钢铁企业能源管理系统(EMS)

钢铁企业能源管理系统(EMS)
钢铁企业能源管理系统(EMS)

钢铁企业能源管理系统(EMS)解决方案

发布时间:2008-4-11 来源:南阳节能信息网作者:[ ]

一、概述

能源管理系统(Energy management system,简称EMS)是钢铁企业信息化系统的一个重要组成部分,在能源数据进行采集、加工、分析,处理以实现对能源设备、能源实绩、能源计划、能源平衡、能源预测等方面发挥着重要的作用。

在企业信息化系统的架构中,把能源管理作为MES的一个基本应用构件,作为大型企业自动化和信息化的重要组成部分,如图示:

能源介质种类主要包括:高炉煤气(BFG)、焦炉煤气(COG)、转炉煤气(LDG)、天然气(NG)、氧气(O2)、氮气(N2)、氩气(Ar)、压缩空气(Air)、蒸汽、氢气(H2)、采暖热网、生活水、工业净环水、工业浊环水、浓盐水、除盐水、酚氰水、软化水、电力等。

能源介质信息包括:压力、流量、温度、煤气热值、供水品质(水质)、阀门开闭、调节阀开度、开关信号、动力设备运行状态、主生产线设备的运行状态等。

环保信息包括:环保设备的运行情况、外排水中主要污染物的浓度、流量、主要废气排放点的外排放废气中烟(粉)尘、SO2、NOx、CO2 等污染因子的浓度和流量、污染物排放总量、大气质量指标、厂区视频检测、厂界噪音。

二、方案设计

1、系统架构

典型能源系统架构包括能源调度管理中心、通讯网络、远程数据采集单元等三级物理结构(如图示)。

基于基础自动化向信息化建设发展的原则,并分析比较了实时数据库和SCADA软件的技术特点,本方案以SCADA系统为核心构建能源管理系统,结合网络通讯、数据库产品和技术建立一套先进的、符合钢铁企业管理应用功能的能源管理系统。

系统建立:

- 能源中心:

以SCADA软件为核心,建立I/O Server实时数据服务器,实现在线的数据监视、工艺操作和实时的能源管理功能;基于数据库技术开发具有模型背景的能源管理功能并对外提供接口。

- 通讯网络:

采用工业级以太网交换机,建立分区域的冗余环网,环与环之间采用耦合拓扑结构进行连接,从而建立高可靠专有的能源数据采集通讯网络。

- 数据采集:

RTU产品为核心,通过信号采集、通讯、协议转换等技术手段,将能源介质参数的采集与生产控制系统隔离,提供连续、真实、可靠的数据依据。

2、系统数据流图

能源中由心I/O数据服务器、Oracle关系数据库服务器、Web服务器和工作站组成。I/O数据服务器负责原始计量数据的实时采集、历史压缩存储、二次计算和为监控画面提供实时数据;Oracle 数据库服务器负责计量统计数据的收集和存储,作为能源(物资)计量统计管理数据库;工作站上运行计量数据监控与管理系统软件,对计量数据进行分析处理、设备管理、权限分配、报表打印以及调阅等;Web服务器负责将指定的实时数据监测画面和动态曲线以网页的形式在公司网上发布,供其他部门网上在线查阅,并提供系统与用户的各种人机界面。

根据能源管理系统功能需求及实际各部门业务流程规定,EMS数据流图可用下图表示:

3、系统功能

EMS的监控系统分为4个子系统,即供配电系统、动力系统、给排水系统和环保系统。

其中动力系统包括燃气系统、蒸汽系统、氧氮氩系统,给排水系统包括化学水、工业水和生活水。

①、数据的实时采集与监控

通过建立可靠的数据采集系统(SCADA系统)对能源潮流数据(如电流、电压、压力、温度、流量、环境数据等)、设备状态(如开、停、阀门开度、报警信号等)等进行采集;提供过程监视、操作控制、实时调整等画面,过程曲线及信息显示等辅助界面、大屏幕等完成能源中心管辖范围的能源设备状态及潮流的监视功能;提供过程控制和实时调整,参数设定窗口等实现控制功能;并对信息进行归档。

②、基础数据管理

包括介质参数管理、维护单位管理、计量设备管理、测点耗量关系、用户权限设置、以及其他需人工录入的参数管理界面。

③、能源管理功能

将采集的数据进行归纳、分析和整理,结合生产计划和检修计划的数据,实现基础能源管理功能,包括能源实绩分析管理、能源计划管理、运行支持管理、能源质量管理、能源平衡管理、在线预测分析等。

④、环境监测与保护

对环保设备运行状态的监测,对水、烟气等排放进行监测、分析和管理。

4、基本配置

能源管理系统基于以太网的数据通信技术,采用C/S 和B/S 混合系统架构方式。典型的配

置和设备组成如下:

三、主要产品技术描述

1、SCADA软件

采用国际主流的SCADA软件建立I/O Server实时数据服务器功能,通过在线的数据采集实现动态流程图、参数表、趋势曲线等监控功能,并与关系数据库建立通讯。

技术特点如下:

—软件体系采用真正的客户/服务器(C/S)体系结构;

—能够完全做到实时数据服务器以及趋势、报警、报表和文件等功能模块的冗余;

—I/O通讯冗余,主通讯中断时自动切换到旁路;

—支持在线组态,即在不影响操作的情况下,允许全部或部分应用程序进行修改;

—支持ODBC、OPC、API、DDE等标准数据交换方式;

—网络通讯采用标准的NetBIOS,支持IPX/SPX、TCP/IP等协议;

—支持多种关系型数据,包括Oracle、SQL Server、dBASE等。

—系统通过设置不同级别的用户操作权限而防止越权操作保护系统的安全。

2、远程数据采集单元—MIPM RTU

远程数据采集单元采用美国SIXNET公司MIPM系列RTU产品。

SIXNET高端RTU产品(IPM级)具有32位处理器、大容量存储空间,不但提供标准串口

(RS232/RS485)通讯和IEC61131-3标准编程功能。还提供以太网通讯端口,并具有嵌入式功能,可支持高级编程和网络通讯应用程序,例如Web Server、Internet访问、高级C/C++编程及专有通讯协议的定制等,是最新一代控制器产品。同时具有多种国际工控产品质量认证,提供高可靠品质应用。其产品主要技术特点为:

①、同时提供多种通讯端口:以适应分散应用和本地的不同通讯要求。

②、提供大容量程序和数据存储空间:适合就地运算和大量数据安全存储。

③、更高的适应恶劣环境应用:工作环境温度为-40 ~70oC、国际品质认证等。

3、工业以太网交换机

网络系统中的工业以太网交换机采用美国SIXNET公司产品。

SIXNET近30余年的工业自动化产品设计、制造经验,使其充分了解各种工业场合的应用需求。并将其成熟的工业自动化产品设计理念注入工业以太网交换机产品中,能够真正经受各种恶劣工业环境的长期考验。

SIXNET工业以太网交换机具有卓越的工业品质,低功耗、无风扇电路设计、宽范围工作环境温度(- 40℃- 85 ℃)、美国军标MIL-STD-1275防浪涌保护以及严格的国际质量认证(包括危险场所2区防爆认证、DNV船级社认证)等特性确保在各种恶劣工业环境现场长期稳定、可靠、安全使用。

SIXNET实时环工业以太网交换机专有Real-time RingTM 技术,实现快速容错环网冗余,并具有端口配置、端口镜像、优先级划分等高级网管功能,可保证信息交换的实时性和确定性,支持

Modbus方式监测网络运行状态,可以方便地进行故障诊断、报告和定位。尤其适合如PLC,DCS,SCADA自动化监控系统构建100/1000Mbps工业冗余环网。

四、高端产品应用技术

EMS系统采集的信号分散在工厂的各个角落,许多能源计量参数已纳入原有生产控制系统,能源数据的采集将面临繁杂的通讯协议和接口。采用新一代的自动化产品(RTU/Gateway),构筑分布式的数据采集系统,将能源介质参数的采集与生产控制系统隔离,提供连续、真实、可靠的数据依据。RTU/Gateway产品是对传统PLC系统在远传和分布式应用的产品补充,提供更强的数据处理和通讯能力,从而构建新一代能源管理系统的架构。

MIPM RTU预集成了PLC、记录仪、流量计算机、通讯网关等多种功能,其高端产品应用技术如下:

1、预集成的数据记录功能

MIPM RTU预集成了数据记录(Datalogging)功能。作为系统工具软件(I/O Tool Kit)选项之一的Sixlog软件,提供了工程向导型配置应用,无需编程。

SIXNET的Datalogging功能具有以下优点:

—可按时间、事件等方式启动数据记录

—时间间隔可设置(10毫秒–49天)

—大容量、非易失数据存储(16M)

—同一控制器支持多个Datalog配置

—服务器/客户机式双向数据恢复方式

—工程向导型配置界面,无需编程

—多种通用软件浏览的历史数据文件

—支持数据记录冗余服务器功能

数据记录可用于实现SOE功能,用于记录故障报警事件发生的时间顺序;可以实现重要能源计

量数据的备份,防止因为通讯网络故障等原因导致这些重要数据的丢失;同时保证贴有时间标签的能源采集数据的完整性。RTU取代无纸记录仪,提供更灵活、更安全的数据备份功能!

2、RTU的数据补传和调用功能

利用数据记录(Datalogging)功能,RTU把数据加上精确的时间标签存储在非易失的存储器中。然后按照用户定义的时间表或在发生特定事件(例如远程传输故障恢复后)时把记录的历史数据传送到一个或多个中心控制站,从RTU传送上来的数据包括控制站地址、时间标签、纪录序列号等识别数据。多个站点传送上来的数据堆入输入数据缓存,等待顺序处理。

补传的数据可存储到ASCII文件(.csv)中,可方便地被SCADA软件和数据库调用,完成数据回填。每站点的数据分别保存在不同的文件中,用户可以按周期配置进行文件更新。

同时,CitectSCADA软件专为SIXNET数据记录功能开发了数据记录服务器驱动,可以直接调用RTU内记录的历史数据并恢复到趋势文件中。

3、建立先进的系统通讯机制

传统控制系统(包括DCS/PLC)的通讯机制是主、从方式,既轮巡通讯。这是在专有布线结构下工控领域所遵循的通讯原则。而RTU产品具有服务器/客户机式的通讯能力。在客户机方式下,RTU作为主站,可主动向控制中心发起通信,这种模式常常用做“例外报告”。

RTU作为客户机可实时地报告事件的发生,实现快速报警响应。这种“例外报告”机制可减少传统轮询系统中的通信负荷与等待时间。在大型SCADA系统中,I/O响应时间是决定系统品质的重要因素,你的系统越大,这种分布式客户机结构的好处就越明显。

主站轮巡与“例外报告”相结合是先进SCADA系统的通讯机制!

4、嵌入式技术的应用

作为真正的开放式自动化产品,MIPM RTU提供了嵌入式开发能力,使用IADK开发工具包可以编译和调试自己专有的应用程序,然后在控制器和RTU中运行。IADK提供访问I/O寄存器的库函数,具有读写控制器I/O寄存器和通讯端口的最高访问能力。

嵌入式技术的应用,有利于快速开发专有的通讯驱动,使用户与我们享有同等的开发能力!

5、高端以太网通讯特性

IP安全特性(防火墙保护):MIPM RTU可嵌入防火墙保护功能,防止系统受到非授权访问的能力,使用其安全规则向导配置基于IP地址、IP端口、IP表等限制访问规则;

SNMP网络管理:支持AT,ICMP,IP,System,TCP,UDP等MIB组功能,可建立信息管理网络软件的通信,MIPM RTU具有SNMP网络管理能力;

PPP 通讯协议:通过串口链路透传IP数据包,将串行连接转换为以太网通讯连接

出师表

两汉:诸葛亮

先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。

今当远离,临表涕零,不知所言。

钢铁企业能源管理系统及节能技术汇总

《一》钢铁企业能源管理系统(EMS)简介 1.概述 能源管理系统是钢铁企业信息化系统的一个重要组成部分,在能源数据进行采集、加工、分析,处理以实现对能源设备、能源实绩、能源计划、能源平衡、能源预测等方面发挥着重要的作用。 能源介质种类主要包括:高炉煤气(BFG)、焦炉煤气(COG)、转炉煤气(LDG)、氧气(O2)、氮气(N2)、氩气(Ar)、压缩空气(Air)、蒸汽、氢气(H2)、生活水、工业净环水、工业浊环水、浓盐水、除盐水、软化水、电力等。 能源介质信息包括:压力、流量、温度、煤气热值、供水品质(水质)、阀门开闭、调节阀开度、开关信号、动力设备运行状态、主生产线设备的运行状态等。 环保信息包括:环保设备的运行情况、外排水中主要污染物的浓度、流量、主要废气排放点的外排放废气中烟(粉)尘、SO2、NOx、CO2 等污染因子的浓度和流量、污染物排放总量、大气质量指标、厂界噪音等。 2.系统架构 典型能源系统架构包括能源调度管理中心、通讯网络、远程数据采集单元等三级物理结构,如下图示: 系统结构示意图

数据流 3.系统功能 EMS监控部分分为4 个子系统,即电力系统、动力系统、水系统和环保系统。其中动力系统包括燃气系统、蒸汽系统、氧氮氩系统,水系统包括化学水、工业水和生活水。 1)数据的实时采集与监控 通过建立可靠的数据采集系统(SCADA系统)对能源潮流数据(如电流、电压、压力、温度、流量、环境数据等)、设备状态(如开、停、阀门开度、报警信号等)等进行采集;提供过程监视、操作控制、实时调整等画面,过程曲线及信息显示等辅助界面、大屏幕等完成能源设备状态及潮流的监视功能;提供过程控制和实时调整,参数设定窗口等实现控制功能;并对信息进行归档。 2)基础数据管理 包括介质参数管理、维护单位管理、计量设备管理、测点耗量关系、用户权限设置、以及其他需人工录入的参数管理界面。 3)能源管理功能 将采集的数据进行归纳、分析和整理,结合生产计划和检修计划的数据,实现基础能源管理功能,包括能源实绩分析管理、能源计划管理、运行支持管理、能源质量管理、能源平衡管理等。 4)环境监测功能 对环保设备运行状态的监测,对水、烟气等污染源排放进行监测、分析和管理。

工业企业能源管理导则 GBT 15587-1995

GB/T 15587-1995 1 主题内容与适用范围 本标准规定了工业企业建立能源管理系统,实施能源管理的一般要求。 本标准适用于工业企业能源管理。 2 引用标准 GB 2589 综合能耗计算通则 GB 3484 企业能量平衡通则 GB 12723 产品单位产量能源消耗定额编制通则 3 能源管理系统 为实施能源管理,企业应建立健全能源管理系统,包括完善组织结构,落实管理职责,配备计量器具,制定和执行有关文件,开展各项管理活动。该系统应能保证安全稳定供应生产所需能源,及时发现能耗异常情况,予以纠正,并不断挖掘节能潜力。 3.1 能源管理方针和目标 3.1.1 企业领导应根据本企业总的经营方针和目标,执行国家能源政策和有关法律、法规,充分考虑经济、社会和环境效益,确定能源管理方针。 3.1.2 应根据企业能源管理方针,制定能源管理目标。能源管理目标一般以产品单位产量能源消耗量确定,并可分别制定年度目标和长远目标。 3.1.3 企业能源管理方针和目标应以书面文件颁发,使企业所有有关人员明确,并贯彻执行。 3.2 能源管理的主要环节 企业应根据自身特点,管理好以下环节: a. 能源输入; b. 能源转换; c. 能源分配和传输; d. 能源使用(消耗); e. 能源消耗状况分析; f. 节能技术进步。 3.3 能源管理职责和权限 3.3.1 为实现能源管理目标,企业领导应负责建立、保持和完善能源管理系统,确定能源主管部门,配备具有相应技能和资格的人员,承担能源管理和技术工作,明确规定其职权范围和领导关系。 3.3.2 企业能源主管部门应系统地分析本企业能源管理各主要环节及其各项活动过程,分层次把各项具体工作任务落实到有关部门、人员和岗位。 3.3.3 企业各有关部门和人员,按照能源主管部门的协调安排,完成各项具体能源管理工作。 3.3.4 在分配落实能源管理职责的同时,要授予履行该职责所必要的权限。 3.4 能源计量器具配备与管理 企业应按照国家有关规定,配备满足管理需要的能源计量器具,制定和实施有关文件,对计量器具的购置、安装、维护和定期检定实行管理,保证其准确可靠。 3.5 文件 3.5.1 为了规范和协调各项能源管理活动,应有系统地制定各种文件,严格贯彻执行。能源管理所需文件包括:管理文件、技术文件和记录。 3.5.2管理文件 3.5.2.1 管理文件是对能源管理活动的原则、职责权限、办事程序、协调联系方法、原始记录要求等所作的规定。如:管理制度、管理标准及各种规定等。

钢铁企业节能思路和管理节能案例(可编辑修改word版)

钢铁企业节能思路和管理节能案例 核心提示:2008 年前8 个月全国重点钢铁企业吨钢综合能耗628.97Kgce/t,吨钢可比能耗611.31Kgce/t,吨钢电耗458.52Kwh/t,吨钢耗新水4.80m3/t。吨钢外排SO2 1.95Kg/t,吨钢烟尘排放0.434Kg/t,占 1. 中国钢铁工业能源环保现状 2007 年中国钢铁工业总能耗占全国总能耗14.71%,污染物排放占全国11%。 2008 年前8 个月全国重点钢铁企业吨钢综合能耗628.97Kgce/t,吨钢可比能耗611.31Kgce/t,吨钢电耗458.52Kwh/t,吨钢耗新水4.80m3/t。吨钢外排SO2 1.95Kg/t,吨钢烟尘排放0.434Kg/t,占工业总排放15.12%。 中国钢铁企业处于多层次、不同结构、不同技术装备水平共同发展阶段。 表1 2008 年前8 个月重点企业能耗状况单位:Kgce/t 全国有高炉1300 多座,大于1000m3以上的高炉有150 座。 全国有烧结机400 多台,180m2以上的烧结机有72 台。 全国有链蓖机-回转窑35 条生产线,带式机有3 条。 全国有焦炉2200 多座,炭化室高大于6m 的有124 座。

全国有连铸机996 台,2806 流,其中板坯连铸机75 台,薄板坯连铸机17 台,园坯连铸机48 台。 全国电炉179 座,50t 以上电炉110 座。 中国冶金装备数量多,平均容量小,造成产品质量不稳定,能耗高。 大高炉焦比要比小高炉低50Kg/t,吨铁风耗低300m3/t,单位炉容散热面积小等。 大转炉实现负能炼钢,回收煤汽80~100m3/t,蒸汽50Kg/t。小转炉不回收煤汽和蒸汽。一般转炉回收量也少。 中国钢铁工业能耗高的原因 中国钢铁工业能耗比工业发达国家高10%左右 ?中国电炉钢比低,铁钢比高 2007 中国电炉钢比为10%左右,铁钢比为0.959,美国电炉钢比为55%,铁钢比为0.45;德国电炉钢比为30%,铁钢比为0.45。铁钢比升高0.1,吨钢综合能耗升高20Kgce/t。仅次一项,就使我国能耗高出80 Kgce/t。 ?中国钢铁工业能源结构中煤炭为69.9%,电力为26.4%,石油类3.2%。工业发达国家电力在30%以上,石油类和天然气占15%~25%。造成我国能耗比国外高15~20Kg/t 钢。 ?我国冶金装备平均炉容偏小,自动化程度低,造成能耗高。 中国钢铁企业的生产流程连续化,紧凑化,自动化,高效化等方面有些不足。 中国钢铁工业各工序能耗与国际先进水平对比 表2:钢铁工业工序能耗与国际先进水平比较

钢铁企业能源管理系统

钢铁企业能源管理系统(EMS)设计方案 1.概述 能源管理系统(Energy management system,简称EMS)是钢铁企业信息化系统的一个重要组成部分,在能源数据进行采集、加工、分析,处理以实现对能源设备、能源实绩、能源计划、能源平衡、能源预测等方面发挥着重要的作用。 在企业信息化系统的架构中,把能源管理作为MES 的一个基本应用构件,作为大型企业自动化和信息化的重要组成部分,如图示: 企业信息化体系结构图 能源介质种类主要包括:高炉煤气(BFG)、焦炉煤气(COG)、转炉煤气(LDG)、天然气(NG)、氧气(O2)、氮气(N2)、氩气(Ar)、压缩空气(Air)、蒸汽、氢气(H2)、采暖热网、生活水、工业净环水、工业浊环水、浓盐水、除盐水、酚氰水、软化水、电力等。 能源介质信息包括:压力、流量、温度、煤气热值、供水品质(水质)、阀门开闭、调节阀开度、开关信号、动力设备运行状态、主生产线设备的运行状态等。 环保信息包括:环保设备的运行情况、外排水中主要污染物的浓度、流量、主要废气排放点的外排放废气中烟(粉)尘、SO2、NOx、CO2 等污染因子的浓度和流量、污染物排放总量、大气质量指标、厂区视频检测、厂界噪音。

2.方案设计 2.1系统架构 典型能源系统架构包括能源调度管理中心、通讯网络、远程数据采集单元等三级物理结构(如图示)。 系统结构示意图 基于基础自动化向信息化建设发展的原则,并分析比较了实时数据库和SCADA 软件的技术特点,本方案以SCADA 系统为核心构建能源管理系统,结合网络通讯、数据库产品和技术建立一套先进的、符合钢铁企业管理应用功能的能源管理系统。 2.1.1系统建立 1)能源中心: 以SCADA 软件为核心,建立I/O Server 实时数据服务器,实现在线的数据监视、工艺操作和实时的能源管理功能;基于数据库技术开发具有模型背景的能源管理功能并对外提供接口。 2)通讯网络: 采用工业级以太网交换机,建立分区域的冗余环网,环与环之间采用耦合拓扑结构进行连接,从而建立高可靠专有的能源数据采集通讯网络。

(能源化工行业)工业企业能源管理体系实施指南

(能源化工行业)工业企业能源管理体系实施指南

工业企业能源管理体系实施指南 1范围 本标准为以下对象提供实施指南: a)应用DB37/T1013-2009的工业企业。 b)其他相关方。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本〈包括所有的修改单〉适用于本文件。GB17167用能单位能源计量器具配备和管理通则 DB37/TIOU-2009工业企业能源管理体系要求 3术语和定义 DB37/T1013-2009确立的术语和定义适用于本文件 4能源管理体系要求 4.1总要求 用能单位应将能源管理体系作为企业管理的壹部分,根据其规模、性质和能力等状况确定能源管理体系边界,边界范围内的能源利用和管理活动应符合DB37/T1013-2009的要求。 建立、实施、保持和改进能源管理体系,应通过以下活动进行: a)体系策划 识别评价法律法规和其他要求及贯彻执行情况; 评价能源利用和管理现状; 确定能源基准、标杆; 识别评价能源因素; 制定能源方针、目标、指标; 确定能源管理职责,配备资源; 建立内、外部信息交流机制; 将策划的结果形成文件。 b)体系实施 对实体系范围内机员实施培训 执行体系文件,对能源利用过程进行控制,包括能源规划、设计、采购、贮存、加工转换、传输分配、使用、回收利用等过程; 全过程监视和测量; 对不符合采取纠正措施和预防措施,必要时实施应急预案。 c)体系检查和改进 实施内部审核; 实施管理评审; 识别节能潜力,确定改进措施,提供必要资源。 4.2文件要求 4.2.1总则 用能单位应通过建立适宜的文件,沟通意图、统壹行动,最终实现能源管理体系的有效运行。能源管理体系文件应系统阐述用能单位能源管理体系范围内全部能源利用和管理过程,为评价体系有效性和适宜性提供评价标准和客观证据。 a)体系策划和文件编写应紧密结合,其中: 能源方针、目标。能源方针、目标是用能单位所追求的方向和目的。能源方针应表明用能单

钢铁企业能源管理中心中心建设实施方案

钢铁企业能源管理中心建设实施方案 一、钢铁行业建设能源管理中心的必要性 钢铁行业是国民经济重要基础产业。据统计,2013年我国粗钢产量7.8亿吨,年能源消耗量约 6.1亿吨标煤,约占全国能耗总量的16%。“十一五”以来,国家高度重视钢铁 行业的绿色发展,随着烧结余热回收利用、干熄焦(CDQ)、高炉煤气余压透平发电(TRT)等先进节能技术普及率逐年 提高,钢铁行业节能降耗取得了显著效果。与2005年相比,2013年钢铁行业重点统计企业平均吨钢综合能耗592kgce/t,下降14.7%,烧结、焦化、炼铁工序能耗分别下 降了18.2%、28.4%、10.7%,转炉冶炼工序能耗达到-7kgce/t,实现“负能”炼钢。 但受节能技术装备水平、企业用能管理水平等因素影 响,我国钢铁行业能效水平与先进国家相比仍有一定差距, 特别是利用自动化、信息化技术促进节能减排方面仍有很大 的提升空间。2009年以来,我部率先在钢铁行业年生产规模300万吨以上的大型企业试点建设了91家企业能源管理中心,实际运行结果显示,企业能源利用效率平均提升3%左右。为进一步推动以“两化”深度融合手段推动钢铁行业节 能降耗,我们在总结示范基础上,制定了钢铁企业能源管理

中心建设实施方案,明确行业能源管理中心建设的基础要 求、建设内容、验收标准等事项,旨在指导行业加大企业能 源管理中心建设的广度和深度,在大中型钢铁企业普遍推广 能源管理中心。 二、实施目标 本实施方案计划在2020年前,建设和改造完善钢铁企 业能源管理中心100个左右,实现在年生产规模200万吨及以上的大中型钢铁企业基本普及能源管理中心。 三、基本要求 根据前期能源管理中心试点建设经验,为保证实施效 果,参与本实施方案的企业应满足以下基本要求: (1)主要生产工艺技术及设施应符合国家产业政策。 (2)企业年生产规模200万吨钢及以上,年综合能源 消费量不低于60万吨标准煤。 (3)具备一定的自动化基础条件,或经过适应性改造 能满足企业能源管理中心系统对数据采集的要求。 (4)具备完善的财务监管制度,并确保在能源管理中 心项目实施过程中对资金使用进行有效监管。 四、建设内容与预期功能 (一)建设内容 钢铁企业能源管理中心建设主要包括三个方面:一是能 源管控模式,对传统能源系统管理模式进行优化再造,推动

企业能源管理系统综合解决方案

企业能源管理系统综合解决方案 关键词:实时数据库 pSpace RTBD SCADA软件能源管理系统EMS 力控监控组 态软件力控eForceCon SD 1.引言 1.1.概述 在我国的能源消耗中,工业是我国能源消耗的大户,能源消耗量占全国能源消耗总量的70%左右,而不同类型工业企业的工艺流程,装置情况、产品类型、能源管理水平对能源消耗都会产生不同的影响。建设一个全厂级的集中统一的能源管理系统可以实现对能源数据进行在线采集、计算、分析及处理,从而对能源物料平衡、调度与优化、能源设备运行与管理等方面发挥着重要的作用。 能源管理系统(简称EMS)是企业信息化系统的一个重要组成部分,因此在企业信息化系统的架构中,把能源管理作为MES系统中的一个基本应用构件,作为大型企业自动化和信息化的重要组成部分。 1.2 整体需求分析 企业希望能够采用先进的自动化、信息化技术建立能源管理调度中心,实现从能源数据采集——过程监控——能源介质消耗分析——能耗管理等全过程的自动化、高效化、科学化管理。从而使能源管理、能源生产以及使用的全过程有机结合起来,使之能够运用先进的数据处理与分析技术,进行离线生产分析与管理。其中包括能源生产管理统计报表、平衡分析、实绩管理、预测分析等。实现全厂能源系统的统一调度。优化能源介质平衡、最大限度地高效利用能源,提高环保质量、降低能源消耗,达到节能降耗和提升整体能源管理水平的目的。 2. 设计内容与原则 2.1设计内容 ★自动化系统 能源管控中心网络系统及设备系统; 能源管控中心软硬件平台系统;

能源系统各站点的数据采集系统; 调度及操作人员所需的人机界面系统; 设备冗余,安全监测系统; 历史数据海量存储及分析系统等。 ★辅助系统 能源系统视频安全监控; 能源系统配套报警系统; 能源系统大屏幕显示系统等。 2.2设计原则 ★完善能源信息的采集、存储、管理和利用 ★规范能源系统的自动化系统设计 ★实现对能源系统采用分散控制和集中管理 ★减少能源管理环节,优化能源管理流程,建立客观能源消耗评价体系 ★减少能源系统运行成本,提高劳动生产率 ★加快能源系统的故障和异常处理,提高对全厂性能源事故的反应能力 ★通过优化能源调度和平衡指挥系统,节约能源和改善环境 ★为进一步对能源数据进行挖掘、分析、加工和处理提供条件 3.系统架构 典型能源系统架构包括能源调度管理中心、通讯网络、远程数据采集单元等三级物理结构(如下图示)。

钢铁企业吨钢综合能耗分析管理系统解决方案

钢铁企业吨钢综合能耗分析管理系统解决方案 源中瑞钢铁企业吨钢综合能耗分析管理系统解决方案,是以解决大型钢铁生产企业的高能耗问题为目标,该系统利用源中瑞先进的软件信息技术建立大型钢铁企业发展需要的能源运行管理与分析系统,并在对常用的钢铁企业能耗分析方法进行系统剖析的基础上,将源中瑞智能化的大数据可视化分析技术应用到了钢铁企业能源消耗的建模、构序和预测过程中,为钢铁企业的能耗分析问题提供了一种新型的解决方案。为企业计算出准确吨钢综合能耗。吨钢综合能耗:企业在报告期内平均每生产一吨钢所消耗的能源折合成标准煤量。 大型钢铁企业生产从铁矿石冶炼到加工成各类钢铁产品也是各类能源消耗的过程。能源管理具有全员、全流程。从产品设计、原料采购、生产至销售的所有环节和工序。对钢铁

企业来说,希望在企业实现能源能耗少;同时,满足对钢铁行业节能减排提出了要求,通过各类能源总量和效率指标来约束,达到节能目标。需要能耗分析管理系统找微ruiecjo 钢铁企业的能源管理需要内部降低能源成本,外部满足社会各方面的要求。 能源管理系统是一个集过程监测管理、能源管理、能耗分析、能源优化于一体的物联网系统。它具有对企业能源设备和能源介质监测、分析、统计、事故预警等功能,为能源介质的合理分配提供了科学准确的信息,使得能源的合理分配成为可能,从而实现企业能源的高效利用,为企业的生产经营服务。 钢铁行业能源管理系统应用的关键点: 以能源支出少为目标的平衡度来讲,实现分钟级的实时动

态分析是钢铁行业需要的。能源管理系统的使用帮助钢铁行业实现对能耗数据的分钟级的监测,为能源的优化调度提供参考依据。 传统的能源管理方式仅仅存在于简单的数据统计和报表上,对能耗信息的深层次提取和分析缺乏工具的支撑。而且对于能源的管理和分析仅仅是单一能源介质,并没有从整体上考虑多种能源介质的使用情况,不利于钢铁行业对能源的统筹分配。 源中瑞138.2311.8291能耗监测系统,对钢铁企业能源管理通过报表及数据对节能措施进行改善,能耗在线监测软件利用数学模型、数据库功能,提供详尽的图形分析,可以以时间为横轴,按年度、月份、时段,进行对比分析建筑能耗总量指标、单位面积能耗指标、人均能耗指标、吨钢综合能耗等,能耗与营业指标相结合等。钢铁行业能源管理系统的投入,帮助钢铁行业解决能源管控的三大痛点,使能源统筹管理的效率优。 本系统可广泛应用于粮油食品饮料加工、能源、冶金、化工、轻工、园区公共建筑等行业。 源中瑞科技——能源能耗在线管理分析系统解决方案提供商。

企业能源管理系统(EMS)解决方案系统架构

企业能源管理系统(EMS)解决方案系统架构一 能源管理系统(Energy management system,简称EMS)是以帮助工业生产企业在扩大生产的同时,通过能源计划、监控、统计、消费分析、重点能耗设备管理和能源计量设备管理等多种手段,合理计划和利用能源,降低单位产品能源消耗,提高经济效益为目的信息化管控系统。 罗克韦尔自动化公司的电力及能源管理系统(PEMS); 电力管理和控制系统(PMCS);(PMCS)电力监控系统; 在淘汰落后产能的过程中,先进节能的工业自动化技术和设备成为了企业的首选。节能减排的自动化技术除了高能效电机、变频器、过程自动化系统和能源管理系统之外,还有面向冶金、有色、电力、化工、建材、造纸六大“三高”行业治理的成套专用优化系统和专用控制装置,比如特种执行器和特种检测技术,除尘、脱硫优化控制技术,固体废物焚烧的最优控制技术,废液的检测、分离和控制技术,节能、降耗的卡边控制技术,最优燃烧控制技术,最优调速控制技术,热能转换和传递优化技术等等,这些技术也是推进我国高端工业自动化产业化的重要方面。 节能减排在我国的推进离不开先进的自动化技术、产业结构调整、企业管理水平的提升。节约能源已经作为我国建立节约型社会的基本国策,对于“十一五”规划中单位GDP能耗节能减排20%的任务,企业不应该把它仅仅作为约束性指标,而是应该把节能减排融入到长远发展的战略中去,这对企业的发展无疑具有巨大的促进作用。这也是产业结构优化调整到一定程度,企业管理水平也提升到一定水平,共同作用的结果。当三者有机结合,节能减排也就会大行其道了。 随着我国计算机信息技术的高速发展、计算机软件应用技术的不断普及、企业信息化建设经验的不断积累和计算机信息管理系统应用水平的提高,众多企业

能源管理系统成功案例

国内企业能源管理系统节能成果 随着国家节能减排工作的大力开展,国务院已将节能定位“十二五”重要工作,节能已经作为我国新的经济增长点。部分企业响应国家号召,通过国家财政补贴和奖励手段积极实施设备节能改造。但大部分企业落实节能改造速度慢,改造项目滞后,系统性节能改造不足,企业任然停留在设备项目改造,对能源管理系统节能认识薄弱。2009年能源管理体系和能源管理中心建设首先在高能耗高成本的钢铁行业进行试点工作。邯钢作为同时接受能源管理体系和能源管理中心建设的企业经过两年的摸索已经呈现出显著地成效。 当前,我国钢铁产业正处在高产能、高成本、低利润的困难时期,钢铁企业面临着前所未有的生存、发展和竞争压力,主要表现在:整个行业产能居高不下,产能过剩;原燃料成本不断上升,高位运行;吨钢利润不断下降,一度低到吨钢利润仅为1.68元。 当前绝大多数钢铁企业都不是满产运行,能耗成本高,利润低,钢铁企业面临的最关键、最核心、最迫切的工作就是要搞好系统节能,积极跟进节能新技术,加强节能管理,提高企业竞争力。在内部成本上升、外部市场疲软的双重压力下,河北钢铁集团邯钢紧紧围绕“内涵挖潜、降本增效”的主线,推行系统节能减排,使得邯钢综合能耗与主要工序能耗显着降低,并促进了企业管理方式由粗放向精细化转变,形成了邯钢特色。 一是成立能源中心,该中心是集生产管控、物流管控、能源管控三调合一的管控中心,实现了物流、能源流及信息流的三流合一。 二是对多种能源介质实施统一管理和优化调度。能源中心实现对电、蒸汽、压缩空气、燃风、燃气和水等有关能源介质的实时数据采集和监控,进而完成

能源的优化调度和管理,深度挖掘系统节能潜力。 三是重视二次能源的回收利用。从副产煤气、余热余能、水资源循环、发供电系统运行方式优化等方面着手,在焦化、烧结、炼铁、炼钢、轧钢等各个工序及辅助系统,全方位开展二次能源综合利用。 四是以能源平衡为中心的生产检修组织模式,替代以前的以生产平衡为中心的组织模式。以前的以设备为中心的检修模式目的是确保生产,以能源为中心的检修模式把能源的利用和平衡作为检修的标准,有多少能源保多少生产,在不影响生产的前提下,减少了能源放散。 邯钢能源管理中心(管控中心)于2010年底建成投运,全面开展系统节能、整体挖潜,实施一年多以来,取得了显着的成效,主要表现吨钢综合能耗与主要工序能耗显着降低、经济效益显着提高、管理方式由粗放型转向精细化转变等三方面。 推行系统节能,最直接的成效表现为提高了企业的能效水平,减少了能源消耗。吨钢综合能耗的不断降低,不仅体现了各工序的消耗水平不断降低,还体现了工序间高效对接水平及由此产生的放大效应。 总体来看,采取系统节能以后,2011年邯钢吨钢综合能耗达到584kgce(2011年,我国钢铁行业吨钢综合能耗为601.72kgce),利用余热发电量达到30.1亿kWh,自发电比例达到60%;高炉煤气、焦炉煤气、氧气实现“零”放散;转炉煤气整体回收水平达到了130m3/t以上;工业废水实现零排放,均处于行业领先地位。 2011年公司“吨钢降本增效355元”的目标,实现了全厂均衡吨钢综合能耗下降到584千克标准煤,年节能总量达到5.37万吨标准煤,显着降低了能耗

钢铁企业能源系统分析

钢铁企业能源系统分析 能源系统主要实现动力、水道、环保、电力四个子系统的过程信号的采集、处理与存储,可进行运行趋势分析、设备运行状态监视、报警、归档和其他相关处理,可通过信息管理系统对能源系统中的主要设备进行运行参数设定、控制量下发及远程操作,并为企业的决策支持提供最基础的数据依据。本章从典型钢铁联合企业的能源管理工艺流程入手,分析钢铁企业能源系统所普遍存在的相关问题。 2.1能源管理工艺 钢铁制造过程生产工序多,涉及多种能源介质,各种能源介质交互并存,分布在企业各工艺区,给能源管理带来一定的困难,下面从典型钢铁企业能源分布及能源管理方面进行介绍。 2.1.1能源分布状况 钢铁生产过程是将铁矿石、焦炭、生石灰、水等众多原料通过烧结、高炉、转炉、扎钢等一系列工序后,加工成成品钢材,其主要生产工艺流程图如图2一1所示。 下面对各主要工序及其能源分布情况进行介绍。 (l)烧结工序 在烧结过程中,铁矿石被压碎碾成标准化的颗粒,与焦粉、石灰石、水等各种物料按照一定比例进行混合,在烧结台车上经过煤气点火进行高温烧结,各种原料融合或粘合在一起形成烧结矿。烧结矿随后被压碎、筛分,并按一层焦炭、一层矿石的交替方式,被加入高炉中。烧结过程中,主要消耗的能源包括不同形式的混合煤气与水。 (2)焦炉炼焦工序 焦炭是煤在焦炉中通过干馏(即将不需要的成分气化掉)得到的可燃物质。焦炭几乎是纯碳,

其结构呈多孔状,且抗碾性能很强。焦炭在高炉中燃烧,提供了熔化铁矿石所需的热量和气体。在焦炉炼焦的过程中,消耗的主要能源包括煤气与氧气等,炼焦过程也会产生重要的副产品焦炉煤气。 (3)高炉炼铁工序 在高炉中,固态的矿石和焦炭由顶部布入高炉,而高炉底部送来的热气(1200℃)致使几乎100%含炭量的焦炭开始燃烧,产生碳的氧化物,通过除氧过程减少氧化铁,从而分离出铁。由燃烧产生的热量将铁和脉石(矿石中矿物的集合)熔化成液体。脉石由于比较轻,会漂浮至铁水表面,形成“生铁”。炉渣是熔融脉石产生的残渣,可用于其他工业用途,比如用于铺设道路或生产水泥。在高炉炼铁生产过程中,焦炭、氧、氮、氢气和煤气等是主要消耗能源,同时,高炉炼铁自身也会产生副产品,主要是高炉煤气。 (4)转炉炼钢工序 在吹氧转炉中,生铁转换成钢铁,熔化的生铁会被倒在一层铁屑上,碳和残渣等不需要的物质都会通过注入纯净的氧气燃烧掉,从而生产出粗钢(之所以称为粗钢,是因为它还必须经过进一步的精炼),同时残渣或者炉渣也会被撇去。在转炉炼钢过程中,主要消耗的能源为氧气,同时该过程也会产生大量的副产品转炉煤气。 (5)连续铸造工序 钢水被不断地倒入没有底部的铸模中。当铸模被拉动时,钢铁就开始与铸模的水冷内壁接触,并开始凝固。然后,铸造好的金属由一连串的辊筒引导被向下拉,同时持续得到冷却。当钢水到达辊筒的末端时,钢铁已完全凝固,并立刻被切成所需的长度。在连铸过程中,水是最主要的消耗能源,且这一过程几乎没有副产能源。 (6)轧钢工序 轧钢工序将钢坯料转变为板材、棒材、型材等最终成品。钢坯首先在加热炉中被再加热,使其具有更好的延展性,促进拔出和成形,紧接着被加热到指定温度的钢坯通过台架的各式轧辊它其逐渐地变薄,依据轧辊的类型和轧制线的长度的不同而轧制成不同类型的成品。轧钢的过程主要是物理变化过程,其消耗能源主要为加热炉所消耗的电力或煤气,以及轧机所消耗的电力。通过上述分析可知,钢铁企业能源介质主要包括煤气、电力、水、氧氢氮气、水蒸气等,它们均分布在各钢铁工序内,并为整个生产过程提供了必要的能源需求与支持。以下为各能源介质的产生途径与主要作用。 (l)煤气 煤气是钢铁企业优质的二次能源,主要包括炼焦过程所副产的焦炉煤气、炼铁过程所副产的

工业企业能源管理信息系统(EMIS系统)十问(精)

工业企业能源管理信息系统 (EMIS 系统十问 一、什么是 EMIS 系统? 二、什么是能源管理体系? 三、 EMIS 系统包括哪些内容? 四、企业为什么需要 EMIS 系统? 五、 EMIS 系统的目标是什么? 六、 EMIS 系统如何实现节能? 七、实施 EMIS 系统需要具备哪些条件? 八、 EMIS 系统是如何实施的? 九、 EMIS 系统如何与企业其它信息化系统交互? 十、类似 EMIS 系统的产品有哪些? 一、什么是 EMIS 系统? 工业企业能源管理信息系统 (Energy Management Information System , 简称: EMIS 系统是以能源管理体系理论为指导,以工业企业实际能源(含动力运行现状为基础,充分利用企业自动化及网络条件,重点关注企业能源管理业务,实现能源制度规范化管理、能源数据科学统计、能源运行监测与分析的综合能源管理信息系统。 我们可以理解 EMIS 系统是: 能源业务管理系统 :指标管理、能源设备管理、计量器具管理等; 能耗统计分析系统 :能源模型、能耗统计、平衡分析等;

动力运行管理系统 :运行监测、班组交接、点巡检、运行报表等; 供能质量管理系统 :质量采集、质量统计、质量考核、质量分析等; 企业能源办公系统 :文件管理、通知管理、短信管理、报警管理等; 以上这些系统的集合体,或者说是对于企业能源管理的整体信息化解决方案。 EMIS 系统的设计原则是“ 围绕能源、关注管理、全面提升、持续改进” 。 二、什么是能源管理体系? 能源管理体系概念的产生源自于人们对能源问题的关注。世界经济的发展,在不同程度上给各个国家带来了能源制约的问题,发展需求与能源制约的矛盾唤醒和强化了人们的能源危机意识。而且人们意识到单纯开发节能技术和装备仅仅是节能工作的一个方面 , 于是开始关注工业节能、建筑节能等系统节能问题,研究采用低成本、无成本的方法, 用系统的管理手段降低能源消耗、提高能源利用效率。目前,我国自 2009年 11月 1日正式颁布与实施了国家标准《能源管理体系要求》(GB/T23331-2009 ,该标准运用系统管理和全过程的理念,采用国际通行的 PDCA 的模式,将管理和节能技术相融合,指导企业建立能源管理体系,推动节能减排工作的落实。 三、 EMIS 系统包括哪些内容? EMIS 系统的功能基本涵盖了工业企业能源管理的日常工作内容, 我们将其中与某一具体业务相关的功能群称为“功能模块” 。这样对于客户而言,可以根据企业情况分模块分步骤实施,提高 EMIS 系统的实施效率,降低了使用与培训的难度。 1. 基础维护: 1 能源基础管理 :EMIS 系统基础信息的维护与管理; 2 文件管理 :实现能源文件的归类、归档、查询、跟踪等功能; 3 通知管理 :实现 EMIS 系统对用户发布通知信息的功能; 2. 运行监测:

唐山国丰钢铁公司能源管理系统成功案例

唐山国丰钢铁公司能源管理系统成功 案例 唐山国丰钢铁公司能源管理系统成功案例 钢铁企业是消耗能源的大户, 在有的国家要占全国总能耗的15%, 在中国也要占10%左右, 因此如何搞好钢铁工业的能源管理, 以达到节能增效的目的, 是发展钢铁工业的重要任务之一。中国吨钢能耗比世界先进水平高出20—30%, 主要原因是铁钢比高, 高炉余压发电、干熄焦等大型有效的节能环保装置配备率低, 高炉、转炉煤气等余能余热回收利用率低。同时, 更重要的是钢铁工业节能措施, 不能只对单个设

备、单一工艺进行节能, 而应从企业整体出发, 进行全流程综合考虑和系统节能。这样才能以较少的投入, 实现最大的节能效果, 产生较大的经济效益。 钢铁冶金企业能源管理系统( Energy Management System) , 主要对企业内部水、电、汽等公用工程资源进行管理, 它与生产调度系统密切结合, 完成生产与能源的协调管理。合理利用资源, 节约能源, 最大限度地降低生产成本, 最大限度降低对环境的污染。 Citect 软件在国内钢铁企业EMS 领域已经占有绝对市场份额优势, 我们基于软件的EMS solution 走在整个施耐德电气自动化事业部在节能方面的前沿, 和施耐德公司的Mission:Make the most of Energy 是完全吻合的。 唐山国丰钢铁有限公司地处渤海明珠渤海湾经济圈腹地——河北省唐山市丰南区, 境内京哈、京秦铁路穿境而过, 毗邻天津新港、京唐港; 公司成立于1993年, 是一家集烧结、炼铁、炼钢、轧钢为一体、具备年产铁钢材各500 万吨的大型钢铁联合企业。 唐山国丰钢铁公司能源管理系统的建立, 主要是为了促进公司能源计量管理的专业化、精细化, 满足信息化( ERP、能源管控中心) 系统实施的需求, 为公司和各二级单位提供实时及能源产耗及外购外销量, 从而更好的利用资源, 达到节能降耗的目的。 经过几次交流, 我们初步确定了唐山国丰钢厂的EMS 系统主要实现以下功能: 一级采集系统: 能源数据自动采集处理、采集站状态监视、 仪表状态监视、能源管网图、趋势分析、实时信息发布。 二级应用系统: 能源数据统计分析、结算、报表打印、查 询、设备台帐管理、统计信息发布等。 唐山国丰钢铁公司EMS 系统实施的范围包括 厂际与重点工艺量(气) 156套(包括14个子站, 其中厂际仪

企业能源管理系统综合项目解决方案报告书

瓦博能源管理系统平台通过合理的节能策略,配以能耗监控系统可以有效地降低企业公用设施的能耗。对公用设施数据进行分析,建立能耗模型得出企业本身的能耗改进空间;通过对各项数据的综合监管,消除信息孤岛和节能死角,从而帮助企业实现可持续发展。 1. 引言 1.1 概述 在我国的能源消耗中,工业是我国能源消耗的大户,能源消耗量占全国能源消耗总量的70%左右,而不同类型工业企业的工艺流程,装置情况、产品类型、能源管理水平对能源消耗都会产生不同的影响。建设一个全厂级的集中统一的能源管理系统可以实现对能源数据进行在线采集、计算、分析及处理,从而对能源物料平衡、调度与优化、能源设备运行与管理等方面发挥着重要的作用。 能源管理系统(简称EMS)是企业信息化系统的一个重要组成部分,因此在企业信息化系统的架构中,把能源管理作为MES系统中的一个基本应用构件,作为大型企业自动化和信息化的重要组成部分。 1.2 整体需求分析 企业希望能够采用先进的自动化、信息化技术建立能源管理调度中心,实现从能源数据采集——过程监控——能源介质消

耗分析——能耗管理等全过程的自动化、高效化、科学化管理。从而使能源管理、能源生产以及使用的全过程有机结合起来,使之能够运用先进的数据处理与分析技术,进行离线生产分析与管理。其中包括能源生产管理统计报表、平衡分析、实绩管理、预测分析等。实现全厂能源系统的统一调度。优化能源介质平衡、最大限度地高效利用能源,提高环保质量、降低能源消耗,达到节能降耗和提升整体能源管理水平的目的。 2. 设计内容与原则 2.1 设计内容 ★自动化系统 能源管控中心网络系统及设备系统; 能源管控中心软硬件平台系统; 能源系统各站点的数据采集系统; 调度及操作人员所需的人机界面系统; 设备冗余,安全监测系统; 历史数据海量存储及分析系统等。 ★辅助系统

钢铁企业能源管控信息系统技术框架研究 李倩倩

钢铁企业能源管控信息系统技术框架研究李倩倩 发表时间:2018-06-14T09:40:55.893Z 来源:《电力设备》2018年第5期作者:李倩倩 [导读] 摘要:在我国科技不断发展的背景下,目前大型钢铁企业都有自己的能源管控中心,但是很多能源管控系统不能很好的切合企业的生产运营状况和很好的监测能源消耗状况,并且在反馈机制上没有很好地服务,基于此本文提出了钢铁企业能源管控信息系统技术框架的一些研究。 (河钢集团承钢公司能源管控中心河北承德 067002) 摘要:在我国科技不断发展的背景下,目前大型钢铁企业都有自己的能源管控中心,但是很多能源管控系统不能很好的切合企业的生产运营状况和很好的监测能源消耗状况,并且在反馈机制上没有很好地服务,基于此本文提出了钢铁企业能源管控信息系统技术框架的一些研究。 关键词:能源;管控;系统 引言 钢铁工业是国民经济重要的基础产业,能源消耗量约占全国工业总能耗的15%,废水和固体废弃物排放量分别占工业排放总量的14%和17%,是节能减排的重点行业。当前,钢铁行业发展面临严峻挑战和新的发展机遇,传统的粗放型发展模式难以为继,迫切要求企业以节能减排为重点,积极转变发展方式,利用高新技术和信息化技术改造、提升行业技术管理水平,走科技含量高、经济效益好、资源消耗低、环境污染少的新型工业化道路。作为钢铁企业整体信息化的一部分,一方面,能源管控信息系统向企业资源计划系统(ERP)提供能源管理的各种数据;另一方面,对生产过程所需能源进行优化调配和能源消耗的在线实时监控确保了生产用能的稳定供应,同时监控能源设备状况、能源设备集中管理与自动化操作。各钢铁企业应站在可持续发展的战略高度,充分认识建设能源管控信息系统的必要性,努力实现能源集中管控。 1能源管控信息系统 能源管控信息系统是20世纪90年代中期在国际上发展起来的钢铁企业系统节能技术之一,在发达国家得到了广泛应用,而在我国钢铁企业则处于刚刚起步的阶段。能源管控信息系统是钢铁企业实现优化资源配置、合理利用能源、改善环境、实现从单一装备节能向系统优化节能的战略转变的重要措施,也是创建节约型企业、实施清洁生产的必然要求。钢铁企业能源管理中心作为一种典型的能源管控外化形式,借助于能源管控信息系统中完善的数据采集网络获取生产过程的重要参数和相关能源数据,经过处理、分析并结合对生产工艺过程评估,实时提供在线能源系统平衡信息和调整决策方案,确保能源系统平衡调整的科学性、及时性和合理性,保证生产及动力工艺系统的稳定性和经济性,并最终实现提高整体能源利用效率的目的。能源管控信息系统的基本应用功能如图1所示。其中最底层矩形框中功能为基本功能,圆角框中的功能为可选功能。从图中可以看出,作为基础,能源数据采集模块可谓是重中之重。 2能源管控信息系统构架 2.1系统总体构架 钢铁能源管控信息系统主要由主机系统、网络系统、数据采集站系统、能源调度软件系统、基础能源管控信息系统等组成。钢铁能源管控信息系统,从功能层次上分为三个部分即:基础能源管控信息系统、能源监控与调度系统和数据采集系统。基础能源管理层主要实现能源数据管理、统计、分析、预测等功能,包含数据库服务器、应用服务器以及操作站、工程师站、打印机等设备。能源监控与调度层主要是收集底层数据采集层传送的信息,并对采集的数据进行实时显示、统计分析、趋势记录和报警,实现对全厂各种能源介质的生产、输送、消耗流程的实时监控和调度。数据采集系统主要实现现场能源数据的采集,并把采集到的数据上传给能源监控与调度系统。数据采集系统主要由环网和现场的数据采集站组成。 2.2能源数据采集方案 2.2.1网管通信采集方式 根据管控一体化的要求,为保证数据的实时性和可靠性,数据采集系统将采用直接从现场PLC系统通讯采集数据的方案。通讯方式需要采用网关进行能源系统网络与现场生产控制系统网络的有效隔离,因为现场生产控制系统与能源管理监控系统分属于不同的业务流程部门,其责任界面非常清楚。因此必须要将两个系统的软硬件系统严格的隔离开。网关方式可实现数据本地存储和回填功能。当能源系统的网络出现故障后网关可实现数据的本地长时间存储,待通讯恢复后网关自动实现历史数据的回填,即自动将通讯中断时间内的能源数据自动上传给能源系统的实时数据库系统,实现数据库中的历史数据回填,供报表系统和故障后的分析等使用。 2.2.2直接IO采集方式 对于没有基础自动化系统的能源数据,需要增加MOXUnity数据采集装置,将现场仪表的信号接入到数据采集装置中,MOXUnity再通过DNP3.0国际标准通讯规约把数据上送到MOSAIC实时数据库。 2.3能源管控信息系统应用功能 2.2.1能源综合监控系统 能源综合监控系统对钢铁的能源介质和能源设备进行监控,实现对能源介质的发生量与耗用量的数据进行采集、显示和报警等,对重要工艺数据、关键能源设备和重要能耗设备的运行状态进行采集和显示、报警等。对系统异常和事故进行应急处理等。能源综合监控系统通过对能源数据进行分析、模型设计、计算和统计,实现实时能源动态平衡预测,生成预控结果,进行能源介质实时动态平衡分配,达到优化用能、节约用能的目的。基于对能源系统进行调度的方案,对具备条件的站点实行远程操作。 2.3.2基础能源管理系统 础能源管理系统通过对各监控系统的信息集成和数据采集功能的优化改善,提高能源消耗管理评价系统的客观性、公正性和权威性。通过能源管理系统的计划过程、平衡预测、各主要工序的能源生产和消耗情况的监控与分析,建立客观的以数据为依据的能源消耗评价体系。通过对能源基础数据的挖掘分析,以成本中心的模式,向ERP系统提供完整的、真实快捷的能源系统分析数据和核算结果,为公司生产运营、成本分析提供可靠的依据。真实、实时的能源统计分析数据可以自动上报公司决策者,并生成领导查询报表。 2.4系统硬件建设方案 能源管控信息系统服务器主要包括实时数据库服务器、历史数据库服务器、应用服务器和WEB服务器。根据系统功能的不同,考虑到

企业能源信息管理系统v2.0

企业能源信息管理系统ZY1000-CEMS https://www.360docs.net/doc/a01081802.html,/products_detail/&productId=d53088a4-d540-4e60-96b3-7581ab14cffe.html 能源管理系统-企业能源信息管理系统ZY1000-CEMS 企业能源信息管理系统 ZY1000-CEMS 企业能源信息管理系统是我公司自行研制开发针对工业企业能源管理的平台系统,是企业能源管理体系的核心环节。 该系统采用国际先进的采样监测技术、通讯技术和计算机软硬件技术等,以水、电、气、风、油等能源介质为监测对象,并辅助环境以及设备的监测,为企业建立一个管控中心,对其生产用能进行实时采集、计算分析和集中调度管理;解决重点用能企业的能源监测计量、用能控制及设备运行情况等问题,实现对能源的全方位监控和管理,达到供需平衡和节能环保的目的。 应用目标 针对工业企业能源管理的平台系统,通过对企业的生产用能、产量、工序等进行数据采集与分析,解决企业能源监测计量、用能管理与考核、设备经济运行等问题。系统功能及特点 ·支持多种能源实时监测与统计分析; ·采取单品单耗、班组能耗的计算与对标分析等手段,实现企业管理节能; ·建立企业各类能源平衡图,加强能源“跑冒滴漏”核查,实现企业管理节能; ·分析能源消耗的特征,提高能源品质,实现企业技术节能; ·开展设备状态管理与能效评估,生产设备的管理与经济运行分析; ·实现与其它系统的互连互通(如:ERP、EMS)。

能源管理系统-公共机构能效监测管理系统ZY1000-BEMS 公共机构能效监测管理系统 ZY1000-BEMS 公共机构能效监测管理系统是我公司自行研制开发针对“国家机关办公建筑、大型公共建筑群”能耗监测平台系统,是建筑能耗监管体系的核心环节。 本系统的开发完全依据国家住建部关于建筑能耗的相关导则和《公共机构节能条例》,并且融入了我公司在能源管理方面的相关经验与技术,实现了对区域内各建筑能耗的实时采集以及设备的管理;对能耗数据按照分类、分项、人均、单位面积均等相关用能指标进行了能耗的统计和分析;通过WEB的展示方式,实现:能效公示、能效分析、能耗对比、能耗对标、能耗预警等相关功能,为能源审计、节能评估和改造提供科学、准确的数据依据。 应用目标 针对公共机构能耗特点,建立公共机构能效监测管理平台,采集公共机构用能数据,监测计量能源消耗状况,实现能效对标、能效考核、能效分析与节能经济运行等。系统功能及特点 ·能耗一体化管理 ·能耗对标分析 ·多种形式展示能耗数据 ·自动生成统计台帐、报表及年度能源消费数据 ·重点用能设备能效分析与经济运行 ·集成智能化能效评估专家系统,辅助分析

相关文档
最新文档