脂质体及其制备方法的选择..

脂质体及其制备方法的选择..
脂质体及其制备方法的选择..

脂质体及其制备方法的选择

1.脂质体概述

1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。此两位学者曾获得过诺贝尔奖提名。

某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消失,当双分子层通过相变温度时,被封闭的

所有这些都明显影响脂质体的稳定性和它们在生物体系中的行为。

脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。不同类型的脂质体其结构特点各不相同,见下图表。

1971年,英国Rymen等人开始将脂质体用作药物载体。所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。至于药物在脂质体中的负载定位,其取决于所载药物的性质,见下图。

2.脂质体制备方法分类及其介绍

脂质体是由磷脂分子在水相中通过疏水作用形成的,因此制备脂质体所强调的不是膜组装,而是如何形成适当大小、包封率高和稳定性高的囊泡。制备的方法不同,脂质体的粒径可从几十纳米到几微米,并且结构也不尽相同。

目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。

2.1被动载药法

脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。

2.1.1 薄膜分散法

此法最初由Bangham 等报道,是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。这种方法对水溶性药物可获得较高的包封率,但是脂质体粒径在0.2~5 μm 之间,可通过超声波仪处理或者通过挤压使脂质体通过固定粒径的聚碳酸酯膜,在一定程度上降低脂质体的粒径。

2.1.2 超声分散法

将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发

去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。

2.1.3 冷冻干燥法

脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。1978 年Vanleberghe 等首次报道采用冷冻干燥法提高脂质体的贮存稳定性。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。

脂质体冷冻干燥包括预冻、初步干燥及二次干燥 3 个过程。冻干脂质体可直接作为固体剂型,如喷雾剂使用,也可用水或其它溶剂化重建成脂质体混悬液使用,但预冻、干燥和复水等过程均不利于脂质体结构和功能的稳定。如在冻干前加入适宜的冻干保护剂,采用适当的工艺,则可大大减轻甚至消除冻干过程对脂质体的破坏,复水后脂质体的形态、粒径及包封率等均无显著变化。单糖、二糖、寡聚糖、多糖、多元醇及其他水溶性高分子物质都可以用做脂质体冻干保护剂,其中二糖是研究最多也是最有效的,常用的有海藻糖、麦芽糖、蔗糖及乳糖。本法适于热敏型药物前体脂质体的制备,但成本较高。陈建明等以大豆磷脂为膜材,以甘露醇为冻干保护剂,采用冻干法制备了维生素A前体脂质体,复水化后平均粒径为0.6151μm ,包封率98.5%。林中方等采用冻干法制备了鬼臼毒素体脂质体,复水化后平均粒径为 1.451μm ,包封率72.3%,但是这种方法仍然存在着不足之处,例如脂质体复水化后粒径分布不够均匀。

2.1.4 冻融法

此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。何文等分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。通过研究发现,冻融法制备的脂质体的包封率最高,但是粒径最大。反复冻融可以提高脂质体的包封率,王健松制备了阿奇霉素脂质体,实验发现,经3次重复冻融后,阿奇霉素脂质体的包封率从61.4% 增加到78%,但是当冻融次数增加到4次,包封率变化很小。该制备方法适于较大量的生产,尤其对不稳定的药物最适合。

2.1.5 复乳法

此法第1步将磷脂溶于有机溶剂,加入待包封药物的溶液,乳化得到W/O 初乳,第2步将初乳加入到10倍体积的水中混合,乳化得到W/O/W乳液,然后在一定温度下去除有机溶剂即可得到脂质体。Kim用乳化法制得脂质体的包封率比较高,但是粒径较大。Tomoko等通过研究发现,第2步乳化过程和有机溶剂的去除过程的温度对脂质体的粒径有比较大的影响,较低的温度有利于减小脂质体的粒径,通过控制温度可以制得粒径为400 nm,包封率达到90%的脂质体。

2.1.6 注入法

将类脂质和脂溶性药物溶于有机溶剂中(油相),然后把油相均速注射到水相(含水溶性药物)中,搅拌挥尽有机溶剂,再乳匀或超声得到脂质体。根据溶剂的不同可分为乙醇注入法和乙醚注入法。

乙醇注入法避免了使用有机溶剂,丁丽燕用乙醇法制备了司帕沙星脂质体,通过研究发现慢速注入可制得具有较高包封率的脂质体,其包封率为47%。

乙醚注入法制备的脂质体大多为单室脂质体,粒径绝大多数在2 μm以下,操作过程中温度比较低(40℃),因此,该方法适用于在乙醚中有较好溶解度和对热不稳定药物,同时通过调节乙醚中不同磷脂的浓度,可以得到不同粒径且粒径分布均匀的脂质体混悬液。

2.1.7 反相蒸发法

最初由Szoka提出,一般的制法是将磷脂等膜材溶于有机溶剂中,短时超声振荡,直至形成稳定的W/O乳液,然后减压蒸发除掉有机溶剂,达到胶态后,滴加缓冲液,旋转蒸发使器壁上的凝胶脱落,然后在减压下继续蒸发,制得水性混悬液,除去未包入的药物,即得大单层脂质体脂质体。此法可包裹较大的水容积,一般适用于包封水溶性药物、大分子生物活性物质等。

2.1.8 超临界法

传统的脂质体制备方法,必须要使用氯仿、乙醚、甲醇等有机溶剂,这对环境和人体都是有害的。超临界二氧化碳是一种无毒、惰性且对环境无害的反应介质。严宾等用超临界法制备了头孢唑林钠脂质体,将一定量的卵磷脂溶解于乙醇中配得卵磷酯乙醇溶液,与头孢唑啉钠溶液一起放入加入高压釜中,将高压釜放入恒温水浴中,通入CO2。在其超临界态下孵化30min,制备脂质体。采用超临界CO2法制备的包封率高、粒径小,稳定性增强。

2.2 主动载药

对于两亲性药物,如某些弱酸弱碱,其油水分配系数介质pH和离子强度的影响较大,用被动载药法制得的脂质体包封率低。

主动载药是利用两亲性的药物,能以电中性的形式跨越脂质双层,但其电离形式却不能跨越的原理来实现的。通过形成脂质体膜内、外水相的pH梯度差异,使脂质体外水相的药物自发地向脂质体内部聚集。

此法通常用脂质体包封酸性缓冲盐,然后用碱把外水相调成中性,建立脂质体内外的pH 梯度。药物在外水相的pH环境下以亲脂性的中性形式存在,能够透过脂质体双层膜。而在脂质体内水相中药物被质子化转为离子形式,不能再通过脂质体双层回到外水相,因而被包封在脂质体中。主动载药法广义上就是指pH 梯度法。人们把其细分为:(1)pH梯度法;(2)硫酸铵梯度法;(3)醋酸钙梯度法。其中硫酸铵梯度法和醋酸钙梯度法只是pH梯度法的两种特殊形式。

2.2.1 pH梯度法

pH梯度法通过调节脂质体内外水相的pH值,形成一定的pH梯度差,弱酸或弱碱药物则顺着pH梯度,以分子形式跨越磷脂膜而使以离子形式被包封在内水相中。

赵妍等用以pH梯度法制备硫酸长春新碱脂质体,其包封率大于85%,而被动载药法制备的硫酸长春新碱脂质体的包封率最高为14.4%。Jia等用pH梯度法内水相pH 0.5%外水相pH4.0制备了卡苯达唑脂质体,包封率高于95%。杜松等用pH梯度法制备盐酸去氢骆驼蓬碱脂质体,包封率大于80%,研究表明,虽然制得的脂质体没有加强药物的抗癌活性,但是大大降低了其毒副作用。

跨膜pH梯度是影响包封率的最主要因素,通常pH梯度越大,载入脂质体内的药物越多,包封率也越高。制备伊立替康脂质体时,当pH梯度≥3.7时包封率达97%以上,当pH梯度<2时,包封率不到5%;Mamyer等在研究中发现通过跨膜pH梯度法制备多柔比星脂质体,pH梯度达到3.5时包封率达98%,降低内水相缓冲液的pH可增大pH梯度,但会加剧磷脂的水解,降低脂质体的稳定性。

此外,药物自身性质如油水分配系数、膜渗透性等亦可影响包封率。Quan 等用pH梯度法制备多巴胺脂质体,由于多巴胺亲水性较强,无法直接克服能量壁垒穿过脂质双分子层进入内水相,但与拉沙洛西(lasalocid)结合形成复合物可暴露出亲脂性表面,即可穿过脂质膜进入脂质体,包封率提高到85%。氧化苦参碱水溶性较大,脂溶性较弱,因此采用pH梯度法制备脂质体包封率只有50%。

2.2.2 硫酸铵梯度法

硫酸铵梯度法通过游离氨扩散到脂质体外,间接形成pH梯度,使药物积聚到脂质体内。其方法为先将硫酸铵包与脂质体内水相,然后通过透析、凝胶色谱或超滤的方法除去脂质体外水相的硫酸铵。由于离子对双分子层渗透系数的不同,氨分子渗透系数(0.13 cm/s)较高,能很快扩散到外水相中;H+的渗透系数远小于氨分子,因此会使脂质体内水相呈酸性,形成pH梯度,梯度大小由[NH4+]外水相/[NH4+]内水相比较决定,这样使药物逆硫酸铵梯度载入脂质体。药物与SO42-形成的硫酸盐,对双分子层有很低渗透系数,因而使药物具有很高的包封率。

刘陶世等采用硫酸铵梯度法制备马钱子碱脂质体,0.1 mol/L硫酸铵水溶液的用量为大豆卵磷脂的66.7倍,制得的马钱子碱脂质体包封率在90%以上。米托恩醌以注入法或反相蒸发法制备的脂质体,包封率较低,但是其为弱碱性蒽醌类药物,易与硫酸根离子形成溶解性更小的硫酸盐,黄园用硫酸铵梯度法制备米托蒽醌脂质体的平均粒径均在60 nm左右,包封率为93.65%。Pan 等用不同的主动载药法制备了5种多铵硼酸盐脂质体,得到较高的包封率仅为6%和15%。研究表明,用硫酸铵梯度法制备的脂质体包封率要高于枸橼酸盐pH梯度法制得的脂质体。Wong等用此法制备了环丙沙星单室脂质体,包封率为90%。相比较于pH梯度法,硫酸铵梯度法不需要改变外水相的pH值,控制梯度也易实现,整个过程无需缓冲液或pH滴定,内水相只有pH梯度法更有利于脂质体的稳定。

2.2.3 醋酸钙梯度法

醋酸钙梯度法通过醋酸钙的跨膜运动产生的醋酸钙浓度梯度(内部的浓度高于外部),使得大量质子从脂质体内部转运到外部产生pH梯度。醋酸的渗透参数(6.6×10-4cm·s-1)比Ca2+(2.5×10-11cm·s-1)大7个数量级,所以很少穿越双分子膜留在脂质体内部,醋酸分子则参与了质子转运。醋酸钙跨膜运动产生的浓度梯度(内部的浓度高于外部)导致大量质子从脂质体的内部转运到外部产生pH 梯度,而pH的不平衡为包载和聚集弱碱药物提供了高效驱动力。因此,在这基础上应用醋酸钙梯度法把弱酸药物萘啶酸包载入预制备好的空白脂质体中,包封率约99%,在4℃下存放10个月均稳定未见泄露。Hwang等也用此法制备了双氯芬酸钠脂质体,包封率约100%,而传统的逆相蒸发法只有1%~8%。

2.3 不同的制备方法与脂质体的结构关系

上述制备方法的分类是按照载药方式的不同来分的,倘若将这些制备方法进行一个总结与归纳,不难得出,这些方法一般包括以下步骤:首先形成脂质薄膜,其次,加入需要载入的药物,使脂质分散在其中,从而形成脂质体。各种方法的区别在于脂质分散与水相介质的方法不同。各种方法的分散类型可以归纳为机械分散法(如薄膜分散法、手摇法、前体脂质体法、冷冻干燥法等),溶剂分散法(如逆向蒸发法、注入法、复乳法等),物理水化法(如超声法、薄膜振荡分散法、薄膜匀化法、挤压法、干燥重建脂质体和微囊化法、冻结融解法等)及其他方法(如梯度法、表面活性法等)。

采用不同的制备方法得出来的脂质体其结构与大小各不相同,一般来说,采用机械分散法得到的脂质体大多是多层脂质体,采用逆向蒸发法得到的是大单层脂质体,乙醇注入法中小单层脂质体比例较高,而乙醚注入法中大单层脂质体较多,复乳法得到的脂质体往往是多囊脂质体。

3.脂质体制备方法的选择

3.1脂质体制备方法的选择原则

选用何种脂质体制备方法取决于所要包裹的药物的性质,其中最主要的性质就是药物的油水分配系数。

油水分配系数是指平衡状态时,药物在油相和水相的分配之比。一般使用药物在辛醇—水两相的分配系数P 来表示。根据P 值的大小将药物分成三类:

LgP >4.5 脂溶性药物

LgP <-0.3 水溶性药物

-0.3<LgP <4.5 两性药物

对于不同类药物脂质体的制备方法选择原则如下图:

蛋白类药物脂质体—表面活性剂处理法和钙融合法 lgP>4.5的药物

靶向脂质体—机械分散法

快速转运

乙醇注入法 pH 诱导囊化法 物理方法减小粒径 lgP<-0.3的药物 制备大粒径脂质制备小粒径脂质 lgP 在-0.3~4.5的药物

主动载药法

将药物制成盐(lgP<-0.3)或酯化(lgP>4.5)再包封脂质体

冻融法(适宜包裹水溶性蛋白类)

逆向蒸发法(大单室)

复乳法 (多囊)

乙醚注入法(大单室)

微囊化法

冷冻干燥法

干燥重建脂质体

3.2脂质体生产制备中的实际选择

许多脂质体制备技术是以实验室规模进行的,但这些小规模的制备技术不能直接用于大规模制备生产中,因为生产规模的变化会影响其分散性,改变制备分散体系的特性应保持在可接受的一定范围限度内,即包封药物的脂质体在体内处于无显著变化为准则。其次,在脂质体大规模生产制备过程中还得考虑实际的无菌、无热源,粒径的控制、稳定性以及工艺便于放大等等实际问题。

从查阅的国内外脂质体制备文献上来看,目前对于大规模生产脂质体方法上大多是根据设施设备条件结合两三中脂质体制备方法来实现脂质体的生产制备,如SOD 的生产工艺就是结合了薄膜法和超声法,阿霉素纳米脂质体的制备采用了薄膜分散法和挤压法相结合。

除了运用常规脂质体制备方法相结合外,在脂质体制备生产中还引入了其他前沿的生物学及化学上的技术。如Aphios 脂质体公司采用超临界流体技术制备纳米级单分散的脂质体。该技术和常规的醇注入技术有类似之处,所不同的是溶解磷脂和胆固醇时用的是超临界流体。采用该技术,Aphios 已经成功的将紫杉醇(paclitaxel ), 喜树碱(camptothecin )等难溶性药物制成了脂质体制剂。BernaBiotech 公司运用Virosomes 技术已经开发了2 个产品,一个是流感疫苗(Inflexal. V ),一个是甲肝疫苗(Epaxal.)。Virosomes 与传统脂质体的区别主要在于,Virosomes 的磷脂双分子层上嵌入了病毒的膜蛋白。这些蛋白可以保证Virosomes 和免疫系统的细胞发生融合,进而将其所包被的特异性抗原递呈给免疫细胞。Virosomes 不仅可以模拟天然抗原的递呈方式,还可以同时引起体液免疫和细胞免疫,进而增强疫苗的有效性。Celsion 公司采用微波热疗技术相结合,开发阿霉素热敏脂质体ThermoDox.,现已进入1 期临床。

3.3脂质体制备中包封率的影响因素及其提高办法

影响脂质体包封率的因素主要有脂质体制备方法、脂质体结构类型、类脂膜的组成、药物的性质和浓度、溶剂的组成等几大因素。

对于提高包封率除了对以上因素进行优化之外,

还可以针对所有包载的药物的类型采取下图所示策略来提高其包封率。

3.3.生物研究中心现有脂质体制备设备可以采用的制备方法及看法

真空 冻干

碱性缓冲液

复溶

酸性缓冲 液复溶

生物研究中心脂质体制备设备可以采用的的制备方法有注入法、复乳法、挤压法及薄膜分散法(包括逆向蒸发法),其中,以注入法和复乳法最利于现有工艺设施的生产放大。只不过,中心现有设备设施中,脂质体制备工艺流程中人为操作的环节过多,不利于工艺生产中的再现性,也不利于无菌的控制。为了能更好地说明此问题,先来看下陕西力邦医药科技有限公司在脂质体生产中所设计和采用的自动化脂质体制备装置,通过装置图及其使用流程说明,不难看出,该装置在脂质体制备过程中使用了分散法和挤压法相结合。利用高压泵提供稳定的压力,整个过程中避免了人员的干扰。

参考文献

郑庆忠,刘利军.pH梯度法制备氧化苦参碱脂质体[J].中国医药工业杂志,2006,37:679.

刘陶世,蔡宝昌,赵新慧,等.硫酸铵梯度法结合微滤挤出制备马钱子碱脂质体的研究[J].中成药,2005,11:1247.

黄园,段逸松.硫酸铵梯度法制备米托蒽醌脂质体[J].中国药学杂志,2002,12:917.

陈建明,张仰眉,高申,等.维生素A前体脂质体的研制及其特性考察[J].第二军医大学学报,2003,24(2):207.

林中方,曾抗,周再高,等.鬼臼毒素二棕榈酰磷脂酰胆碱前体脂质体的研制及特性观察[J].第一军医大学学报,2004,24(7):784.

何文,夏晶.制备方法对甲氧沙林脂质体体外性质的影响研究[J].广东药学院学报,2005,6:661.

王健松,朱家壁.阿奇霉素脂质体的制备及其包封率测定[J].中国药科大学学报,2004,35(6):499.

丁丽燕,杨春,李学明,等.乙醇注入法制备司帕沙星脂质体[J].南京工业大学学报,2007,1:32.

王健松,朱家壁.乙醚注入法制备阿奇霉素脂体[J].中国药学杂志,2005,6:876.

严宾,安学勤,白晶,等.超临界CO2法制备头孢唑啉钠脂质体[J].物理化学学报,2006,2:226.

赵妍,于彬,邓意辉卜,等.主动载药法制备硫酸长春新碱脂质体及其包封率的测定[J].中国药学杂志,2005,10:1559.

杜松,邓英杰,张威.主动载药法制备盐酸去氢骆驼蓬碱脂质体[J].中草药,2005,5:673.

陈涛,王九成,付经国,等. 脂质体药物制剂的研究现状和前景[J]. 世界最新医学信息文摘, 2003, 2(4):721-728.

郭青龙,丁启龙. 阿霉素前体脂质体与阿霉素对小鼠毒性作用比较[J]. 中国药科大学学报,1996,27(9):562-566.

王九成,慧民全,陈涛CP 02139429.6

Gabizon AA, Liposomal drug carrier systems in cancer chemotherapy: Current status and future prospects[J]. J Drug Target,2002,10:535-538.

Frezard F, Santaella C, Montiscin MJ, et al. Fluorinated phosphatidylcholine based liposomes: H+/Na+ permeability,active doxorubicin encapsilation and stability, in human serun[J]. Biochim Biophys Acta, 1994, 1194: 61-68.

Wang RT, Chen T, Wang Z, et al. Acid Sensitive polymer liposomes prepared by poly(2ethylacrylic acid) alkylamide derivatives[J].Acta Pharmacol Sin, 2007, 42(12): 2-7.

Kim S,Martin G M.Preparation of cell-size unilamellar liposomes with high captured volume and defined size distribution [J].Biochim Biophys Acta,1983,728:339.

Tomoko Nii,Akira Takamura,Kiminori Mohri,et al.Fcators affecting physicochemical propertise of liposomes prepared with hydrogenated purifide egg

yolk lecithins by the microencapsulation vesicles method[J].colloida and Surfaces B:Biointerfaces,2002:323.

Jia L,Garza M,Wong H,etal.Pharmacokonetie comparison of intravenous carbendazim and remote loaded carbendazim lipesomes in nude mice[J].J Pharm Biomed Anal,2002,28(1):65.

Chou TH,Chen SC,Chu IM.Effect of composition on the stability of liposomal irinotecan prepared by a pH gradient method [J].J Biosci Bioeng,2003,95(4):405. Mayer LD,Tai LCL,Bally MB,teal.Characterization of liposomal system containing doxorubicin entrappde in response to pH gradients [J].Biochim Biophys Acta,1990,1025(2):143.

Quan z,Sugawara M,Umezawa https://www.360docs.net/doc/93118379.html,salocid .Afacilitated dopamine uphill transport and concentration into liposomes driven by pH gradient generated by bacteriorhodopsin under illumination[J].Biosens Bioelectron,1998,13(11):1157.

Pan XQ,Wang H,Shukla S,et al.Boron-containing folate receptor targeted liposomes as potential delivery agents for neutron capture therapy[J].Bioconjugate Chem,2002,13:435.

Wong JP,Yang H,Blasetti KL,et al.Liposome delivery of ciprofloxacin against intracellular Francisellatularensis infectin[J].J Controlled,2003,92(3):265.

Clerc S, Bareubolz Y.Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients [J].Biochim Biophys Acta,1995,1240:257.

Hwang SH,Maitani Y.Remote loading of diclofenac, insulin and fluorescein isothiocyanate labeled insulin into liposomes by pH and acetate gradient methods [J]Int. J. Pharm, 1999, 179:85.

陈阶

2013年2月26日定稿

脂质体制备方法

微脂体(又称脂质体)及其制备方法一二 微脂体(又称脂质体) 微脂体起源于1960 年代中期,Bangham博士等人首先提出,在磷酸脂薄膜上加入含盐分的水溶液后,再加以摇晃,会使脂质形成具有通透性的小球;196 8年,Sessa 和Weissmann 等人正式将此小球状的物体命名为微脂体(liposo me)并做出明确的定义: 指出微脂体是由一到数层脂质双层膜(lipid bilayer) 所组成的微小的囊泡,有自行密合(self-closing)的特性。微脂体由脂双层膜包裹水溶液形成,由于构造的特性,可同时作为厌水性(hydrophobic)及亲水性(hydrophilic)药品的载体,厌水性药品可以嵌入脂双层中,而亲水性药品则可包覆在微脂体内的水溶液层中。如同细胞膜,微脂体的脂质膜为脂双层构造,由同时具有亲水性端及厌水性端的脂质所构成,脂双层由厌水性端相对向内而亲水性端面向水溶液构成,组成中的两性物质以磷酸脂质最为常见。微脂体的形成是两性物质在水溶液中,依照热力学原理,趋向最稳定的排列方式而自动形成。微脂体的性质深受组成脂质影响,脂质在水溶液的电性,决定微脂体是中性或带有负电荷、正电荷。此外,磷酸脂碳链部分的长短,不饱和键数目,会决定微脂体的临界温度(transition temperature, Tc),影响膜的紧密度。一般来说,碳链长度越长临界温度越高,双键数越多则临界温度越低,常见的DPPC(dipalmitoylp hosphatidylcholine)与DSPC(distearoylphosphatidylcholine)的临界温度分别是42℃与56℃,而Egg PC(egg phosphatidylcholine)与POPC(palmitoyl oleoyl phosphatidylcholine)的Tc 则低于0℃。临界温度影响微脂体包裹及结合药物的紧密度,当外界温度高于Tc时,对膜有通透性的药物,较容易通过膜;此外,当外界温度处于临界温度时,微脂体脂质双层膜中的脂质,会因为流动性不一致而使微脂体表面产生裂缝,造成内部药物的释出。在磷脂质内加入胆固醇,会对微脂体性质产生下列影响:增加微脂体在血液中的安定性,较不易发生破裂;减少水溶性分子对微脂体脂膜的通透性;增加微脂体的安定性,使其在血液循环中存在的时间较长。 微脂体可依脂双层的层数或是粒子大小,加以命名或分类: (1) Multilamellar vesicle(MLV)是具有多层脂双层之微脂体,粒子大小介于100-1000 nm,特色是粒子内具多层脂质膜,一般而言,干燥后的脂质薄膜,

综述:黄芪多糖的提取工艺研究和应用展望

黄芪多糖的提取工艺研究及应用展望 微生物与生化药学生研1001班 2010001295:王朝绚 摘要:本文综述了从中药黄芪中提取多糖的不同方法并对其进行比较以及黄芪多糖在抗病毒,免疫调节及血糖调节等方面的生物活性;对黄芪多糖的应用前景进行了展望。 关键词:黄芪,多糖,提取分离,生物活性 1 黄芪 我国的中草药资源丰富,种类繁多,多达12800多种,其中又以植物类的占大多数。中草药黄芪(membranaceus),属于豆科(Leguminosae),又名黄耆,是植物和中药材的统称,产于内蒙古,山西,甘肃,黑龙江等地。中药材黄芪为豆科草本植物蒙古黄芪,膜荚黄芪的根,味甘,性温,具有补气固表、利水退肿、脱毒排脓、生肌等功效,《中华人民共和国药典》上明列有扶正固本,补中益气的功效。现代医学发现黄芪的药理作用很广,其能增强机体免疫功能,加强细胞代谢,调节DNA复制、RNA和蛋白质的合成,具有固肾、降压、保肝、抗炎的功能[1]。 2 黄芪多糖 黄芪多糖(APS)是葡萄糖和阿拉伯糖的多聚糖,是黄芪中含量最多、免疫活性较强的一类物质,是黄芪中重要的天然有效成分。具有促进免疫提高巨噬细胞活性,抑制EAS、双向调节血糖作用[2,3]。其分子量小于8万级的多糖可制成静脉注射液,适用于化疗后的滋补,提高人体免疫力[4]。也可以在化学上对其进行改性使其活性增强,因而具有很好的抗艾滋病和抗凝血的应用前景[5,6]。目前黄芪多糖主要用于出口国外,国内需求量也很大,具有广阔的发展前景[7,8]。 但是目前黄芪多糖的提取分离工艺不成熟,效率较差,而且提取的成本较高。因此严重阻碍了黄芪多糖的研究与开发,本文综述了近年来有关黄芪多糖提取工艺的研究,为进一步的研究提供一定依据。 3 黄芪多糖的提取工艺 判断黄芪多糖提取工艺的优良,有以下几个方面需要考虑:黄芪多糖的得率;所提粗黄芪多糖的含糖量;整个工艺流程是否经济;不破坏所提取的黄芪多糖的活性。近年来有以下几种提取方法: 3.1 水提醇沉法 水提醇沉法的基本工艺为:黄芪根粉—以不同的次数不同量的水煮沸回流不同的时间—合并滤液—调节PH为中性—浓缩—加入一定浓度的乙醇—离心分离—加水溶解—过滤—滤液浓缩至小体积—加乙醇至浓度的80%—乙醇或丙酮洗涤—干燥—粗多糖。 水提醇沉法是应用最多的提取黄芪多糖的传统方法,按这种方法得到的黄芪多糖的的

重庆医科大学药学院

重庆医科大学药学院 2013年6月《生物医用材料》考试题 专业 第五临床学 院三系一班学 号 2011221683 姓 名 陈炯名成绩 一、试举例阐述脂质体在医药中的应用。 二、试述细胞黏附、迁移机制,举例说明其生物学特性? 三、试述生物矿化原理,举例说明其生物学意义? 四、举例说明多糖与糖蛋白在生物材料结构中的作用和生物学意义? 题号得分教师签名 一 三 总分 说明: 1.必须将此页面作为试卷封面。 2.第一题必做,再任选一题。 3.2013年6月17-18日交药学院办公室(杏园行政楼D4-6511)李老题字处。

一、试举例阐述脂质体在医药中的应用。 脂质体(liposome)是一种人工膜。在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25~1000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分子的疏水尾部倾向于聚集在一起,避开水相,而亲水头部暴露在水相,形成具有双分子层结构的的封闭囊泡,称为脂质体。药剂学定义脂质体(liposome): 系指将药物包封于类脂质双分子层内而形成的微型泡囊体。 一.脂质体的分类 1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。 小单室脂质体(SUV):粒径约0.02~0.08um;大单室脂质体(LUV)为单层大泡囊,粒径在0.1~lum。 多层双分子层的泡囊称为多室脂质体(MIV),粒径在1~5um之间。 2.按照结构分:单室脂质体,多室脂质体,多囊脂质体 3.按照电荷分:中性脂质体,负电荷脂质体,正电荷脂质体 4.按照性能分:一般脂质体,特殊功效脂质体 二.脂质体的特点 1、靶向性和淋巴定向性:肝、脾网状内皮系统的被动靶向性。用于肝寄生虫病、利什曼病等单核-巨噬细胞系统疾病的防治。如肝利什曼原虫药锑酸葡胺脂质体,其肝中浓度比普通制剂提高了200~700

脂质体药物的研究进展 答辩版

单位代码: 007 分类号: R9 延安大学西安创新学院本科毕业论文设计 题目:脂质体药物的研究进展 专业名称:制药工程 学生姓名: 学生学号: 指导教师: 毕业时间:二零一三年六月

脂质体药物的研究进展 摘要:20世纪60年代末Rahman等人首次将脂质体作为药物载体应用,脂质体作为一种新型的药物载体,可以提高药物的治疗指数,降低药物毒性和减少药物副作用等优点,因此脂质体作为药物载体的研究越来越受到重视。近年来,脂质体作为一种新的药物剂型,在临床治疗中有着广泛的应用前景,但目前还存在一些问题如包封率低、不易贮存等问题。本文就脂质体药物的分类,制备方法,临床应用及其发展现状进行综述。 关键词:脂质;制备方法;临床应用

The research progress of liposome drug Abstract: Rahman et al, will be apply liposome as a medicine carrie at first in the late 1960s. As a new drug carrier,Liposome can improve the therapeutic index of drugs, reduce drug toxicity and drug side effects, etc. Therefore, more attention paid to the study of liposome as drug carrier. Rcently,liposome as a new drug formulation, which has a broad application prospects in the clinical treatment. But so far, there are still some problems such as low coating rate, storage inconvenient and so on. This paper is summarized, including drug classification preparation method, clinical application and its development status. Key words: liposome; preparation; clinical application

黄芪多糖提取实用工艺研究(改)

抚顺师范高等专科学校 黄芪多糖提取方法的研究 学生姓名:赵晓玲 指导教师:李峰 专业名称:食品检验 研究方向:黄芪多糖提取方法的研究 所在学院:抚顺师范高等专科学校 二零一一年七月

目录 摘要 (3) 1 前言 (3) 1.1黄芪的生物学特性及生境 (3) 1.1.1膜荚黄芪 (4) 1.1.2蒙古黄芪 (4) 2.1黄芪多糖功效 (5) 2.1.1 黄芪多糖的免疫调节活性 (5) 2.1.2 抗肿瘤作用 (5) 2.1.3 对创伤感染的影响 (5) 2.1.4 保护作用 (5) 2.1.5 对血糖的调节作用 (6) 2.1.6 黄芪多糖抗病毒作用 (6) 2.1.7 黄芪多糖抗细菌作用 (6) 1.3黄芪的成分及药用价值 (6) 1.4研究的意义 (7) 2.材料与试剂 (7) 2.1材料 (7) 2.2仪器 (8) 2.3方法 (8) 3.热水提取草本刺嫩芽根多糖的正交试验结果 (8) 致谢 (11)

摘要 鉴于多糖的生物活性的多样化,并且对于人体无毒副作用,是一种具有巨大开发潜力的新型的保健物质,所以从天然植物中提取多糖成为当今保健品研发的热点。基于多糖的药用保健功能,本文从黄芪中提取多糖,对其的提取工艺进行研究。 目前黄芪多糖的提取主要采用水提取和CaO提取两种工艺,水提取分离工艺不成熟,效率较差,提取成本较高,严重影响了黄芪多糖的研究开发利用。用pH9~10的CaO水溶液提取黄芪多糖,其得率显著提高,成本下降。 关键词:黄芪多糖水提取CaO 1 前言 1.1黄芪的生物学特性及生境 黄芪(Milkvetch Root),又名黄耆,为植物和中药材的统称。植物黄芪产于内蒙古、山西、甘肃、黑龙江等地,为国家三级保护植物。中药材黄芪为豆科草本植物蒙古黄芪、膜荚黄芪的根,具有补气固表、利水退肿、托毒排脓、生肌等功效。黄芪的药用迄今已有2000多年的历史,现代研究,黄芪含皂甙、蔗糖、多糖、多种氨基酸、叶酸及硒、锌、铜等多种微量元素。有增强机体免疫功能、保肝、利尿、抗衰老、抗应激、降压和较广泛的抗菌作用。但表实邪盛,气滞湿阻,食积停滞,痈疽初起或溃后热毒尚盛等实证,以及阴虚阳亢者,均须禁服。

实验十五 脂质体的制备

实验十五 脂质体的制备 一、实验目的 1. 掌握注入法制备脂质体的工艺。 2. 掌握脂质体包封率的测定方法。 二、实验原理 60年代初Banghan等发现磷脂分散在水中可形成多层囊,并证明每层囊均为双分子脂质膜组成且被水相隔开,称这种具有生物膜结构的囊为脂质体。197l年Ryman等人提出将脂质体作为药物载体,即将酶或药物包囊在脂质体中。近年来脂质体作为药物载体在传递给药系统中的研究有了迅速的发展。 脂质体系一种人工细胞膜,它具有封闭的球形结构,可使药物被保护在它的结构中,发挥定向作用。特别适于作为抗癌药物载体,以改善药物的治疗作用,降低毒副作用等。 脂质体系由磷脂为骨架膜材及附加剂组成。用于制备脂质体的磷脂有天然磷脂,如豆磷脂,卵磷脂等;合成磷脂,如二棕榈酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱等。磷脂在水中能形成脂质体是由其结构决定的。磷脂具有两条较长的疏水烃链和一个亲水基团。当较多的磷脂加至水或水性溶液中,磷脂分子定向排列,其亲水基团面向两侧的水相,疏水的烃链彼此对向缔合形成双分子层,并进一步形成椭圆形或球状结构——脂质体。常用的附加剂为胆固醇,它也是两亲性物质,与磷脂混合使用,可制备稳定的脂质体,其作用是调节双分子层流动性,减低脂质体膜的通透性。其它附加剂有十八胺,磷脂酸等,这两种附加剂可改变脂质体表面电荷的性质。 脂质体可分为三类:小单室(层)脂质体,粒径在20~50nm,凡经超声波处理的脂质体混悬液,绝大部分为小单室脂质体;多室(层)脂质休,粒径约在400~1000nm;大单室脂质,粒径约为200~1000nm,用乙醚注入法制备的脂质体多属这—类。 脂质体包封率的测定 包封率的定义可用下式表示: 包封率% =(W总 - W游离)/ W总 x 100 式中W总——脂质体混悬液中总的药物量。W游离——未包入脂质体中的药物量。 影响脂质体包封率的因素有多种,如磷脂质的种类,组成比例,制备方法及介质的离子强度等。 包封率的测定方法有凝胶过滤法(常用凝胶为Sephadex G50、Gl00或Sephrous4B、6B)、超速离心法、透析法、超滤膜过滤法等,根据条件加以选择。 脂质体的制法有多种,可按药物性质或需要进行选择。薄膜分散法是一种经典的制备方法,它可形成多室脂质体,经超声处理,可得到小单室脂质体。此法特点是操作简便,但包封率较低。注入法,根据所用溶解磷脂质的溶剂,可分为乙醚注入法和乙醇注入法。乙醚注入法是将磷脂,胆固醇和脂溶性药物及抗氧剂等溶于适量的乙醚中,在搅拌下慢慢滴入50~65°C水性溶液中,蒸去乙醚,即可形成脂质体。此法适于实验室小量制备脂质体。乙醇注入法制备脂质体,脂质体混悬液一般可保留10%乙醇。反相蒸发法,是制备大单室脂质体的方法,此法包封率高。冷冻千燥法,适于在水中不稳定的药物制备脂质体。熔融法,此法适于制备多相脂质体,制得的脂质体稳定,可加热灭菌。本实验乙醚注入法制备安定脂质体,用薄膜分散法制备钙黄绿素脂质体。

脂质体及其制备方法的选择

脂质体及其制备方法的选择 1.脂质体概述 1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。此两位学者曾获得过诺贝尔奖提名。 某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消失,当双分子层通过相变温度时,被封闭的水溶性标示物的漏出量增加。 脂质体的相变行为决定了脂质体的通透性、融合、聚集及蛋白结合能力,所有这些都明显影响脂质体的稳定性和它们在生物体系中的行为。

脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。不同类型的脂质体其结构特点各不相同,见下图表。 1971年,英国Rymen等人开始将脂质体用作药物载体。所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。至于药物在脂质体中的负载定位,其取决于所载药物的性质,见下图。

实验十五 脂质体的制备.

实验十五脂质体的制备 一、实验目的 1. 掌握注入法制备脂质体的工艺。 2. 掌握脂质体包封率的测定方法。 二、实验原理 60年代初 Banghan 等发现磷脂分散在水中可形成多层囊,并证明每层囊均为双分子脂质膜组成且被水相隔开,称这种具有生物膜结构的囊为脂质体。197l 年Ryman 等人提出将脂质体作为药物载体, 即将酶或药物包囊在脂质体中。近年来脂质体作为药物载体在传递给药系统中的研究有了迅速的发展。 脂质体系一种人工细胞膜, 它具有封闭的球形结构, 可使药物被保护在它的结构中, 发挥定向作用。特别适于作为抗癌药物载体,以改善药物的治疗作用,降低毒副作用等。脂质体系由磷脂为骨架膜材及附加剂组成。用于制备脂质体的磷脂有天然磷脂, 如豆磷脂,卵磷脂等;合成磷脂,如二棕榈酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱等。磷脂在水中能形成脂质体是由其结构决定的。磷脂具有两条较长的疏水烃链和一个亲水基团。当较多的磷脂加至水或水性溶液中, 磷脂分子定向排列, 其亲水基团面向两侧的水相, 疏水的烃链彼此对向缔合形成双分子层, 并进一步形成椭圆形或球状结构——脂质体。常用的附加剂为胆固醇,它也是两亲性物质,与磷脂混合使用,可制备稳定的脂质体,其作用是调节双分子层流动性,减低脂质体膜的通透性。其它附加剂有十八胺,磷脂酸等,这两种附加剂可改变脂质体表面电荷的性质。 脂质体可分为三类:小单室(层脂质体,粒径在 20~50nm,凡经超声波处理的脂质体混悬液, 绝大部分为小单室脂质体; 多室(层脂质休, 粒径约在 400~1000nm; 大单室脂质, 粒径约为 200~1000nm,用乙醚注入法制备的脂质体多属这—类。 脂质体包封率的测定包封率的定义可用下式表示: 包封率% =(W总 - W游离 / W总 x 100

黄芪多糖提取工艺研究(改)

黄芪多糖提取工艺研究(改)

抚顺师范高等专科学校 黄芪多糖提取方法的研究 学生姓名:赵晓玲 指导教师:李峰 专业名称:食品检验 研究方向:黄芪多糖提取方法的研究 所在学院:抚顺师范高等专科学校 二零一一年七月

目录 摘要 (4) 1 前言 (4) 1.1黄芪的生物学特性及生境 (4) 1.1.1膜荚黄芪 (5) 1.1.2蒙古黄芪 (5) 2.1黄芪多糖功效 (6) 2.1.1 黄芪多糖的免疫调节活性 (6) 2.1.2 抗肿瘤作用 (6) 2.1.3 对创伤感染的影响 (6) 2.1.4 保护作用 (6) 2.1.5 对血糖的调节作用 (7) 2.1.6 黄芪多糖抗病毒作用 (7) 2.1.7 黄芪多糖抗细菌作用 (7) 1.3黄芪的成分及药用价值 (7) 1.4研究的意义 (8) 2.材料与试剂 (8) 2.1材料 (8) 2.2仪器 (9) 2.3方法 (9) 3.热水提取草本刺嫩芽根多糖的正交试验结果 (10) 致谢 (12)

摘要 鉴于多糖的生物活性的多样化,并且对于人体无毒副作用,是一种具有巨大开发潜力的新型的保健物质,所以从天然植物中提取多糖成为当今保健品研发的热点。基于多糖的药用保健功能,本文从黄芪中提取多糖,对其的提取工艺进行研究。 目前黄芪多糖的提取主要采用水提取和CaO提取两种工艺,水提取分离工艺不成熟,效率较差,提取成本较高,严重影响了黄芪多糖的研究开发利用。用pH9~10的CaO水溶液提取黄芪多糖,其得率显著提高,成本下降。 关键词:黄芪多糖水提取CaO 1 前言 1.1黄芪的生物学特性及生境 黄芪(Milkvetch Root),又名黄耆,为植物和中药材的统称。植物黄芪产于内蒙古、山西、甘肃、黑龙江等地,为国家三级保护植物。中药材黄芪为豆科草本植物蒙古黄芪、膜荚黄芪的根,具有补气固表、利水退肿、托毒排脓、生

溶媒的选择与量

药物的合理使用 一、溶媒限制 1.多烯磷脂酰胆碱针:严禁用电解质溶液(0.9%氯化钠、复方氯化钠、乳酸钠林格氏液)稀释,可用葡萄糖或转化糖。 2.只能用葡萄糖溶解:紫杉醇(力扑素)、奥沙利铂(乐沙定、艾恒、艾克博康)、洛铂、卡铂(波贝、齐鲁)、福莫司汀、达卡巴嗪(菏泽)、胺碘酮、多柔比星脂质体(凯莱、里堡多)、去甲斑蝥酸钠、肝水解肽、多巴胺、脱氧核苷酸钠、氢化泼尼松、苦参碱、两性霉素B、消癌平注射液、参麦、参附、丹参。注:糖尿病患者使用参麦、参附可用生理盐水溶解 3.只能用盐水溶解:培美曲塞二钠、蔗糖铁、依托泊苷、替尼泊苷、奈达铂、吉西他滨、泮托拉唑、羟基喜树碱、曲妥珠单抗(赫赛汀)、贝伐单抗、西妥昔单抗(爱必妥)、血管内皮抑制素(恩度)、血必净、氨磷汀、氟达拉滨、长春瑞滨、甘氨双唑钠、奥曲肽。 4. 异甘草酸镁(天晴甘美):溶媒只能用10%葡萄糖250毫升 5. 异环磷酰胺(全菲那):溶媒须用生理盐水或复方氯化钠(林格氏液),不能用乳酸钠林格氏液稀释。 6.头孢地嗪(高德、汕头):溶媒为40ml注射用水、生理盐水或林格氏液中,20-30分钟内输注。 7.肌苷氯化钠、转化糖电解质、混合糖电解质、钠钾镁葡萄糖不作为溶媒使用。 二、给药浓度限制: 1.复合磷酸氢钾:每支2ml需要加入至少400ml溶媒中; 2.依托泊苷溶液浓度不超过0.25mg/ml; 3.表柔比星溶液浓度不超过2mg/ml; 4.蔗糖铁注射液每5ml最多只能稀释到100ml0.9%氯化钠溶液中(即最多只能稀释20倍,浓度稀溶液不稳定); 5.氯化钾静脉给药浓度不应超过0.3%; 6.门冬氨酸鸟氨酸溶液终浓度不超过2%; 7.多西他赛(艾素):浓度不超过0.9mg/ml,即100毫升溶媒最多加90毫克该药; 8.多西他赛(多帕菲、泰索帝)终浓度不得超过0.74mg/ml。 9.门冬氨酸钾针:浓度小于0.68%,即一支最少加250毫升溶媒。 10.氢化泼尼松:溶媒只能5%糖,最好用500毫升,实际审方时,3支以下可以用100毫升,6支以下可以用250毫升,6支以上必须用500毫升。 三、配伍禁忌 1.维生素C和维生素K1属于配伍禁忌。 2.复合磷酸氢钾与葡萄糖酸钙混合滴注易析出沉淀 3.昂丹司琼与地塞米松合用会产生沉淀。 四、给药途径: 1. 凝血酶粉针(无锡)只能口服用于局部止血,严禁静脉给药; 2. 香菇多糖4mg,只能肌肉注射; 3. 香菇多糖1mg,只能静脉滴注; 4. 胸腺五肽1mg可以静脉滴注、肌肉注射; 5. 胸腺五肽10mg,只能肌肉或皮下注射。 五、用法用量 1. 泮托拉唑、奥美拉唑注射液每天使用剂量不超过80mg/天,奥美拉唑(江苏)不能静脉推注,需要滴注至少40分钟。 2. 岩舒注射液:每日使用不超过12ml,加到0.9%氯化钠注射液200ml 中静脉滴注。 3. 微量泵的使用:常用的有5ml/小时和10ml/小时两种,一般要求液体量需要达到200ml以

脂质体制备方法

2 脂质体的制备方法 2.1 薄膜蒸发法该方法是将脂质及芯材(脂溶性药物)溶于有机溶剂,然后将此溶液置于大圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液(生理盐水),充分振荡烧瓶使脂质膜水化脱落,即可制得脂质体。尽管薄膜分散法是使用最广泛的方法,由于这种方法比较原始,所以尚存在较多缺点。用该方法制备得到的脂质体的粒径较大且不均匀,为了使其粒径更小、更均匀,可通过超声波仪处理,在一定程度上降低脂质体的粒径,从而提高包封率。如采用此法制备得到的细辛脑脂质体的包封率达54. 1%[5]。 2.2 超声波法 MLVs的混悬液经超声波处理,再通过 Sepharose 2B或4B柱色谱仪可去除较大的脂质体和 MLVs 。常用的方法有探针型和水浴型。小量脂质悬液(高浓度脂质或黏性水溶液)需要高能 量时用探针型。水浴型更适于大量的稀释脂质。郑宁等[6]采用薄膜 -超声分散法制备依托泊苷脂质体,按均匀设计的最优组合制备脂质体的平均包封率为(61.58±0.83)% ,粒径均小于2卩m,体外释药达到了长效缓释的作用,60Co灭菌后脂质体较稳定。李维凤等⑺以薄 膜-超声法和乙醚注入法制备硝苯地平脂质体,结果表明薄膜蒸发法和超声法综合使用,所得脂质体粒径均匀,粒度小,且多为单室。 2.3复乳法(二次乳化法)这种方法是先将脂质溶于有机溶剂,加入待包封芯材的溶液,乳化得到W/O 初乳,其 次将初乳加入到 10 倍体积的水溶液中混合,进一步乳化得到 W/O/W 乳液,然后在一定温度下去除有机溶剂即可得到脂质体,其包封率变化较大,一般为20%-80% 。通过研究发现, 在第二步乳化过程和有机溶剂的去除过程中, 对脂质体的粒径有较大影响的因素是温度, 较 低的温度有利于减小脂质体的粒径。姚瑶等[8]采用二次乳化法制备的酪丝亮肽多囊脂质体, 不仅稳定性好,80%的粒径分布在 20-30卩m,且包封率为 92. 43%。 2.4反相蒸发法(逆相蒸发法)反相蒸发法最初由 Szoka 和 Papahadjopoulos 于 1978 年提出, 这 种方法适用于脂质成分中磷脂占有较大的比例, 且芯材中水溶性成分较多的情况。一般的制备方法是将脂质等膜材料溶于有机溶剂中,加入芯材药物的水溶液经过短时超声振荡形成稳定的W /O 乳液后,减 压蒸发除掉有机溶剂,形成所谓“反相胶团” ,在达到胶态后,滴加缓冲液,旋转蒸发使器壁上的凝胶脱落,然后在减压下继续蒸发,制得水性混悬液, 再除去未包入的芯材,即得到 单层脂质体。因这种方法可包裹较大的水容积, 所以一般适用于包封水溶性药物、大分子生物活性物质等的情况。李淑梅等[9]采用逆向蒸发法制备黄芪多糖脂质体,操作简单可行,包 封率为 44. 32%。 2.5 注入法将脂质和芯材溶于水中或者不相溶的有机溶剂中, 然后用微量注射器把有机相均速注射到水相(含水溶性药物)中,搅拌挥发除去有机溶剂,再超声得到脂质体。此法根据溶剂的不同可分为乙醇注入法和乙醚注入法。用乙醇注入法制备时若放慢注入速度可制得具有较高包封率的脂质体, 并且乙醇注入法避免了使用有机溶剂。乙醚注入法制备的脂质体大多为单层脂质体,粒径绝大多数在 2卩m以下,操作过程中温度比较低(40 — 50C),该方法适用于在乙醚中有较好溶解度和对热不稳定的芯材, 通过调节乙醚中不同磷脂的浓度, 可以得到不同粒径且粒径分布均匀的脂质体混悬液。许洁等[10]采用乙醇注入法制备环孢素 A 脂质体, 包封率高达 87. 09%。 2.6冷冻干燥法 采用低温干燥技术,通过反复包封、冻干和重新融合来实现较高的包封率。冻干法为提高脂质体储存期的稳定性提供了较好的解决方法,它改变了液态脂质体不稳定和易氧化的缺点,具有工艺稳定、适合于工业化生产、质量易于控制和产品稳定性好等特点。冻干法存在的问题是 :制备工艺

脂质体的制备概要

实验十五 脂质体的制备

一实验目的 1.了解脂质体(liposome)在细胞 工程技术中的应用及其制备方法。 2.掌握采用超声波法、冰冻干燥法 和冻融法三种不同的方法制备脂 质体的方法并了解该技术在细胞 工程中的应用。

二实验原理 脂质体(liposome)的制备技术,一般采用超声波法、振荡法、乙醚蒸发法、去污剂透析法、冰 冻干燥法和冻融法等。制备方法 不同,所得脂质体结构、大小不 同,性质和用途也就不同(表15-1)。

种类制备方法大小(m) 特性 多层大脂质体(MLV) 乙醚蒸发法、醇醚水 法、振荡法、液相快 速混合振荡法 0.1~50 易制备,包被物释放 速度慢 单层小脂质体(SUV) 直接超声波法、溶剂 超声波法、乙醚注射 法 0.02~0.05 体积小,适合包被离 子、小分子药物等 单层大脂质体(LUV) 递相蒸发法、去污剂 (胆酸纳等)透析法、 冰冻干燥法 0.05~0.5 适合包被蛋白质、 RNA、DNA片段、 大分子药物及细胞融 合 单层巨大脂质体(GUV) 冻融法5~30 适合包被蛋白质、 RNA、DNA片段, 除菌处理较难

本实验采用超声波法、冻融法、冰冻干燥 法三种不同类型的方法,超声波法的原理是:在超声波作用下,磷脂类双亲媒性分子被打碎为分子或分子团,并自动重新排布成类似生物膜的双分子层囊泡。冻融法是在超声波法形成的小脂质体基础上,通过冷冻和融解过程使其破裂,重组为大体积脂质体,在通过透析时膜内外渗透压的变化而膨胀为更大体积的脂质体。冰冻干燥法语原理与冻融法基本一致,只在处理条件上有所不同。

三实验用品 1.器材 超声波清洗机、光学显微镜、荧光显微镜、荧光 分光光度计、漩涡混合器、核酸蛋白检测仪、柱层析装置、冰冻干燥机。 2.试剂 1)磷脂液:100mg经丙酮-乙醚法纯化的卵磷 脂,57.2mg胆固醇,溶于1ml氯仿。 2)荧光液:钙黄绿素(calcein)47mg溶于 100ml Tris缓冲液。 3)Tris 缓冲液:称取Tris 0.12g,EDTA 0.288mg,溶于80ml去离子水中,用0.1 mol/L 盐酸调Ph7.2,再加水至100ml。

黄芪多糖的提取工艺及含量测定研究_图文(精)

安徽农业科学,Journal ofAnhui A一.蹦.2009,37(10:4493,4498责任编辑金琼琼责任校对夏蓉黄芪多糖的提取工艺及含量测定研究 李万才 (滨州职业学院生物工程系。山东滨州256603 摘要[目的]研究黄芪根中多糖的含量,[方法]采用分光光度法测定膜英黄芪中多糖的含量,以葡萄糖为对照品.以苯酚一浓硫酸为显色荆.在波长486m处测定样品溶液的吸光度。【结果]标准曲线为A=51.654C+0.0372.r=0.999 8,脚。为1.28%.BSD2为 1.50%。[结论]该方法操作简单,灵敏度高。 关键词黄芪根;多糖含量;分光光度法 中图分类号s567.23+9文献标识码A 文章编号0517—661l(200910—04493—01 Research on Extraction Process and Content Determination of Astragalus Polysaccharides LI Wan-cai(Department of Biological Engineering,Binzhou Vocational College,Binzhou,Shandong 256603 Abstract Objective]111P study re.arches the poly鲴echaride content in the Astragalus root.f Method Using spectrophotometry determines polysaceharide content in Astragalus membranaceus.taking slucose酗compari.,“m,taking phenol?concentrated sulfuric acid黯developer and determining the absorbency of sample∞lution underA=486nln.『Resultl 111P standard curve is A=51.654C+0.0372。r=0.9998. 冗sD.js 1.28%and RSD,is 1.5%(n=5.I Conclusion 111is method is simple,sensitive and accurate. Key words Astragalus root:Polysaccharides content;Spectrophotometry 黄芪(Radix Astragalus是豆科植物,膜荚黄芪[Astraga— lus membranaceus(Fisch.Bge.]的干燥根含有多糖、木质素类、黄酮类化合物、香豆苯

黄芪多糖的药理作用及剂型研究进展

第47卷第15期2019年8月广 州 化 工 Guangzhou Chemical Industry Vol.47No.15Aug.2019 黄芪多糖的药理作用及剂型研究进展 * 盛耀光1,刘少静1,2,马 秀1,路荣荣1,王 琳1,杨敏敏1 (1西安医学院药学院,陕西 西安 710021;2西安医学院药物研究所,陕西 西安 710021)摘 要:黄芪多糖(Astragalus Polysacharin,APS)是黄芪中重要的天然有效成分,是一类大分子活性物质三介绍了黄芪多糖 的剂型及药理作用研究进展三通过检索近十年关于黄芪多糖剂型及药理作用的相关文献,进行归纳总结三黄芪多糖具有抗肿瘤二抗氧化二降血糖二降血脂二心血管保护等药理作用;主要涉及脂质体二微胶囊二靶向微丸二纳米粒等剂型三黄芪多糖药理作用及剂型研究广泛,具有广阔开发前景三 关键词:黄芪多糖;药理作用;剂型;研究进展  中图分类号:R285;R284  文献标志码:A 文章编号:1001-9677(2019)15-0028-03 * 基金项目:西安医学院2016年大学生创新基金项目(No:2016DXS1-05);西安医学院配套基金项目(No:2017PT08);西安医学院配套基金项目 (No:2018PT61);西安医学院省级重点学科-药学(1007);西安医学院药学省级重点学科建设项目(No:2016YXXK08)三 第一作者:盛耀光(1995-),男,药学2014级本科生,研究方向天然产物研究与开发及药物新剂型的研究三通讯作者:刘少静,女,硕士,副教授,研究方向天然产物研究与开发及药物新剂型的研究三 Research Progress on Pharmacological Effects and Dosage Form of Astragalus Polysaccharides * SHENG Yao -guang 1,LIU Shao -jing 1,2,MA Xiu 1,LU Rong -rong 1,WANG Lin 1,YANG Min -min 1 (1College of Pharmacy,Xi’an Medical University,Shaanxi Xi’an 710021;2Institute of Medicine,Xi’an Medical University,Shaanxi Xi’an 710021,China) Abstract :Astragalus polysaccharide is an important natural active ingredient in Astragalus membranaceus and a kind of macromolecular active substance.The research progress on the dosage form and pharmacology of Astragalus polysaccharide was introduced.The literatures on the dosage form and pharmacology of Astragalus polysaccharide were searched for nearly ten years.Astragalus polysaccharide had anti-tumor,anti-oxidation,hypoglycemic,hypolipidemic,cardiovascular protection and other pharmacological effects.Astragalus polysaccharides mainly involved liposomes,microcapsules,targeted pellets,nanoparticles and other dosage forms.The pharmacological effects and dosage form of Astragalus polysaccharide were widely studied,and it had broad development prospects. Key words :Astragalus polysaccharide;pharmacological action;dosage form;research progress 黄芪为豆科植物膜夹黄芪Astragalus membranaceus (Fisch.)的干燥根,始载于‘神农本草经“,具有益气养阳二益肺健脾二保肝利尿等功效三黄芪含有多糖二蛋白质二生物碱二氨基酸二黄酮及微量元素等多种活性物质三黄芪多糖是黄芪主要的活性成分之一,可作为免疫增强剂能激活动物免疫系统,在抗肿瘤二抗病毒二抗氧化二控制血糖二改善心血管功能等方面具有重要作用三黄芪多糖主要涉及脂质体二微胶囊二靶向微丸以及颗粒剂二片剂等剂型三本文就近年来黄芪多糖的药理作用及剂型研究展开综述,以期为对黄芪多糖的合理开发及临床应用提供理论基础三 1 剂 型 1.1 黄芪多糖脂质体 脂质体是由磷脂双层膜构成的中空小球,直径为25~1000nm三脂质体是一种新型靶向给药载体,具有以下优点: 靶向释药二缓释二可生物降解二降低毒性和不良反应二提高稳定性及药物治疗指数等优势三脂质体也是美国食品药品监督管理局批准上市的纳米药物制剂之一三脂质体作为药物载体国内外已有相关研究,但将其作为天然药物有效成份的靶向载体仍属于新的领域[1]三邓英杰等[2]用均匀设计的方法筛选了黄芪多糖脂质体的处方及黄芪多糖脂质体的体系稳定性,由化学稳定性预测黄芪多糖脂质体20℃贮存期为1.44年,测定了黄芪多糖脂质体的粒径分布,90%以上粒子粒径1μm 以下,40℃保温3个月粒子粒径不变三并在此基础上证明黄芪多糖脂质体比黄芪多糖普通制剂和空白脂质体具有更加显著的免疫增强效果三刘少静等[3]采用薄膜分散超声法制备黄芪多糖脂质体,并对其性能进行考察,结果显示制备的黄芪多糖脂质体包封率高,4℃下贮存较稳定,且具有良好的缓释作用三范云鹏等[4]采用薄膜分散-微孔滤膜挤压法制备黄芪多糖脂质体,其包封率和载药量较高,形态和粒径较均匀,重现性好三Fan Y 等[5]

响应面法优化黄芪多糖的提取工艺

响应面分析法优化黄芪多糖的提取工艺 高宛莉,杜瑞卿 (河南南阳师范学院生命科学与技术学院,河南南阳473061) 摘要为黄芪的进一步开发利用提供参考,选取黄芪多糖提取时间、提取温度和料液比3个因素进行二次回归正交组合设计试验,对其 提取工艺参数进行优化研究。结果表明:在提取时间为56min 、温度为84?、水体积为276mL 的条件下,黄芪多糖提取最大预测值为8.979μg /mL ,实际提取值8.945μg /mL ,两者基本相符。利用优化工艺参数提取黄芪多糖时,具有最大的提取产量。关键词黄芪多糖;响应面法;提取产量中图分类号TS244文献标识码A 文章编号1004-8421(2012)11-1263-02Optimization of Extraction Technique of Astragalus polysaccharide via Response Surface Methodology GAO Wanli ,DU Ruiqing (College of Life Science and Tchnology Nanyang Normal University ,Nanyang ,He ’nan 473061,China )Abstract The effects of different temperature ,time and the ratio of solid to solution on the extraction yield of Astragalus polysaccharide were investigated based on composite design of quadratic regression.The extraction technique parameters were optimized with Response Surface Methodology.Experimental data were analyzed by solving the regression equation with Design MATLAB 7.0software.It was indicated that the optimum extraction parameters were temperature 84?,time 142minutes and the water volume 276ml.Under those conditions ,the predicted val-ue of polysaccharide extraction yield from Radix Astragali was8.97878μg.mL -1,which was in consistent with the measured value8.945μg.mL -1.It had maximal extraction yield of Astragalus polysaccharide with optimized technique parameters.Key word radix Astragali ;polysaccharide ;response Surface ;extraction yield 基金项目 南阳师范学院科青年科研资助项目(QN2012042) 作者简介 高宛莉(1978-),女,汉族,河南南阳人,实验师,从事生物化学的教学与实验工作。E -mail :duruiqing8@163.com 收稿日期2012-10-14黄芪(Radix Astragali )为豆科植物蒙古黄芪或膜荚黄芪的干燥根,是中药补气药中最为常用、且功效显著的一味药物, 含有多种对人体健康有益的生物成分与微量元素。黄芪多糖(Astragalus polysaccharide , APS )是中药黄芪中的主要成分,近年来研究发现其具有免疫调节、抗氧化、保护心肌、促进骨髓造血干细胞增殖和调节血糖等多方面广泛的药理作用 [1-2] ,是很有价值的免疫增强剂。近年来,黄芪多糖显著 的抗癌作用更受到广泛关注[3-4] 。笔者等参照有关文献 [5-6] 选取提取温度、提取时间、料液比三因素,在单因素试验的 基础上[7] ,利用二次回归正交组合设计试验(响应面分析 法)[8-9] ,对黄芪多糖的水提取过程工艺条件进行了研究,以 期为黄芪的进一步开发利用打下基础。 1材料与方法1.1材料 1.1.1黄芪。黄芪药材,购自河南省医药公司,为蒙古黄芪。1.1.2 仪器与试剂。TU -1901双光束紫外可见分光光度 计,北京普析通用仪器有限责任公司;RE -52旋转蒸发器,上海亚荣生化仪器厂;D (+)-葡萄糖,Sigma 公司;其他试剂皆为国产分析纯。1.2方法 1.2.1 多糖含量测定。糖含量测定采用苯酚一硫酸法 [10] 。 标准曲线的绘制:精确称取D (+)-葡萄糖20mg ,用重蒸水定容至100mL 作为标准液。将标准液分别稀释成浓度为30μg /mL 、60μg /mL 、90μg /mL 、150μg /mL 和180μg /mL 的溶液,取不同浓度的溶液各0.3mL 置于10mL 试管中,加入50g /L 重蒸苯酚溶液0.6mL 混合后,迅速加入3mL 98%浓硫酸, 混匀,室温静置30min 。用直径10mm 石英比色皿测定489nm 处吸光度,用重蒸水进行空白对照试验。在与标准曲线绘制相同条件下测定多糖样品含量。1.2.2 试验设计。在黄芪多糖提取过程中,影响提取液中 多糖含量的因素很多,经初步试验选定提取温度、提取时间、料液比(水体积)作为主要影响因素,以提取液中多糖含 量为指标, 在单因素试验的基础上[7] 采用三因素五水平二次回归正交组合设计试验(响应面分析法)[11] ,对提取工艺 参数进行了优化, 试验因素及水平见表1。表1试验因素、因素水平及水平编码 Table 1Experiment fact0rs ,levels and coding 水平因素 提取时间(x 1)min 提取温度(x 2) ?水体积(x 3)mL 上星号臂γ 72100320 上水平16895310零水平06085280下水平-15275250下星号臂-γ4870240Δj 8 10 30 注:Δj =(x j γ-x j 0)/γ,γ=1.287。 对因素x j 的各个水平进行线性变换,得到水平编码z j = x j -x j 0 Δj ,试验方案见表2。2 结果与分析 三因素五水平二次回归正交组合设计试验结果见表2。利用MATLAB7.0软件,对表2数据进行二次多元回归拟合,得到黄芪多糖提取浓度y 2与三因素z 1、z 2、z 3之间的二次回归方程: y 2=8.69067-0.28795z 1-0.03365z 2-0.09964z 3+0. 17083z 1z 2+0.17758z 1z 3-0.24177z 2z 3-0.40120z 12-0.36497z 22-0.36196z 32 式中, z 1'=z 12-116∑16i =1z i 12=z 12-0.707,z 2'=z 22-116∑16 i =1 z i 22=z 22农技服务,2012,29(11):1263-1264责任编辑胡先祥责任校对胡先祥

相关文档
最新文档