所有外资企业的平均利润 C.甲企业的固定资产原值 D.所有外资企业平均职工人数 E.部分外资企业平均职工人数 统计数据的收集 1、普查是一种()。BCD A.非全面调查 B.专门调查 C.全面调查 D.一次性调查 E.经常性调查 2、某地对集市贸易个体户的偷漏税情况进行调查,1月5日抽选5%样本检查,5月1日抽选10%样本检查,这种调查是()。ABC

分类算法综述

《数据挖掘》 数据挖掘分类算法综述 专业:计算机科学与技术专业学号:S2******* 姓名:张靖 指导教师:陈俊杰 时间:2011年08月21日

数据挖掘分类算法综述 数据挖掘出现于20世纪80年代后期,是数据库研究中最有应用价值的新领域之一。它最早是以从数据中发现知识(KDD,Knowledge Discovery in Database)研究起步,所谓的数据挖掘(Data Mining,简称为DM),就从大量的、不完全的、有噪声的、模糊的、随机的、实际应用的数据中提取隐含在其中的、人们不知道的但又有用的信息和知识的过程。 分类是一种重要的数据挖掘技术。分类的目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器)。该模型能把未知类别的样本映射到给定类别中的一种技术。 1. 分类的基本步骤 数据分类过程主要包含两个步骤: 第一步,建立一个描述已知数据集类别或概念的模型。如图1所示,该模型是通过对数据库中各数据行内容的分析而获得的。每一数据行都可认为是属于一个确定的数据类别,其类别值是由一个属性描述(被称为类别属性)。分类学习方法所使用的数据集称为训练样本集合,因此分类学习又可以称为有指导学习(learning by example)。它是在已知训练样本类别情况下,通过学习建立相应模型,而无指导学习则是在训练样本的类别与类别个数均未知的情况下进行的。 通常分类学习所获得的模型可以表示为分类规则形式、决策树形式或数学公式形式。例如,给定一个顾客信用信息数据库,通过学习所获得的分类规则可用于识别顾客是否是具有良好的信用等级或一般的信用等级。分类规则也可用于对今后未知所属类别的数据进行识别判断,同时也可以帮助用户更好的了解数据库中的内容。 图1 数据分类过程中的学习建模 第二步,利用所获得的模型进行分类操作。首先对模型分类准确率进行估计,例如使用保持(holdout)方法。如果一个学习所获模型的准确率经测试被认为是可以接受的,那么就可以使用这一模型对未来数据行或对象(其类别未知)进行分类。例如,在图2中利用学习获得的分类规则(模型)。对已知测试数据进行模型

统计方法的选择

第一部分统计分析流程 一.资料分类: (1)定量(数量性状)资料 (2)定性(质量性状)资料 (3)等级资料 二.数据录入SPSS: (1) 建立变量名 (2) 录入数据: A. 定量资料的原始数据 B. 定性或等级资料的次数数据(也可是原始数据) 三.数据分布的检测 (1)定量资料:正态性或其它连续分布检测 (2)定性资料:一般可不做,若题目要求则进行离散分布检测 四.基本统计分析 (1)选择合适的统计指标对数据进行统计描述 (2)用SPSS进行基本统计分析,获取该统计指标 (3)用三线表或统计图进行归纳 五.进行统计推断,置信区间计算和其它分析(如相关分析)(1)选择合适的统计推断方法(注意方法的前提条件) (2)用SPSS进行统计推断分析,获得P值 (3)根据小概率事件不可能性原理进行统计推断 六.根据统计分析结果,结合专业知识,给出生物学解释。

第二部分 数据分布的检测 一. 定量资料总体分布:单样本K-S 检验 可检验:正态分布(Normal ),均匀分布(uniform ),泊松分布(Poisson),指数分布(Exponential)]等 连续型数据 分布。 【1】 通过探索分析explore 中调用Normality plots with tests, 检测正态分布; 【2】 通过非参数检验调用单样本K-S 检验,检测各种分布。 二. 定性资料和等级资料分布:卡方检验 通过非参数检验调用卡方检验 离散变量总体 分布。 第三部分 统计指标的选择 一. 数量性状资料(包括计量和计数资料) 1.正态分布: (2) 大样本(n>30): (集中趋势)± S (样本间的变异) (3) 小样本(n ≤30): (集中趋势)± (抽样误差) 2. 偏态分布: 中位数(median ,集中趋势) ,四分位间距(IQR ,变异程度) 二. 质量性状资料和等级资料(次数资料) 1.样本含量n 足够多时: 统计次数―>率或比 (相对值) 2..样本含量n 少时: 统计次数―> 用绝对数表示 x x x S

分类算法综述

分类算法综述 1 分类算法分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。分类可描述如下:输入数据,或称训练集(Training Set),是一条条的数据库记录(Record)组成的。每一条记录包含若干个属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(Class Label)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…, vn ;c)。在这里vi表示字段值,c表示类别。分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新

数据所属的类。注意是预测,而不能肯定,因为分类的准确率不能达到百分之百。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 2 典型分类算法介绍解决分类问题的方法很多,下面介绍一些经典的分类方法,分析 各自的优缺点。 2.1 决策树分类算法决策树(Decision Tree)是一种有向无环图(Directed Acyclic Graphics,DAG)。决策树方法是利用信息论中 的信息增益寻找数据库中具有最大信息量的属性字段,建立决策树的一个结点,在根据该属性字段的 不同取值建立树的分支,在每个子分支子集中重复 建立树的下层结点和分支的一个过程。构造决策树 的具体过程为:首先寻找初始分裂,整个训练集作 为产生决策树的集合,训练集每个记录必须是已经 分好类的,以决定哪个属性域(Field)作为目前最 好的分类指标。一般的做法是穷尽所有的属性域, 对每个属性域分裂的好坏做出量化,计算出最好的 一个分裂。量化的标准是计算每个分裂的多样性(Diversity)指标。其次,重复第一步,直至每个叶 节点内的记录都属于同一类且增长到一棵完整的树。

各种分类算法比较

各种分类算法比较 最近在学习分类算法,顺便整理了各种分类算法的优缺点。 1决策树(Decision Trees)的优缺点 决策树的优点: 一、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 三、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 四、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 五、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 六、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 七、可以对有许多属性的数据集构造决策树。 八、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 一、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 二、决策树处理缺失数据时的困难。 三、过度拟合问题的出现。 四、忽略数据集中属性之间的相关性。 2 人工神经网络的优缺点

人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。 3 遗传算法的优缺点 遗传算法的优点: 一、与问题领域无关切快速随机的搜索能力。 二、搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。 三、搜索使用评价函数启发,过程简单。 四、使用概率机制进行迭代,具有随机性。 五、具有可扩展性,容易与其他算法结合。 遗传算法的缺点: 一、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码, 二、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利 用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。 三、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。 4 KNN算法(K-Nearest Neighbour) 的优缺点 KNN算法的优点: 一、简单、有效。 二、重新训练的代价较低(类别体系的变化和训练集的变化,在Web环境和电子商务应用中是很常见的)。 三、计算时间和空间线性于训练集的规模(在一些场合不算太大)。

分类算法

分类算法 目录 1.分类算法 (3) 2.典型分类算法 (3) 2.1 决策树分类算法 (3) 2.1.1 算法概述 (3) 2.1.2 算法优缺点 (3) 2.1.3 算法分类介绍 (4) 2.1.3.1 ID3(C4.5)算法 (4) 2.1.3.2 SLIQ分类算法 (4) 2.1.3.3 SPRINT分类算法 (5) 2.2 三种典型贝叶斯分类器 (5) 2.2.1 算法概述 (5) 2.2.2 算法分类介绍 (5) 2.2.2.1 朴素贝叶斯算法 (5) 2.2.2.2 TAN算法 (6) 2.2.2.3 贝叶斯网络分类器 (7) 2.2.3 三类方法比较 (7) 2.3 k-近邻 (8) 2.4 基于数据库技术的分类算法 (9) 2.4.1 MIND算法 (9) 2.4.2 GAC-RDB算法 (9)

2.5 基于关联规则的分类算法 (10) 2.5.1 Apriori算法 (10) 2.6 支持向量机分类 (11) 2.7 基于软计算的分类方法 (11) 2.7.1 粗糙集 (12) 2.7.2 遗传算法 (12) 2.7.3 模糊逻辑 (13) 2.7.4 人工神经网络算法 (14) 2.7.4.1 算法概述 (14) 2.7.4.2 算法优缺点 (14) 2.7.4.3 算法分类 (15) 2.7.4.3.1 BP神经网络分类算法 (15) 2.7.4.3.2 RBF神经网络 (16) 2.7.4.3.3 SOFM神经网络 (17) 2.7.4.3.4 学习矢量化(LVQ)神经网络 (17) 3 其他分类算法 (18) 3.1 LB算法 (18) 3.2 CAEP算法 (18)

统计方法的选择汇总

统计方法的选择 一、两组或多组计量资料的比较 1.两组资料: 1)大样本资料或服从正态分布的小样本资料 (1)若方差齐性,则作成组t检验 (2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验 2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验2.多组资料: 1)若大样本资料或服从正态分布,并且方差齐性,则作 完全随机的方差分析。如果方差分析的统计检验为有统 计学意义,则进一步作统计分析:选择合适的方法 (如:LSD检验,Bonferroni检验等)进行两两比较。 2)如果小样本的偏态分布资料或方差不齐,则作 Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适 的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。 二、分类资料的统计分析 1.单样本资料与总体比较 1)二分类资料: (1)小样本时:用二项分布进行确切概率法检验;

(2)大样本时:用U检验。 2)多分类资料:用Pearson c2检验(又称拟合优度检验)。 2. 四格表资料 1)n>40并且所以理论数大于5,则用Pearson c2 2)n>40并且所以理论数大于1并且至少存在一个理论数<5,则用校正 c2或用Fisher’s 确切概率法检验 3)n£40或存在理论数<1,则用Fisher’s 检验 3. 2×C表资料的统计分析 1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMH c2或成组的Wilcoxon秩和检验 2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验 3)行变量和列变量均为无序分类变量 (1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2 (2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验 4. R×C表资料的统计分析 1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验

相关文档
最新文档