反证法逻辑原理孙贤忠

反证法逻辑原理孙贤忠
反证法逻辑原理孙贤忠

反证法逻辑原理

即证“完备性前提下的原命题的逆否命题”

作者:孙贤忠(湖南省长沙市第七中学邮编:410003 )

【摘要】:阐明反证法的定义、逻辑依据、证明的一般步骤、种类,探索其在中学数学中的应用。这实际上就是在证“完备性前提下的原命题的逆否命题”了。一个命题:若A则B为真,这只是简洁的形式,因为若A则B为真,其本身就还含有所有的已知定义,定理,大家都知道的事实,乃至正确的逻辑推理等等一切必须为真的系统性条件为真,否则绝不可能推出结论B 为真。

【关键词】:反证法证明矛盾逆否命题一反证法出现

反证法(Proofs by Contradiction ,又称归谬法、背理法),是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说明假设不成立,原命题得证。

反证法常称作RedUCtiO ad absurdum ,是拉丁语中的转化为不可能”,源自希

腊语中的“ ει? To αδυνατο阿基米德丫经常使]用它。

二反证法所依据的逻辑思维规律

反证法所依据的是逻辑思维规律中的矛盾律”和排中律”。在同一思维过程中,

两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中

的排中律”。反证法在其证明过程中,得到矛盾的判断,根据矛盾律”,这些矛盾的判

断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以否定的结论”必为假。再根据排中律”,结论与否定的结论” 这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。

反证法是间接证明法”一类,是从反方向证明的证明方法,即:肯定题设而否定结论,从而得出矛盾。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。

在应用反证法证题时,一定要用到反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫穷举法”。

反证法在数学中经常运用。当论题从正面不容易或不能得到证明时,就需要运用

反证法,此即所谓"正难则反"。

三反证法所依据的逻辑基础

牛顿曾经说过:反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明正面证明有困难,情况多或复杂,而逆否命题则比较浅显的题目,问题可能解决得十分干脆。

反证法的证题可以简要的概括为否定→得出矛盾→否定”。即从否定结论开始,得出矛盾,达到新的否定,可以认为反证法的基本思想就是辩证的否定之否定”。应

用反证法的是:

欲证若P则Q'为真命题,从相反结论出发,得出矛盾,从而原命题为真命题。

反证法的证明主要用到一个命题与其逆否命题同真假”的结论,为什么?这个结论可以用穷举法证明:

某命题:若A则B ,则此命题有4种情况:

1. 当A为真,B为真,则A→B为真,「B→「A为真;

2. 当A为真,B为假,贝U A→B为假,「B→「A为假;

3. 当A为假,B为真,则A→B为真,「B→「A为真;

4. 当A为假,B为假,贝U A→B为真,「B→「A为真;

二一个命题与其逆否命题同真假

与若A则B先等价的是它的逆否命题若「B则「A

假设「B,推出「代就说明逆否命题是真的,那么原命题也是真的.

但实际推证的过程中,推出「A是相当困难的,所以就转化为了推出与「A相同效果的内容即可,这个相同效果就是与A(已知条件)矛盾,或是与已知定义,定理,大家都知道的事实等矛盾.

这实际上就是在证“完备性前提下的原命题的逆否命题”了。一个命题:若A

则B为真,这只是简洁的形式,因为若A则B为真,其本身就还含有所有的已知定义,定理,大家都知道的事实,乃至正确的逻辑推理等等一切必须为真的系统性条件为真,否则绝不可能推出结论B为真。

这样就有命题:若A则B为真,应该完备成命题:若A且C (定义)且D (定理)且E (正确的逻辑推理)且F(客观事实)以及且……则B。于是逆否命题就是:若「B,则「A或「C (定义)或「D (定理)或「E (正确的逻辑推理)或「F(客观事实)以及或「……,逆否命题至少有一个,证出一个就可以了。

在数学的证明中,经常运用反证法。在命题逻辑推理中,反证法是证明一个公式是某个前提集合的有效结论的逆否命题。

设A1,A2,…,Am是命题公式,

如果A1 A2…Am是可满足的,

称A1,A2,…,Am是相容的。

如果A1 A2…Am是矛盾式,

称A1 , A2 ,…,Am是不相容的。

如果要证A1 A2…Am = C

只需证明A1 A2…Am > C是重言式。

而A1 A2 …Am —. C

—(A1 A2 …Am) C

—(A1 A2 …Am - C)

由此可知A1 A2…Am - C为重言式,

当且仅当A1 A2…Am - C是矛盾式。

从而得到如A1 , A2 ,…,Am , -C不相容(即-C (A1 A2…Am)这就是

A1 A2…Am > C的逆否命题得证),则C是A1 , A2,…,Am的有效结论。

因此我们可以把-C作为附加前提推出矛盾来,从而可以得到C是A1 , A2 ,…, Am的有效结论。这种方法称为反证法,也是反证法的逻辑基础。

例如:「B→「A为真,就是「B且A且C (定义)且D (定理)且E (正确的逻辑推理)且F(客观事实)以及……→「A且C (定义)且D (定理)且E (正确的逻辑推理)且F(客观事实)以及……这就是推出与已知条件矛盾的情形,所以若A则B 为真(即原命题为真),

当然也可以是另外的情形口:「B且A且C (定义)且D (定理)且E (正确的逻辑推理)且F(客观事实)以及……则A且C (定义)且「D (定理)且E (正确的逻辑推理)且F(客观事实)以及……,这就是推出与定理矛盾的情形,所以若A则B 为真(即原命题为真)等等。

四反证法步骤:

(1)假设命题结论不成立,即假设结论的反面成立。(若「B为真)

(2)从这个命题出发,经过推理证明得出矛盾。(即推出「A或「C (定义)「D (定理)或「E (正确的逻辑推理)或「F(客观事实)以及或「……为真)(3)由矛盾判断假设不成立,从而肯定命题的结论正确。(即A→B为真)

五反证法在简易逻辑中适用题型:

(1)唯一性命题

(2)否定性题

(3)至多”至少”型命题

1?基本命题,即学科中的起始性命题。此类命题由于已知条件及能够应用的定理、公式、法则较少,或由题设条件所能推得的结论很少,因而直接证明入手较难,此时应用反

证法容易奏效。如平面几何、立体几何等,在按照公理

化方法来建立起它的科学体系时,最初只是提出少量的定义、公理。因此,

起始阶段的一些性质和定理很难直接推证,它们多数宜于用反证法来证明。

例1求证两条直线如果有公共点,最多只有一个。

证明:假设它们有两个公共点A,B ,这两点直分别是a,b

那么A,B都属于a,A,B也都属于b,

因为两点决定一条直线,

所以a,b重合(这否定了两条直线这个条件)所以命题不成立,原命题正确,公共点最多只有一个。

2?否定式命题,即结论中含有“不是”、“不可能”、“不存在”等词语的命题。此类命题的反面比较具体,适于应用反证法。

例2 AB、CD为圆两条相交弦,且不全为直径,

求证:AB、CD不能互相平分。

证明:假设弦AB、CD被P点平分,

由于P点一定不是圆心,连接°P,

则有OP — AB,OP—CD,

即过一点P有两条直线与O P垂直,

这与垂线性质矛盾(这否定了垂线性质定理),所以弦AB、CD不能被P 平分。

例3 证明函数y = CoS ■ X不是周期函数。

证明:假设函数y=cos X是周期函数,即存在T=O,使CoS X T =

cos ' X

2 2 _

令x=0 ,得T=4k ∏(k = 0,k 乙不妨设k>0)。

2 ---------------------------------------------------

令x=4 ∏ ,得4二2 4k2二2= 2m (m N)

1 k

2 =m N

但是当k>0时, k< 1 k 2

定了相邻两个整数之间没整数的事实)

,矛盾 故函数y = CoS X 不是周期函数。

例4求证:形如4n+3的整数不能化为两整数的平方和

则由P 是奇数得a 、b 必为一奇一偶。

不妨设a=2s+1,b=2t ,其中S 、t 为整数,

p=a 2+b 2=(2s+1) 2+(2t)2=4(s 2+s+t 2)+1 ,这与 P 是 4n+3 型的整数矛盾

(这否定了条件P 是4n+3型的整数)。

例5证明:△ ABC 内不存在这样的点P ,使得过P 点的任意一条直线把△

ABC

证明:假设在△ ABC 内存在一点P ,使得过P 点的任一

条直线把△ ABC 的面积分成 相等的两部分。连接

AP 、BP 、CP 并分 别延长交对边于 D 、E 、F O

由假设,S △ABD=S △ADC ,于是D 为 BC

的中点,同理E 、F 分别是AC 、AB 的

中点,从而P 是厶ABC 的重心。

过P 作BC 的平行线分别交AB 、AC 于M 、N ,贝U ,

这与假设过P 点的任一条直线把△ ABC 的面积分成相等的两部分矛 盾。(这否定了

题设过P 点的任一条直线把△ ABC 的面积分成相等的两部 分)

3?限定式命题,即结论中含有“至少”、“最多”等词语的命题。 例6已知函数f(x)是单调函数,则方程f(x)=0最多只有一个实数根

证:假设方程至少有两个根 X 1, X 2且χi?z x 2 ,

则有 f(x 1 )=f(x 2) (X^J X 2 )

这与函数单调的定义显然矛盾(这否定了函数单调的定义),故命题成 立。

例7平面上有六个圆,每个圆圆心都在其余各圆外部,则平面上任一点不会同 时在这六个圆上。

证:题意即这六个圆没有共同的交点。

如果这六个圆至少有一个共同的交点,则连接这交点与每个圆的圆心的 线段

中,总有两条线段所成的角不超过 60°。

这时,这两条线段所连接的圆如果半径相等, 那么两圆圆心在对方圆内;

证明:假设P 是4n+3型的整数,且

P 能化成两个整数的平方和,即 2 p=a +b 2

的面积分成相等的两部分。

H

否则,较小的圆圆心在较大的圆之内,这都与已知矛盾。(这否定了已知条件)

例8 若p>0,q> 0,p3 + q3 = 2。试用反证法证明:P + q≤2。证明:此题直接由条件推证p+ q≤2是较困难的,由此用反证法证之。

假设p+ q>2,τP>0,q>0,

.??(p + q) 3 = p3 + 3p2q + 3pq2 + q3 > 8

又T p3 + q3 = 2。代入上式得:3pq (P + q)>6。即Pq (P + q)>2 ①

又由p3 + q3 = 2 得(P + q) (p2 —Pq + q2) = 2

由①②得Pq (P + q)>( p + q)( p2 —Pq + q2)

■/ P + q > 0。

二Pq > p2 —Pq + q2= p2 —2pq + q2 V O= (P —q) 2v 0 与(P —q) 2 ≥0相矛盾。(这否定了实数的平方非负的运算律))

假设P + q > 2不成立。故P + q ≤2。

4?唯一性命题,即结果指定唯一的命题。

例9 已知a = 0,证明X的方程ax = b有且只有一个根。

证明:由于a =0,因此方程至少有一个根X = b

a

如果方程不只一个根,不妨设X1,X2是它的两个不同的根

即ax1 =b ax2 =b两式相减,得:a(x1-x2)=0

因为X I= X2,所以X^X^Z O,所以应有a = 0,这与已知矛盾(这

否定了已知条件),

故假设错误。所以,当a = 0时,方程ax = b有且只有一个根。

例10 求证:方程X = SinX的解是唯一的。

证明:显然,X = 0是方程的一个解。以下用反证法证明方程的解是唯一的。

假设方程至少有两个解α、β( α≠ β),则有Sin〉=〉,Sin :=:

α +β . α -β β

2cos -------- Sin -------- 二-- 2 2 α - β α - β ISin -------- 1V | ------- I 2 2 Icos ——| ? | ——| > ---------------- 2 2 2 α + B Icos 一 |> 1 (这否定了余弦函数值域

2 故 方程 X = SinX 的解是唯一的。

例11 求证方程2x +χ=6仅有唯一实根2。

证明:假设方程 2X +X =6有一个非2的实根a 。

则有 2a + a =6 ,与 22+2=6 相减,得 2a -22=2- a

??? a ≠ 2 ,故 a > 2 或 a v 2。

当 a > 2 时,2a -22 > 0

,而 2- a V 0 ,相矛盾。 当a V 2时,2a -22 V 0

,而2- a > 0 ,也矛盾。(这否定了逻 辑推理的正确性)

???假设方程有一个非 2的实根是错误的。

???不存在非2的实根α,即方程仅有唯一实根

2。 六结束语

反证法证明问题均是两面性的问题, 即一个问题只有正反两个方面的结论, 若否 定了其中一个方面,就能肯定另一个方面。证明的方法不是直接地证明,而是首先假 设问题的反面,然后根据假设进行推理、论证,从而得到与事实或条件不相符合的结 论,实际上就是在证“完备性前提下的原命题的逆否命题”,从而证明原命题的正确 性!

参考文献:

[1] 全日制普通高级中学教科书(试验修订本?必修)《数学》.

[2] 蔡上鹤:《高中数学新教材第一章教学问答(二)》,

《中学数学教学参考》

2000年第8期. ⑶ 严镇军 陈吉范:《从反面考虑问题》,中国科学技术大学出版社.

[4] 张炳轩:《离散数学》之第九章数理逻辑。

2013年10月28日星期一

两式相减得: sin : — Sin 一二:—

【-1,1】的性质),

得 显然矛盾。

谓词逻辑归结原理源代码

#include #include #include #define null 0 typedef struct { char var; char *s; }mgu; void strreplace(char *string,char *str1,char *str2) { char *p; while(p=strstr(string,str1)) { int i=strlen(string); int j=strlen(str2); *(string+i+j-1)='\0'; for(int k=i-1;(string+k)!=p;k--) *(string+k+j-1)=*(string+k); for(i=0;is)) continue; if((u+i)->var==(u+j)->var) { delete (u+j)->s; (u+j)->s=null; k--; j=i; } if(((u+i)->s)&&((u+i)->var==*((u+i)->s))) { delete (u+i)->s; (u+i)->s=null; k--;

} } j=count; if(k==j)return; count=k; for(int i=1;i0;i++) { if((u+i)->s) continue; while(!((u+j)->s)) j--; (u+i)->var= (u+j)->var; (u+i)->s= (u+j)->s; (u+j)->s=null; k--; } cout<<"gjvjkhllknkln"; } class unifier { char *string; mgu unit[50]; int count; public: int num; unifier(); void input(); int differ(int n); int change(int i,int j,int n); void print(); ~unifier(){delete string;} }; unifier::unifier() { count=0; unit[0].s=null; } void unifier::input() { cout <>num;

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 xx方程 p+ρρv 2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据xx方程在水平流管中有 ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 4.球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程发展和原理应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z1++=z2+++h w

总流伯努利方程的物理意义和几何意义: Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; ----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

行测—逻辑推理理论(简明汇总)

逻辑常识(逻辑学习总体把握) 一、逻辑推理 是指由一个或几个已知的判断推导出另外一个新的判断的思维形式。一切推理都必须由前提和结论两部分组成。一般来说,作为推理依据的已知判断称为前提,所推导出的新的判断则称为结论。推理大体分为直接推理和间接推理。 (一)直接推理 只有一个前提的推理叫直接推理。 例如:有的高三学生是共产党员,所以有的共产党员是高三学生。 (二)间接推理 一般有两个或两个以上前提的推理就是间接推理。 例如:贪赃枉法的人必会受到惩罚,你们一贯贪赃枉法,所以今天你们终于受到法律的制裁和人民的惩罚。 一般说,间接推理又可以分为演绎推理、归纳推理和类比推理等三种形式。 (1)演绎推理 所谓演绎推理,是指从一般性的前提得出了特殊性的结论的推理。 例如:贪赃枉法的人是必定会受到惩罚的,你们一贯贪赃枉法,所以,你们今天是必定要受到法律的制裁、人民的惩罚的。 这里,“贪赃枉法的人是必定会受到惩罚的”是一般性前提,“你们一贯贪赃枉法”是特殊 性前提。根据这两个前提推出”你们今天是必定要受到法律的制裁和人民的惩罚的”这个 特殊性的结论。 演绎推理可分为三段论、假言推理和选言推理。 a三段论 b假言推理 c选言推理 (2)归纳推理 归纳推理是从个别到一般,即从特殊性的前提推出普遍的一般的结论的一种推理。 一般情况下,归纳推理可分为完全归纳推理、简单枚举归纳推理。 a完全归纳推理 也叫完全归纳法,是指根据某一类事物中的每一个别事物都具有某种性质,推出该类事物普遍具有这种性质的结论。 正确运用完全归纳推理,要求所列举的前提必须完全,不然推导出的结论会产生错误。 例如:在奴隶社会里文学艺术有阶级性;在封建社会里文学艺术有阶级性;在资本主义社会里文学艺术有阶级性;在社会主义社会里文学艺术有阶级性;所以,在阶级社会里,文学艺术是有阶级性的。(注:奴隶社会、封建社会、资本主义社会、社会主义社会这四种社会形态构成了整个阶级社会。) b简单枚举归纳推理 是根据同一类事物中部分事物都具有某种性质,从而推出该类事物普遍具有这种性质的结论。这是一种不完全归纳推理。但是,这种推理通常仅考察了某类事物中部分对象的性质就得出了结论,所以结论可

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

伯努利原理

“伯努利原理”的误解 伯努利是一位数学家和物理学家,他在1738年发现,当流体的流速提高,表面的静压力会降低。这个现象称为“伯努利原理”,而几乎所有的物理学教材和科普文章,都使用这个原理,讨论机翼升力的产生。为了解释这个原理,通常,他们首先会让你拿出两片纸,并用力在纸的中间吹气,瞧,两张纸像粘在一起了! 记忆的上表面是拱起的,而下表面是平坦甚至凹进去。当气流通过机翼表面,机翼上方空气流速较快,而下面空气流速较慢。根据“伯努利原理”,下面气流造成的静压力大于上方气流的压力,于是,机翼受到一个向上的作用力,飞机就飞了起来。 遗憾的是,这是完全错误的。而使用“伯努利原理”解释飞机的升空也是“白努力”。 伯努利效应可以解释一部分升力的来源,但这是非常小的一部分。如果飞机仅仅根据“伯努利原理”飞行,机翼形状必须非常“拱起”,或者,必须要飞得非常快才行。 飞机的升力主要由另外两个效应提供。一个是康达效应;另一个是气流冲击效应。 康达效应指的是,气流流经机翼曲面时,气流会紧贴机翼表面(这当然也有一点伯努利效应的含义)。这样,机翼的形状有效地改变了气流的方向,使离开机翼的气流相对飞机作向下的高速运动。机翼推开气流,但这个运动受力的反作用力作用于机翼上,相当于气流也在推开机翼,这个力使得机翼向上举起。 另一个重要的效应是气流冲击效应。当一块平板的方向不是与气流运动方向严格垂直,那么,平板会受到气流的冲击。飞机的机翼与其自身有一定倾角4°左右,特别是,当飞机起飞时,要把机头高高抬起,形成更大的倾角,这样在低速时,也可以获得较大的气流冲击效应,以便使几十吨的飞机起飞。但是,机翼的倾角并不是完全用于提供升力,更多的是为了维持飞机本身的气动布局,以保证飞机在飞行时候的气动平衡。 飞机是一个非常复杂的气动力学系统,设计师必须保证飞机载x,y,z几个方向上受力平衡。这就是飞机为什么需要机翼、尾翼、垂直尾翼的原因(那种像飞碟一样的无尾翼飞机设计起来是非常麻烦的);此外,为了操控飞机,机翼上都开有活动襟翼,因此要仔细分析飞机的受力很不容易。这也是飞机设计原型为什么要进行风洞试验的原因。 1、根据谐音的方法,写出几组谐音而意思不同的词语 例如:伯努利——白努力 ()——()()——()()——()()——()2、根据上文所讲述的内容看,“伯努利原理”会造成()。

人工智能原理教案02章 归结推理方法2.4 归结原理

2.4 归结原理 本节在上节的基础上,进一步具体介绍谓词逻辑的归结方法。谓词逻辑的归结法是以命题逻辑的归结法为基础,在Skolem 标准性的子句集上,通过置换和合一进行归结的。 下面先介绍一些本节中用到的必要概念: 一阶逻辑:谓词中不再含有谓词的逻辑关系式。 个体词:表示主语的词 谓词:刻画个体性质或个体之间关系的词 量词:表示数量的词 个体常量:a,b,c 个体变量:x,y,z 谓词符号:P,Q,R 量词符号:, 归结原理正确性的根本在于,如果在子句集中找到矛盾可以肯定命题是不可满足的。 2.4.1 合一和置换 置换:置换可以简单的理解为是在一个谓词公式中用置换项去置换变量。 定义: 置换是形如{t1/x1, t2/x2, …, t n/x n}的有限集合。其中,x1, x2, …, x n是互不相同的变量,t1, t2, …, t n是不同于x i的项(常量、变量、函数);t i/x i表示用t i置换x i,并且要求t i与x i不能相同,而且x i

不能循环地出现在另一个t i中。 例如 {a/x,c/y,f(b)/z}是一个置换。 {g(y)/x,f(x)/y}不是一个置换,原因是它在x和y之间出现了循环置换现象。置换的目的是要将某些变量用另外的变量、常量或函数取代,使其不在公式中出现。但在{g(y)/x,f(x)/y}中,它用g(y)置换x,用f(g(y))置换y,既没有消去x,也没有消去y。若改为{g(a)/x,f(x)/y}就可以了。 通常,置换用希腊字母θ、σ、α、λ来表示的。 定义:置换的合成 设θ={t1/x1, t2/x2, …, t n/x n},λ={u1/y1, u2/y2, …, u n/y n},是两个置换。则θ与λ的合成也是一个置换,记作θ·λ。它是从集合{t1·λ/x1, t2·l/x2, …, t n·λ/x n, u1/y1, u2/y2, …, u n/y n} 即对ti先做λ置换然后再做θ置换,置换xi 中删去以下两种元素: i. 当t iλ=x i时,删去t iλ/x i(i = 1, 2, …, n); ii. 当y i∈{x1,x2, …, x n}时,删去u j/y j(j = 1, 2, …, m) 最后剩下的元素所构成的集合。 例: 设θ={f(y)/x, z/y},λ={a/x, b/y, y/z},求θ与λ的合成。 解: 先求出集合

最新有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

伯努利原理讲解

伯努利原理讲解 对我们搞流体机械的很重要,此文好懂又有趣!
光德流控
伯努利(Daniel Bernouli,1700~1782) 伯努利,瑞士物理学家、数学家、医学家。 他是伯努利这个数学家族(4 代 10 人)中最杰出的代表, 16 岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位, 17~20 岁又学习医学,于 1721 年获医学硕士学位,成为外科名 医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。
1 / 17

伯努利成功的领域很广,除流体动力学这一主要领域外,还 有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。
实例篇——伯努利原理 丹尼尔·伯努利在 1726 年首先提出:“在水流或气流里, 如 果 速 度 小 ,压 强 就 大 ;如 果 速 度 大 ,压 强 就 小 ” 。我 们 称 之 为 “伯努利原理”。 我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向 外飘去,反而会被一种力挤压在了一起。因为两张纸中间的空气 被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有 流动,压力就大,所以外面力量大的空气就把两张纸“压”在了 一起。 这就是“伯努利原理”原理的简单示范。
1 列车(地铁)站台的安全线 在列车(地铁)站台上都划有黄色安全线。
2 / 17

这是因为列车高速驶来时,靠近列车车厢的空气被带动而快 速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身 体前后会出现明显的压强差,身体后面较大的压力将把旅客推向 列车而受到伤害。
所以,在火车(或者是大货车、大巴士)飞速而来时,你绝 对不可以站在离路轨(道路)很近的地方,因为疾驶而过的火车 (汽车)对站在它旁边的人有一股很大的吸引力。
有人测定过,在火车以每小时 50 公里的速度前进时,竟有 8 公斤左右的力从身后把人推向火车。
看懂“伯努利”原理后,等地铁再也不敢跨过那条黄线了吧 (分享给身边的人哦~~)
2 船吸现象
3 / 17

实现基于谓词逻辑的归结原理

河南城建学院 《人工智能》实验报告 实验名称:实现基于谓词逻辑的归结原理 成绩:____ 专业班级: 学号: 姓名: 实验日期:20 14 年 05 月 13日 实验器材:一台装PC机。 一、实验目的 熟练掌握使用归结原理进行定理证明的过程,掌握基于谓词逻辑的归结过程中,子句变换过程、替换与合一算法、归结过程及简单归结策略等重要环节,进一步了解机器自动定理证明的实现过程。 二、实验要求 对于任意给定的一阶谓词逻辑所描述的定理,要求实现如下过程: (1) 谓词公式到子句集变换; (2) 替换与合一算法; (3) 在某简单归结策略下的归结。 三、实验步骤 步1 设计谓词公式及自居的存储结构,即内部表示。注意对全称量词?x和存在量词?x可采用其他符号代替; 步2 实现谓词公式到子句集变换过程; 步3 实现替换与合一算法; 步4 实现某简单归结策略;

步5 设计输出,动态演示归结过程,可以以归结树的形式给出; 步6 实现谓词逻辑中的归结过程,其中要调用替换与合一算法和归结策略。 四、代码 谓词公式到子句集变换的源代码: #include #include #include #include using namespace std; //一些函数的定义 void initString(string &ini);//初始化 string del_inlclue(string temp);//消去蕴涵符号 string dec_neg_rand(string temp);//减少否定符号的辖域 string standard_var(string temp);//对变量标准化 string del_exists(string temp);//消去存在量词 string convert_to_front(string temp);//化为前束形 string convert_to_and(string temp);//把母式化为合取范式 string del_all(string temp);//消去全称量词 string del_and(string temp);//消去连接符号合取% string change_name(string temp);//更换变量名称 //辅助函数定义 bool isAlbum(char temp);//是字母 string del_null_bracket(string temp);//删除多余的括号 string del_blank(string temp);//删除多余的空格 void checkLegal(string temp);//检查合法性 char numAfectChar(int temp);//数字显示为字符 //主函数 void main() { cout<<"------------------求子句集九步法演示-----------------------"<

反证法在数学中的应用

论文编码:O1-0 摘要 反证法是数学证明方法中很重要的一部分,本文主要介绍了反证法再出等数学中的应用。首先阐述反证法的概念、逻辑根据和一般步骤。然后讨论了反正法的适用范围,这也是本文的重点内容,任何一种方法都要以应用为首要任务,我们学习它、了解它、掌握它,学会用反证法解决更多的实际问题才是我们的目的。其次研究了反证法的教学,反证法的这种数学思想在课堂教学中的渗透是很有必要的。最后讨论了应用反证法应注意的问题,真正用好反证法并非一件易事,所以我们的研究学习是很有必要的。 关键词:反证法逻辑基础教学方法适用范围;

Abstract Apagoge is an important part of math demonstration.This article introduces the application of Apagoge in elementary math.First,expounds the Apagoge's concept,logic ground and the general steps.Next,discusses the range of application,which is highlighted.Whatever methods we use,we should base on application.So we must study the method and use it to help us solve many practical problem.Then,studies how to teach the Apagoge's thinking into people's minds in the https://www.360docs.net/doc/917177505.html,st,talks about the problem which should pay attention to in Apagoge's application.It is difficult to make a good use of the Apagoge,so we are supposed to study continuously. Keywords:Apagoge ;Logical basis;Teaching methods; Scope;

伯努利方程(伯努利原理)小谈

伯努利方程(伯努利原理)小谈 材料科学与工程学院 材型1602 李傲奇 学号:201614020207 摘要:参考课本及网络资料,加上一些自己的理解,进行伯努利方程(伯努利原理)的介绍和推导,并运用其解释一些实际问题。 关键词:伯努利伯努利方程(伯努利原理)理想流体流体运动实际应用 正文: 一、简介:丹尼尔·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理学家、数学家、医学家。1700年2月8日生于荷兰格罗宁根。著名的伯努利家族中最杰出的一位。他曾在海得尔贝格、斯脱思堡和巴塞尔等大学学习哲学、伦理学、医学。1721年取得医学硕士学位。伯努利在25岁时(1725)就应聘为圣彼得堡科学院的数学院士。8年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授,1750年成为物理学教授,1747年当选为柏林科学院院士,1748年当选巴黎科学院院士,1750年当选英国皇家学会会员。他一生获得过多项荣誉称号,最著名的成就为提出了伯努利方程(伯努利原理)。 二、原理内容:丹尼尔·伯努利在1726年提出了“伯努利原理”:在稳定流体中,沿同一流线单位体积流体的动能,重力势能,与该处的压强之和为常量。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。伯努利原理往往被表述为p +12 ρv 2+ρgh =C (C 为常数),这个式子被称为伯努利方程。式中p 为流体中某点的压强,v 为流体该点的流速,ρ为流体密度,g 为重力加速度,h 为该点所在高度,C 是一个常量。它也可以被表述为p 1+12ρv 12+ρgh 1=p 2+12ρv 22+ρgh 2。(Ps :需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。) 三、推导证明:使用伯努利定律必须符合以下假设,即理想流体必须满足的条件,方可使用: ? 定常流:在流动系统中,流体在任何一点之性质不随时间改变。 ? 不可压缩流:密度为常数,在流体为气体适用于马赫数(M)<0.3。 ? 无摩擦流:摩擦效应可忽略,忽略黏滞性效应。 ? 流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。 现有一符合上述假设的流体,如图所示: 可得如下公式---流体因受力所得的能量:12mv 22?12mv 12=12ρA 2v 2?tv 22?12 ρA 1v 1?tv 12 流体因引力做功所损失的能量:p 1A 1v 1?t ?p 2A 2v 2?t +ρgA 1v 1?t?1?ρgA 2v 2?t?2=12ρA 2v 2?tv 22?12ρA 1v 1?tv 12 流体所得的动能可以改写为:ρA 1v 1?tv 1 22+ρgA 1v 1?t?1+p 1A 1v 1?t =ρA 2v 2?tv 2 22+ρgA 2v 2?t?2+p 2A 2v 2?t 根据能量守恒定律:流体因受力所得的能量+流体因引力做功所损失的能量=流体最终所得的动能。 A 2v 2=A 1v 1=C (C 为常数) 合各式最终得到:12ρv 2+ρgh +p =C (C 为常数)即为伯努利方程。

反证法逻辑原理孙贤忠

反证法逻辑原理 即证“完备性前提下的原命题的逆否命题” 作者:孙贤忠(湖南省长沙市第七中学邮编:410003 ) 【摘要】:阐明反证法的定义、逻辑依据、证明的一般步骤、种类,探索其在中学数学中的应用。这实际上就是在证“完备性前提下的原命题的逆否命题”了。一个命题:若A则B为真,这只是简洁的形式,因为若A则B为真,其本身就还含有所有的已知定义,定理,大家都知道的事实,乃至正确的逻辑推理等等一切必须为真的系统性条件为真,否则绝不可能推出结论B 为真。 【关键词】:反证法证明矛盾逆否命题一反证法出现 反证法(Proofs by Contradiction ,又称归谬法、背理法),是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说明假设不成立,原命题得证。 反证法常称作RedUCtiO ad absurdum ,是拉丁语中的转化为不可能”,源自希 腊语中的“ ει? To αδυνατο阿基米德丫经常使]用它。 二反证法所依据的逻辑思维规律 反证法所依据的是逻辑思维规律中的矛盾律”和排中律”。在同一思维过程中, 两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中 的排中律”。反证法在其证明过程中,得到矛盾的判断,根据矛盾律”,这些矛盾的判 断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以否定的结论”必为假。再根据排中律”,结论与否定的结论” 这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法是间接证明法”一类,是从反方向证明的证明方法,即:肯定题设而否定结论,从而得出矛盾。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。 在应用反证法证题时,一定要用到反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫穷举法”。 反证法在数学中经常运用。当论题从正面不容易或不能得到证明时,就需要运用 反证法,此即所谓"正难则反"。

伯努利原理的应用

应用举例⒈ 飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 应用举例⒉ 喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。 应用举例⒊ 汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 应用举例⒋ 球类比赛中的"旋转球"具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。 应用举例⒌ 表示乒乓球的上旋球,转动轴垂直于球飞行的方向且与台面平行,球向逆时针方向旋转。在相同的条件下,上旋球比不转球的飞行弧度要低下旋球正好相反,球要向反方向旋转,受到向上的力,比不转球的飞行弧度要高。 应用举例6. 环保空调就是这个原理,一面进风,一面进水,来保持室内的温度的,环保空调又叫“水帘空调”. 应用举例7. 列车候车为啥要设定等候限距线? 列车进站的时候速度很快,车厢附近的空气被带着也会快起来,越靠近车厢的空气流速越快,越远的地方空气流速越慢。还是根据伯努利原理,靠近车厢的地方压力小,远离车厢的地方压力大,二者之间有压力差,因此,在站台上候车,如果你靠轨道太近,就会感觉后面好像有人推你往前,很可能造成事故,其实是因

相关文档
最新文档