84双塔双索面斜拉桥索塔施工工法

84双塔双索面斜拉桥索塔施工工法
84双塔双索面斜拉桥索塔施工工法

斜拉桥索塔施工工法

GGG(中企)C4084-2008

田克平阳华国黄天贵

(中交第一公路工程局有限公司中交一公局第三工程有限公司)

1 前言

随着高速公路的迅猛发展,公路等级不断提高,斜拉桥、悬索桥等具有高墩、大跨径特点的桥梁被广泛应用到工程实际,同时也发挥了越来越重要的作用。索塔作为斜拉桥、悬索桥一个十分重要的组成部分,造价高昂、施工周期长,如何科学组织施工,优质高效地完成施工任务,具有十分重要的意义。本工法依托江苏省连盐高速公路灌河特大桥索塔施工工程实例,全面系统地阐述了索塔施工技术和工艺特点。已建成的索塔成品倾斜度、空间尺寸以及外观质量均满足规范要求,处于良好的受控状态,施工进度科学合理。该工法被证明是一项行之有效的施工工法,代表了目前索塔施工的先进水平。

2 工法特点

1 本工法工艺简练,操作性强,施工易于实现。在合理设计模板、支架和爬架系统的基础上,可以实现高度较大的索塔施工。

2 本工法施工结构设计合理,力学模型明确,设计计算量不大,易于被工程技术人员掌握。

3 质量易于控制,通过采用相对基准极坐标法进行测量控制,以及模板支撑体系的优化,结构物实体质量和外观质量优良。

4 本工法投入的大型机械设备相对较少,施工成本较低,循环施工周期较短,具备较高的投入产出比。

3 适用范围

本工法具有施工快捷,结构合理,经济实惠等特点,可以被广泛应用到斜拉桥、悬索桥的索塔施工中,尤其适合于索塔截面比较规则,塔柱高为100~200m的中小型钢筋砼索塔。通过对模板系统以及爬架提升装置的改进和优化,也可以应用到变截面及高度较大的索塔施工中。

4 工艺原理

本工法是索塔施工的一种非常有效的工艺方法。工法原理:在塔柱内预先安装劲性骨架作为钢筋模板安装定位的依托,纵向主钢筋采用机械连接,下塔柱采用钢管支架模板体系、中上塔柱采用内翻外爬附爬架的分节段爬模施工模式,砼采用拖泵泵管输送,在中塔

第1页共13页

柱上设置横向临时撑架,防止塔柱根部产生拉应力,斜拉索与索塔的锚固形式采用钢锚梁锚固体系,直接传递给索塔,横梁采用钢管落地支架支撑体系,通过合理布设塔吊、电梯、泵管、水电等设施以及进行预埋件的埋设,并运用塔吊以及吊车进行施工材料的垂直运输的一种高效的索塔施工工艺。

根据索塔形式、高度以及所采用的施工工艺、方法、设备性能和具备的施工能力,索塔分节长度不尽相同,一般分节长度为4.0~5.0m。

5 施工工艺流程及操作要点

5.1 工艺流程

1 塔柱施工工艺流程图5.1-1。

图5.1-1 塔柱施工工艺流程图

2 塔柱节段循环施工工艺流程图5.1-2。 图5.1-2 塔柱节段循环施工工艺流程图

循环施工节段

3 横梁施工工艺流程图5.1-3。

图5.1-3 横梁施工工艺流程图

5.2 操作要点

5.2.1 钢筋工程

为加快进度,降低高空作业风险,塔柱内竖向主筋宜采用镦粗直螺纹套筒或挤压套筒等机械连接,其余钢筋采用焊接或绑扎连接。

半成品的钢筋按型号、规格、用途等进行编号挂牌,分别堆放,由运输车运至施工现场。主筋连接后,箍筋由下而上焊接或绑扎,绑扎高度以每次砼浇筑高度为准。

5.2.2 劲性骨架

为了便于钢筋空间定位并固定模板,索塔塔壁内部一般设置劲性骨架。劲性骨架应单独进行结构设计。一般采用∟100×100及∟80×80角钢焊接拼装成桁架,在地面上单片制作、塔上整体拼装焊接定位而成。劲性骨架制作安装的总体布局是:在条件允许情况下,尽量在地面将工作做好,减少塔上工作量。单块骨架的高度同混凝土分节高度,框架形式按结构设计要求确定。

5.2.3 砼工程

索塔高度一般较大,砼标号较高,砼宜采用泵送方式输送,通过采用多台输送泵接力的方式,可以把砼输送到理想的高度。每个索塔下方设置一台固定拖泵,通过泵管将砼直接泵送至作业面。

砼应具有良好的工作性和可泵性。混凝土浇筑从低处开始逐层扩展升高,并保持水平分层。振捣时使用插入式振动器,其分层厚度约为30cm。振捣密实标准:砼停止下沉,无显著气泡上升,表面平坦,呈现薄层水泥浆时为止。

下塔柱塔基部分设计一般为实心段,应按大体积砼施工考虑。内部设置降温水管,砼浇筑后,通水冷却,降低内部温度,同时对模板外部进行保温,防止砼产生温度应力裂缝。

5.2.4 模板支撑体系

为确保索塔外观质量,外模一般采用大面积定型钢模板,内模采用组合钢模板或木模板。

1 模板的基本结构

塔柱模板由外模板和内模板组成。外模板均为大面积钢模板,内模板以大模板为主,部分采用组合钢模和木模。外模、内模、角模或平模板,其结构形式基本相同,主要由横肋、竖肋、劲板和面板组成。

2 下塔柱模板体系

下塔柱一般设计成变截面形式,并有一定的斜率。为加快工期,充分利用底部承台工作面,下塔柱模板一般采用翻转式。根据下塔柱的高度,每个塔柱应加工2~3节定型钢模板,高度为3~4m,施工中根据实际进行循环利用,并进行适当的改装。模板外侧搭设钢管脚手架,作为操作平台及模板临时支承点,并设置对拉螺杆。

3 中、上塔柱模板系统

中、上塔柱采用内滑外翻的模板体系。每肢塔柱加工3节模板,高度为2~2.5m。为保证混凝土分段部位接缝严密,应保留一节基准模板不拆,施工时始终固定顶部一节作为上一节段施工的模具和支撑平台,而将下部两节拆除后上翻。提升模板设备采用倒链和塔吊。

5.2.5 爬升系统

爬升系统主要包括塔身预埋件、爬架、附墙架、工作平台以及塔吊和倒链提升设备等。功能集爬架爬升、模板支立、钢筋绑扎、混凝土浇筑、预应力张拉、孔道压浆以及施工平台于一体,工作平台整体随塔柱施工逐步上升,为施工人员提供一个封闭的操作空间,安全、施工便捷。如图5.2.5-1 图5.2.5-2。

图5.2.5-1 爬模系统示意图(单位:cm)

爬模循环施工操作流程图5.2.5-2。

模板拆除

塔吊提升模板

模板安装

塔吊提升爬架并安装

混凝土浇筑

图5.2.5-2 爬模循环施工操作流程图

5.2.6 横向临时撑架系统

根据索塔形式的不同,为防止索塔根部产生拉应力,一般设计要求采用水平临时撑架,以抵抗塔柱向内倾所产生的水平力。

水平撑架设置:在规定高度,于塔柱内侧埋设预埋件并焊接牛腿,用钢管作支撑,采用油压千斤顶施加对撑力。

5.2.7 索塔施工测量

索塔施工测量的重点是确保结构的位置正确,塔柱各部分满足倾斜度、垂直度、几何尺寸和空间位置的要求,斜拉索锚管上、下口位置及其空间倾角准确。

由于精度要求高,测量作业场地狭小,平面位置可采用相对基准极坐标法定位或相对时间法原理定位,尽量消除索塔因日照、温度变化的影响;高程采用差分三角高程法定位,以确保定位精度。

5.2.8 拉索导管定位

拉索导管定位是上塔柱施工的关键,安装精度的高低直接影响到斜拉索的安装及使用寿命。

1 拉索导管定位精度要求

锚固点空间位置三维允许偏差±10mm;导管轴线与斜拉索轴线的相对允许偏差±5mm。

2 拉索导管空间定位示意图5.2.8。

图5.2.8 拉索导管空间定位示意图

5.2.9 钢锚梁安装

1 搭设平台,平台上铺设钢板或组合钢模。由于安装空间狭小,塔壁内模一般采用钢管临时支撑。

2 平台搭设完毕,焊接钢锚梁水平方向的限位钢板,埋设锚固螺栓,浇筑小石子混凝土垫层,再安装支承钢板。

3 起吊钢锚梁,使钢锚梁尽量水平,将钢锚梁临时放置在平台上,下垫枕板。安装另一块钢锚梁,精确调整钢锚梁位置,用高强螺栓将钢锚梁连接,连接后对钢锚梁的位置进行复测。

5.2.10 横梁施工

横梁与相应的塔柱节段同步施工,采用落地钢管支架施工的方法。根据结构设计计算,确定支撑及模板系统,一般由钢管、贝雷桁片和型钢等组成,具体视现场材料情况而定,横梁钢筋、砼施工与塔柱基本相同,下面重点介绍预应力体系部分。

1 预应力筋张拉规定

张拉机具采用满足最大张拉吨位的千斤顶,张拉前,对高压油泵、液压千斤顶和压力表进行配套标定校验,确定千斤顶与油泵压力表的回归曲线。

砼强度达到设计要求时,进行预应力筋的张拉。先对称张拉腹板束,再张拉顶、底板束。预应力钢束均为两端同时张拉,张拉以拉力与引伸量进行双控。钢束的伸长值误差控制在±6%以内。

张拉程序为:0→初应力→分级张拉至σcon(持荷2min锚固)。

2 压浆及封锚

张拉后,采用砂轮切割机切割多余钢绞线,压浆采用活塞式真空压浆泵,压力控制在0.5-0.7MPa,压浆后,立模浇筑封锚砼。

5.2.11 防雷装置及其它附属设施安装

索塔上的附属设施主要包括塔顶防雷装置、航空障碍灯、塔内爬梯、横梁上的栏杆、照明设施等。塔内爬梯在索塔封顶之前安装,防雷装置和航空障碍灯在塔冠施工完成后安装,横梁上的栏杆要在0号梁段支架拆除后方可进行,照明设施在全桥主体工程基本结束后安装。

5.2.12 塔吊、电梯、泵管、水电等临时设施的布设以及预埋件埋设

索塔施工主要临时设施把包括塔吊、施工电梯、拖泵及泵管、供电及供水五个部分。

1 塔吊

根据施工现场范围以及施工材料的重量,合理选用塔吊型号,一般选用80t·m型号以上,布置在承台两边塔柱旁靠河侧,使得整个索塔均处于吊装范围内,两台塔吊安装高度应错开布置。为确保安全稳固,沿塔柱高度方向每20m设置附臂。

2 施工电梯

为了保证工期,便于搭载人员上下通行,一般每个塔肢均应设置一台载货载人施工电梯,安装位置为承台两边塔柱外靠岸侧。

3 混凝土垂直输送

塔柱混凝土的垂直输送,宜选用80C型以上的拖泵,一次泵送至塔柱模板内。泵管采用“Ω”型卡固定在专用架上,并间隔用钢丝绳吊挂于塔柱的原模板对拉螺栓上。

4 水

一般宜采用两台高压多级水泵,分别布塔柱迎河面左侧,设置水箱用于砼养生及其他。

5 供电系统

承台顶面上设置低压配电箱,分别输送给塔吊、施工电梯、高压水泵的电机专用配电箱,动力电缆随塔柱垂直布置,施工作业面上设置小型配电箱。

6 预埋件

索塔上的预埋件种类较多,主要包括为满足设计和施工要求的两部分。对各种预埋件应统一绘图,并汇总成册,便于指导施工。

6 材料与设备

本工法仅列出了一个索塔所需要的机械设备和主要材料需求量,实际施工时,可根据具体情况适当调整。钢筋加工和砼拌合设备可以与其他工程施工交叉使用。机械设备及主要施工材料详见表6-1。

由于各索塔之间相距较远,并隔河或跨江,一般每个索塔投入一个队伍,独立组织施工。实际施工时,可酌情增减。下面以一个索塔为单位配置劳动力如表7-1。

7 质量控制

索塔的施工难度较大,质量要求高,施工时应严格要求,精细施工,严把质量关。严格遵循《公路桥涵施工技术规范》(JTJ041-2000)和《公路工程质量检验评定标准》第一册土建工程(JTG F80/1-2004)的相关要求。并从模板、砼和施工工艺等方面进行重点控制。

1 塔柱和横梁的外模板采用大面积钢模,除强度应满足浇注砼的各项要求外,为保证其表面平整度,设计时主要以刚度控制。

2 对模板的拼接缝,力求做到设计合理,加工制作精细,减少或避免漏浆现象发生。

3 尽量减少对拉螺杆数量,以减少塔身砼上的孔洞,并对塔身施工完成后留下的孔洞及时封堵修补。采用与塔身相同标号的水泥浆进行,力求做到与塔身砼颜色一致,并安排专人负责。

4 对塔身砼配合比进行优化选择,砼搅拌均匀,保证其工作性能,确保塔身砼整体上

色泽一致。

5 对模板的准确安装定位,砼的搅拌、泵送入模、振捣、养护等工艺过程采取有效措施,加强控制。对现场管理人员和操作工人进行质量意识教育,做好每个关键工序的技术交底。通过保证各个工艺环节的工作质量来确保工程的质量。

6 塔身的施工放样测量,除采取正确合理的测量方法外,严格执行两人复测制度,复核必须采用不同的方法进行,以确保塔身放样准确,防止因测量误差过大而导致塔身砼线条不平顺。

7 索塔塔柱及横梁施工的实测项目见表7-1 7-2。

8 安全措施

1 进行安全施工应知应会教育。

2 成立以项目经理为首的安全生产领导小组。

3 建立健全生产组织机构,设置专职或兼职安全员。

4 制定安全管理制度,定期进行安全检查,严格实行安全生产岗位责任制,奖惩分明。

5 制定主要分项工程的安全操作规程,作业前认真进行安全技术交底。

6 进行常规安全操作教育。

7 建立健全安全检查制度,定期召开安全会议,及时采取措施消除事故隐患。

9 环保措施

环境保护是我国的一项基本国策。保护施工环境是保证施工人员身体健康和消除外部干扰保证施工顺利进行的需要。

1 成立以项目经理为组长的文明施工领导小组。设置施工环境巡查员,由项目综合办公室负责,对施工造成的环境影响情况及时掌握,及时处理。

2 环境保护领导小组

组长:项目经理

副组长:现场总负责人

成员:工区负责人、部门负责人

3 配置足够的资源,使空气质量、水质、噪音、废物处理、化学物品、人文自然,等在施工中符合相关法规和合同要求;

4 按月进行环境检测及审核,并做好记录和备案;

5 对施工管理人员和施工人员进行环境管理培训,使其清楚了解当地环境法律和合同条款中规定的相关要求,参加培训人员的记录和培训内容要备案在综合办公室,以便相关部门检查和审核。

10 资源节约

使用本工法施工,可以在以下方面节约资源:

1 用粉煤灰代替水泥,大大节约了水泥用量。

2 采用长距离泵送砼等工艺,减少了机械设备的使用量,从而节约了燃油的消耗。11 效益分析

索塔施工时,在施工方法和施工工艺上采取了一些新的措施,项目部充分采用承台围堰钢管等周转材料用于支撑结构,进行了高标号砼配合比优化设计,掺加了粉煤灰,减少了水泥用量,采用了长距离泵送砼工艺等“四新技术”,节省了大量的机械设备,大大降低了工程成本,累计节约工程成本费用合计200多万元,并且项目部连续三季度获优质优价奖励,取得了良好的经济效益。同时,工程质量实现了工程合格率和优良率的目标,工程进度创造了屡创新高,提前完成目标计划,得到了业主、监理的认可和信任,使企业的信誉度得以增强和提高,取得了良好的社会效益。

12 应用实例

灌河特大桥是江苏省连云港至盐城高速公路上的一座特大型桥梁,全长 1.819km,全桥宽度为36.6m,主桥为双塔双索面钢—砼组合梁斜拉桥。索塔采用为H形,C50砼,高度119.629m,其中上塔柱高42.0m,中塔柱61.8m,下塔柱15.829m,中下塔柱设置有斜率,塔柱采用空心箱形断面,单箱单室,塔壁厚度渐变,上塔柱内设牛腿,中间设钢锚梁,下塔柱底部设2m实心板。为确保塔柱垂直度与索导管安装精度,与武汉测绘大学联合进行测量监控,塔柱成品验收实测垂直度为1/7200,高于规范1/3000的标准,索导管安装定位,消除了温度及日照的影响,误差在5mm之内,高于图纸要求精度。模板、支架、爬架等临时结构设计新颖,操作便捷。结构物内实外美,受到业主的好评,并荣获2005年度江苏省

高速公路建设项目质量排序“前十”通报表扬。施工进度快,中塔柱平均每天 1.14m,比计划快0.44m,第16 17节段施工周期仅为2天零11小时,创造了平均每天1.83m的最高纪录,南岸塔柱比预定计划提前约半个月,为下一步钢梁安装奠定了坚实的基础。

引桥横梁专项施工方案

引桥横梁施工专项方案 一、工程概况 本码头工程由码头平台和3段引桥组成,其中码头平台长度153m,宽度为22m。码头上部结构由横梁、前边梁、后边梁、轨道梁、纵梁、面板、钢系缆平台和钢靠船构件等组成。引桥分三段布置,均为高桩排架结构,排架基础分别采用3根Φ1000预制型芯柱嵌岩钢管桩或Φ1000灌注桩组成。引桥上部结构由现浇钢筋砼横梁、预应力砼空心板、现浇钢筋砼实心板及面层组成。其中引桥横梁按设计要求分为两次浇筑,砼强度等级为C30。 二、主要编制依据 1、《水运工程质量检验标准》JTT257-2008; 2、《水运工程混凝土施工规范》JTS202-2011; 3、《水运工程混凝土结构设计规范》JTS151-2011; 4、《水运工程混凝土质量控制标准》JTS202-2-2011; 5、《公路桥涵施工技术规范》JTJGB01-2003; 6、《水运工程测量规范》JTS131-2012; 7、《钢结构设计规范》GB50017-2003。 三、主要施工工艺 (一)施工顺序 引桥横梁总体施工顺序:按设计要求分为两次浇筑,待第一次现浇强度达到设计强度80%后,方可现浇异形面板及安装空心板,然后进行第二次浇筑。

(二)施工工艺 (三)施工方法 引桥横梁按设计要求分为上、下部分横梁,首先进行下横梁施工,梁施工首先施工横梁,待下横梁现浇强度达到设计强度80%后,方可现浇异形面板及安装空心板,然后进行上横梁砼浇筑施工。 1.测量定位 下横梁施工前,测量人员必须测量定位,在立柱顶端放出横梁中心点坐标,并用红色油漆标记,作出明显标志,利用中心点引出横梁轴线,通过该轴线确定横梁位置。上横梁、轨道梁、纵梁、前边梁及后边梁施工前,可以利用已施工下横梁进行测量定位,在下

主塔施工方案

第一节主塔施工专项方案 一、编制说明与依据 索塔是斜拉桥的一个重要组成部分,同时又是斜拉桥的主要受力构件,除自重引起的轴力外,还有水平荷载以及通过拉索传递给塔的竖向荷载(活载)和水平荷载。索塔施工在斜拉桥施工中有着很重要的地位,从造价方面看,索塔占总造价的20%左右;从建设工期看,索塔施工约占总工期的1/3。 鉴于索塔施工的重要性,项目技术组认真广泛收集有关资料、认真领会设计意图、熟悉暂有的合同条款和技术规范的基础上,依据前期《实施性施工组织设计》以及《主塔初步施工方案》评审与研讨时专家提出的意见与建议开展编制工作。本方案主要参照以下几项资料进行编制: 1、《温州市永嘉县瓯北大桥工程桥梁工程施工图》; 2、《公路桥涵施工技术规范(JTG/T F50-2011)》; 3、《城市桥梁工程施工与质量验收规范(CJJ2-2008)》; 4、《温州市永嘉县瓯北大桥实施性施工组织设计》; 5、《斜拉桥建造技术(人民交通出版社)》; 6、《新编桥梁施工工程师手册(人民交通出版社)》; 7、《路桥施工计算手册(人民交通出版社)》; 8、《大体积混凝土施工规范实施指南(中国建筑工业出版社)》; 9、《大体积混凝土温度应力与温度控制(中国水利水电出版社)》; 10、《桥梁施工常用数据手册(人民交通出版社)》; 11、《现代大型斜拉桥塔梁施工测控技术(科学出版社)》。 二、工程概况 2.1概述 瓯北大桥主桥为独塔双索面叠合梁斜拉桥,其跨径组成为150m+125m=275m。索塔为钢筋砼钻石型索塔,包括上塔柱、下塔柱和下横梁,砼强度等级为C55。塔座与首节塔柱一起浇注,塔座采用C55聚丙烯纤维混凝土。主塔构造如图2.1.1所示。

矮塔斜拉桥的设计与施工

文章编号:1671-2579(2004)01-0014-03 矮塔斜拉桥的设计与施工 ———日本新东明高速公路上的京川桥 金增洪 编译 (中交公路规划设计院,北京市 100010) 摘 要:日本新东明高速公路上的京川桥,位于观光和娱乐区,而且处在地震高发区。因此,桥梁既要考虑高抗震特性又要考虑美学特性。该矮塔斜拉桥的悬臂跨度达到96.5m ,已属日本国内此类桥梁中最大者。此悬臂跨径几乎等效于现有PC 斜拉桥的跨径。桥墩由高耸的钢管混凝土结构形成的组合桥墩,高56.5m 。 关键词:预应力混凝土;矮塔斜拉桥;斜拉索;预制;组合桥墩 Ξ 1 引言 矮塔斜拉桥是由法国马秀佛特(Mathivat )教授于1988年建议的,称谓超配量体外索PC 桥(Extradosed prestressing concrete bridge )。这种桥梁是从体外预应力桥发展而来,从应用跨径长度观点来看,矮塔斜拉桥的性态处于PC 箱梁桥和PC 斜拉桥之间。 京川桥跨越日本二级河流,该河为流经日本滨松市和滨北市行政管辖区之间的一条界河。建桥地点是观光和娱乐区域,还是地震高发区。因此,既要考虑桥梁的高抗震特性,也要考虑美学设计。至于矮塔斜拉桥悬臂跨径长度,是日本国内同类桥梁中的最大跨径。这种悬臂跨径相当于现有PC 斜拉桥的跨径(译者注:指日本国内现有斜拉桥的跨径)。京川桥的总体布置见图1所示 。 图1 京川桥总体布置图(单位:cm ) 2 一般概念 京川桥是由三肢桥墩支承的双幅箱梁组成的,而 桥面的长度为268m 。两主跨各长133m ,由44根间距为6m 的斜拉索支承(每一幅桥面在塔的每一侧各 有2×11根=22根斜拉索)。塔的高度为20m ,在顶 上安装索鞍。桥墩总高度为56.5m 。各墩截面:在基底部位尺寸为9.0m ×7.0m ;在与上部结构联结部位的尺寸为5.0m ×7.0m 。桥墩和桥塔都选用钢管混凝土新结构。钢管混凝土组合结构,不仅展示其特有的高延展性和高抗震性能效应,采用螺旋高强钢索箍 14 中  外 公 路 第24卷 第1期 2004年2月 Ξ 收稿日期:2003-03-11

码头平台搭设施工方案

码头平台接桩及搭设 施工方案报审表 监A-01 表A.0.1-1 工程名称:鄂州超凡物流有限公司鄂州长江码头工程编号: 监理机构:武汉四达工程建设监理咨询有限公司 现报上码头平台接桩及搭设施工方案,已经我单位上级技术部门审查批准,请予审查和批准。 附件: 1.《码头平台接桩及搭设施工方案》 承包单位:中交二航局鄂州超凡物流有限公司 鄂州长江码头项目经理部 技术负责人:报审日期: 监理机构审查意见: 并于月日前报来 监理工程师:日期 业主代表:日期 本表由承包人填报,一式三份,经监理审批后,业主、监理、承包人各一份。

码头平台接桩及搭设施工方案 一、概述 鄂州超凡物流有限公司鄂州长江码头工程为高桩梁板式码头,码头平台为277.5m×20m,码头钢管桩总共有180根钢管桩桩,分别为A、B、C、E、G共5排。引桥共有18根钢管桩,其中1#引桥6根,2#引桥12根。 二、接桩施工 根据沉桩的实际情况,如实际岩面高程低于预计高程而导致接桩情况发生,应按如下方法进行接桩。 主要施工工艺流程如下: 选择上桩→搭设平台→焊接导向滑板→设间隙卡→点焊固定→复核焊接→现场探伤检测 1)所有钢管桩接长部位的焊缝不得在同一标高线上,必须错开。 2)根据测量工提供的下部钢管桩标高来选择符合设计标高的上桩长度。上桩的对接环口采用50度无钝边外坡口。坡口切割必须均匀,无锯齿壮,氧化铁应清理干净,无挂棱挂渣现象,必要时应用角磨机进行打磨修复,确保焊缝焊接质量;下桩为平口,平口必须平整打磨干净。坡口形式如下图:

3)搭设平台 为了施工方便和安全生产必须在下桩管口以下1.5米处搭设2米×2米的临时施工平台。平台必须牢固,另设安全带系挂处确保施工人员的安全。 4)焊接导向滑板 为了上桩准确定位需要在下桩管口焊接三个定位导向滑板。三个导向滑板均匀焊接在小于180度管口位置。 5)设间隙卡 水上焊接作业难度较大,为确保焊缝焊接质量,采取在下桩管口均匀设置8个间隙控制卡,卡在下桩平口上(间隙控制卡用φ5㎜×100㎜焊丝,弯曲成U形)。保持所留间隙均匀。这样环口可以确保焊透。 6)点焊固定 调整好上桩即可点焊固定:点焊长度为40㎜~50㎜;对接管口错边小于2㎜;相临两条纵逢错开长度必须大于1/4钢管周长;上下对接钢管必须在同一直线这样确保钢管更好受力。点焊完后用气焊割具枪将U形间隙卡割除掉。 7)复核焊接 经复核无误由专职电焊工进行焊接施工。焊接操作基本要求: A.焊工必须熟悉焊接工艺规程和施工图的各项规定,在焊接作业时严格执行。

江肇西江特大桥矮塔斜拉桥主塔施工方案(索鞍式)

2010年11期(总第71期 )作者简介:罗庆湘(1981-),男,重庆人,工程师,主要从事高速公路建设与管理。 1工程概况 江肇西江特大桥主桥共四个主塔,塔号为29#~32#塔,主塔为独柱式刚劲混凝土结构,截面为八边形,并在顺桥上刻有0.1m ,宽0.7m 的景观饰条。主塔高度为30.5m (含索顶以上4m 装饰段),主塔截面等宽段顺桥向宽5m ,横桥向宽2.5m ;塔底5m 范围,顺桥向厚为5m ,横桥向由2.5m 渐变到3.1m 。 图1主塔一般构造图 本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ,拉索通过预埋钢导管穿过塔柱,在主梁上张拉。斜拉索采用Φs 15.2mm 环氧涂层钢绞线斜拉索,标准强度为1860MPa ,斜拉索规格分别为43-Φs 15.2mm 和55-Φs 15.2mm ,采用钢绞线拉索群锚体系。斜拉索为单索面双排索,布置在主梁的中央分隔代处,全桥共128 根斜拉索。钢绞线外层采用HDPE 护套。减振装置及锚具采用斜拉索专用材料。 2施工方案简介 主塔分六节施工,其中最大施工节段为5.4m ;主塔内设劲性骨架,用于钢筋和索鞍定位;模板施工采用无支架翻模施工,模板采用定型钢模板,均设有阴阳缝,由模板厂加工,现场拼装。考虑到主塔外观,该主塔模板不采用对拉杆在塔身中间穿过来固定模板,而采用桁架式模板翻模施工,塔吊辅助翻模。 3主塔施工流程 图2主塔施工流程 江肇西江特大桥矮塔斜拉桥主塔施工方案 罗庆湘,闫化堂 (广东省长大公路工程有限公司,广东 广州 510000) 摘 要:江肇西江特大桥主塔为独柱式刚劲混凝土结构,截面为八边形;主塔高度为30.5m ,主塔截面等宽段顺 桥向宽5m ,横桥向宽2.5m ;本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ;拉索通过预埋钢导管穿过塔柱;采用C60混凝土。本文介绍了江肇西江特大桥主塔施工方案,重点介绍了劲性骨架设计及施工、索鞍定位以及混凝土防裂等。 关键词:矮塔斜拉;主塔;施工方案中图分类号:U44 文献标识码: B 265

斜拉桥索塔施工工法及其工程实例(优秀工作范文)

斜拉桥索塔施工工法及其工程实例 一、前言 随着高速公路的迅猛发展,公路等级不断提高,斜拉桥、悬索桥等具有高墩、大跨径特点的桥梁被广泛应用到工程实际,同时也发挥了越来越重要的作用.索塔作为斜拉桥、悬索桥一个十分重要的组成部分,造价高昂、施工周期长,如何科学组织施工,优质高效地完成施工任务,具有十分重要的意义.本工法依托江苏省连盐高速公路灌河特大桥索塔施工工程实例,全面系统地阐述了索塔施工技术和工艺特点.已建成的索塔成品倾斜度、空间尺寸以及外观质量均满足规范要求,处于良好的受控状态,施工进度科学合理.该工法被证明是一项行之有效的施工工法,代表了目前索塔施工的先进水平. 二、工法特点 1、本工法工艺简练,操作性强,施工易于实现.在合理设计模板、支架和爬架系统的基础上,可以实现高度较大的索塔施工. 2、本工法施工结构设计合理,力学模型明确,设计计算量不大,易于被工程技术人员掌握. 3、质量易于控制,通过采用相对基准极坐标法进行测量控制,以及模板支撑体系的优化,结构物实体质量和外观质量优良. 4、本工法投入的大型机械设备相对较少,施工成本较低,循环施工周期较短,具备较高的投入产出比. 三、适用范围 本工法具有施工快捷,结构合理,经济实惠等特点,可以被广泛应用到斜拉桥、悬索桥的索塔施工中,尤其适合于索塔截面比较规则,塔柱高为100~200米的中小型钢筋砼索塔.通过对模板系统以及爬架提升装置的改进和优化,也可以应用到变截面及高度较大的索塔施工中. 四、工法原理 本工法是索塔施工的一种非常有效的工艺方法.工法原理:在塔柱内预先安装劲性骨架作为钢筋模板安装定位的依托,纵向主钢筋采用机械连接,下塔柱采用钢管支架模板体系、中上塔柱采用内翻外爬附爬架的分节段爬模施工模式,砼采用拖泵泵管输送,在中塔柱上设置横向临时撑架,防止塔柱根部产生拉应力,斜拉索与索塔的锚固形式采用钢锚梁锚固体系,直接传递给索塔,横梁采用钢管落地支架支撑体系,通过合理布设塔吊、电梯、泵管、水电等设施以及进行预埋件的埋设,并运用塔吊以及吊车进行施工材料的垂直运输的一种高效的索塔施工工艺. 根据索塔形式、高度以及所采用的施工工艺、方法、设备性能和具备的施工能力,索塔分节长度不尽相同,一般分节长度为4.0~5.0米. 五、施工工艺流程及操作特点 (一)索塔施工工艺流程

矮塔斜拉桥挂索施工总结

矮塔斜拉桥挂索施工总结 1 工程概况 2.1、塔梁结构:该矮塔斜拉桥为(75+2×125+75)米三塔单索面预应力混凝土部分斜拉桥。采用塔梁固结、中间主塔墩梁固结、另两个主塔墩梁分离的体系,主塔结构高24.5m,主塔采用钢筋混凝土独柱实心矩形截面,顺桥长 3.0m,横桥向宽2m,布置在中央隔离带上,并与主梁固接。此处桥梁内侧波形梁护栏改为0.5米宽的防撞护墙,以便放置索塔。塔身上部设有鞍座,以便拉索通过。每根斜拉索对应一个鞍座,斜拉索横桥面呈两排布置,鞍座亦设两排,鞍座采用分丝管结构形式,预埋于混凝土塔内,斜拉索逐根穿过分丝管。 2.2、斜拉索布置: 斜拉索为单索面,布置在中央隔离带上。每个塔上设有9对18根斜拉索,全桥共108根(两联)。塔上竖向索距为100cm,梁上纵向标准索距为4.0m。拉索采用双排索,拉索在塔上通过鞍座,两侧对称锚于箱梁体的横梁上。斜拉索采用OVM250-31、34、37可换索式斜拉索体系,锚具内为灌注环氧砂浆的拉索群锚,索体为带PE护套的低松驰环氧钢绞线,强度等级为1860Mpa,每根拉索由31、34或37根Фj15.24mm单根环氧钢绞线组成。索体采用三层防护措施,由内向外依次为环氧树脂和油脂层;钢绞线外热挤PE层和索外面套的HDPE整圆式套管。采用先单根挂索张拉,再整体张拉的施工工艺。

2.3、斜拉索构造体系 斜拉索由锚固段+过渡段+自由段+抗滑锚固段+塔柱内索鞍段+抗滑锚固段+自由段+过渡段+锚固段构成。 2.3.1锚固段:主要由锚板、夹片、锚固螺母、锚筒、密封装置、防松装置及保护罩组成。在锚固段锚具中,夹片、锚板、锚筒、锚固螺母是加工上主要控制件,也是结构上的主要受力件;密封装置主要起防止漏浆、防水的密封作用。它由隔板、o型密封圈、内外密封板、密封圈构成; 防松装置主要由锁紧螺母和压板构成,在钢绞线单根张拉结束后安装,对夹片起防松、挡护作用;保护罩安装在锚具后端,并内注无粘结筋专用防护油脂,主要对外露钢绞线起防护作用。 2.3.2过渡段:主要由预埋管及垫板、减振器组成。预埋管及垫板在体系中起支承作用,同时垫板正下方最低处设有排水槽,以便施工过程中临时排水;减振器对索体的横向振动起减振作用,从而提高索的整体寿命。

成品码头(预制梁板施工方案)(汇编)

宝钢广东湛江钢铁基地项目码头及其配套工程成品泊位 ——5万吨级码头 构件预制 施工方案 编制人: 审核人: 批准人: 日期: 中交四航局湛江钢铁基地工程项目经理部 编制日期:2013年09月10日

宝钢广东钢铁基地项目码头及其配套工程成品泊位—5万吨级码头 构件预制施工方案 1.1工程概况 宝钢广东钢铁基地项目码头及其配套工程成品泊位—5万吨级码头采用高桩梁板结构,码头宽30m,排架间距9m,基桩采用650*650mm预应力砼方桩,每榀排架布置9根桩。轨道梁下布置2根桩,共布置两对叉桩。码头上部结构为现浇横梁、预制预应力纵梁系、叠合面板。下横梁宽1.6m,高1.35m,上横梁宽0.8m,高2.52m。局部横梁前端为满足橡胶护舷和系船柱的安装,适当加宽。预应力轨道梁宽 1.0m,预应力边、纵梁宽0.6m,高度均为2.0m。预制面板厚0.3m,搁置在预制纵向梁系上,现浇面层厚0.2m。 5万吨级码头后方布置2座引桥。每座引桥长35m,宽12m,为方便车辆转弯,靠近码头处设置14.4m*14.4m喇叭口。引桥采用高桩梁板结构,排架间距5.8m,桩基采用600*600mm预应力砼方桩,靠近岸端3榀采用Φ900mm钻孔灌注桩。上部结构为现浇横梁、叠合面板。下横梁宽1.6m,高1.5m,上横梁宽0.8m,高0.61m。预制面板厚0.4m,搁置在现浇横梁上,现浇面层厚0.2m。 本工程的预制板、梁构件总混凝土方量为3344.32m3,共1095件,所有预制构件都安排在我公司调顺预制场进行预制(平面布置详见附图一)。 预制构件工程量见下表: 1.2执行的规范和标准 按交通部颁布《水运工程质量检验标准》及国家有关规范评定,达到合格等级。本工程的施工执行如下技术规范和标准: (1) 《水运工程混凝土结构设计规范》(JTS151-2011) (2) 《水运工程混凝土施工规范》(JTS202-2011)

(完整版)斜拉桥主塔施工安全、技术专项措施

主塔施工安全技术专项方案 主塔施工是我项目施工中的难点,其涉及到常有的高空作业,作业人员施工过程中必须切实做好安全防护工作,进场前必须经经理部的专业培训,达到要求后方能进场作业。在作业过程中要注重提高本作业项目人员的安全防护意识,切实贯彻落实“安全第一,预防为主,综合治理”的方针。为有效防止和消灭施工作业过程中存在的安全隐患,制订本安全技术方案。 一、编制依据 1、《主塔施工组织设计》、《下塔柱施工作业指导书》、《上塔柱施工作业指导书》。 2、安监(1996)第38号《关于加强施工现场塔式起重机和施工电梯安装、拆卸管理的规定》。 3、ZBJ80012-89《关于塔式起重机操作使用规程》。 5、JGJ80-91《建筑施工高处作业安全技术规范》。 6、各项安全管理规定。 二、编制目的和适用范围 1、为了保障驻mbini大桥施工的顺利进行,确保机械的安全使用和从业人员在施工过程中的安全与健康,最大限度地控制危险源,尽可能地减少事故造成的人员伤亡和财产损失,认真落实“安全第一、预防为主”的安全生产方针,特制定本施工安全技术方案。 2、本方案是作为主塔安全施工作业的行动指南,以安全管理程序化为手段,注重高空作业和机械使用方面的过程控制,避免或减少施工过程中的人员伤亡、机械损坏和财产损失。

3、本方案是通过对主塔施工过程中潜在的重大危险源进行辨识和对各项施工过程中经常出现的事故进行分析的基础上编制的。 4、主塔施工以安全、合理、进度快为原则,这是难度较高的多重要求,在现场作业过程中必须予以统筹考虑,认真贯彻落实。在这些原则中,如安全与他项要求有矛盾时,必须服从于安全。 5、本方案适用于本项目主塔施工的过程控制。 三、组织保证与管理职责 根据我部现场施工的具体情况,成立以项目经理为组长,主管生产副经理为副组长的安全管理小组。 1、项目经理负责主持全面工作,对施工组织设计的编制进行审批。 2、项目副经理协助项目经理负责对主塔施工的实施过程进行全面监控、管理和协调,负责本施工过程的安全、质量、进度等,并对施工过程的总目标进行控制。 4、经理部各部门负责配合好现场的施工,对施工过程进行检查把关,对

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

矮塔斜拉桥全桥斜拉索调索施工工法.

矮塔斜拉桥全桥斜拉索调索施工工法 1 前言 “矮塔斜拉桥”也称“部分斜拉桥” ,是介于“斜拉桥”与“体外预应力箱梁桥” 之间的一种新型结构体系。矮塔斜拉桥和连续梁相比具有结构新颖跨度能力大、施工简单、经济优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得埃塔斜拉桥具有广阔的发展空间。 佛肇城际铁路桂丹立交特大桥预应力矮塔斜拉斜跨桂丹路与佛 山一环互通立交,主桥位于R=1800m的圆曲线上,孔跨为 (75+86+168+86+75 m采用塔梁固结并简支于桥墩之上的连续体系。 主梁为预应力混凝土结构,采用单箱双室变高度箱形无翼缘截面,斜拉索锚固于箱体之内。主梁斜拉索采用双塔双索面扇形分布,每个桥塔8对,共16对,梁顶面塔高为26m,最大斜拉索在桥面以上高度为24.355m,其高跨比为24.355:168=1:6.898,桥面宽14.9m,宽跨比为14.9:168=1:11.28, 梁上锚固点间距为14.9,塔上转向鞍横桥向间距15.4m。斜拉索采用喷涂钢绞线(中心丝与边丝各钢丝外表均单独形成环氧树脂涂膜,涂层厚度应在 0.12mm- 0.2mm之间)单层无粘接筋,单根钢绞线规格直径为15.24mm每根斜拉索有55根钢绞线组成。为了确保质量和施工进度,科学管理,积极采用新技术,经过归纳总结形成本工法。

图1.1 1/2 全桥立面图 2工法特点 2.1工序简单,施工进度快。 2.2施工条件得到了改善,劳动强度低,安全性强。 2.3采用单根等值法张拉,可以控制每根斜拉索各股钢绞线的离 散误差不 大于理论值的士 3% 2.4可以实现一对斜拉索对称、交叉单根张拉,同步整体张拉, 确保两根斜拉索间的差值不大于理论值的士 1% 2.5采用JMM-268动测仪进行索力监控,可以确保斜拉索整索索 力误差 不大于理论值的士 2% 2.6斜拉索采用多重防腐处理,锚固端灌注防腐油脂,延长了斜 拉索使用 寿命。 3适用范围 本工法适用于埃塔斜拉桥斜拉索调索施工。 4施工工艺流程及操作要点 在中跨合拢段施工完成后,纵向、竖向、横向预应力束张拉完 成后,进行全桥第一次斜拉索索力复测、桥面线形监控控制点复测, 由线形监控单位根据桥面高程目标值进行计算 (利用MIDAS 软件进行 数学建模计算),给出斜拉索调索索力,根据线形监控单位所给索力 7485 8600 16800/2=8400 j 1550 6x700= (拉索区) 6x700= (拉索区) 1350 拉索编号 C1 C8 C8拉索编号C1 2850 2850 5 」 q 1 - 1" I I |||1 nnrirsrinriri

索塔钢锚梁安装施工工法

《索塔钢锚梁安装施工工法》 中交第二公路工程局有限公司 中交第二航务工程局有限公司XXXX高速公路工程有限责任公司 20XX年9月

目录 1、前言 2、工法特点 3、适用范围 4、工艺原理 5、施工工艺流程及操作要点 6、材料与设备 7、质量控制 8、安全措施 9、环保措施 10、效益分析 11、应用实例

索塔钢锚梁安装施工工法 1、前言 斜拉桥是一种拉索体系,是大跨度桥梁的主要桥型之一。斜拉桥由索塔、主梁、斜拉索组成,斜拉索一端连接主梁,另一端连接索塔,主梁的自重通过斜拉索传递给索塔及基础。 斜拉索与索塔锚固方式传统的施工方法为混凝土锚固齿块,每节段锚固区需布设大量钢筋,增加了索套管定位和混凝土浇筑的难度,施工质量难以控制。在本项目中,采用了组合钢锚梁锚固方式,它具有施工快捷、安装精度高等优点。同时,由于钢锚梁承受斜拉索的水平分力,竖向分力全部通过牛腿、塔壁钢板传到塔身,使得结构受力更明确。目前,越来越多的斜拉桥索塔上塔柱锚固区采用钢锚梁的设计。 本工法结合九江长江公路大桥的施工实践,将钢锚梁安装、精确定位的经验加以总结,为今后类似结构施工提供参考或借鉴。 2、工法特点 2.0.1钢锚梁到场后现场再次进行工地预拼装,可以清楚了解钢锚梁加工高度累计误差和倾斜趋势等情况,以便后续制作时进行必要调整,保证了钢锚梁安装的精度。 2.0.2钢锚梁采用塔吊整体吊装,施工快捷、安装周期短。 2.0.3首节钢锚梁安装采用调节支架,便于钢锚梁在高空进行平面位置及高程的调整,使首节基准钢锚梁安装精度更高,为提高标准节钢锚梁的安装精度打下了良好的基础。 2.0.4钢锚梁安装采用专用吊具,避免钢锚梁整体吊装时扭曲、变形。 3、适用范围 适用于斜拉桥索塔钢锚梁安装施工。 4、工艺原理

(完整word版)码头横梁、纵梁施工方案

亚太新会码头工程 现 浇 横 梁 专 项 施 工 方 案 编制单位:港丰建设有限公司编制日期:2011年7月

一、工程综述 1.1、工程概况 1.1.1、工程名称:扬州港江都港区海昌公用码头工程 1.1.2、工程地点:拟建扬州港江都港区海昌公用码头工程位于江都市大桥镇前进村长江北岸,上游侧紧临科进船厂码头,下游约1.5 km处为泰州杨湾海螺水泥有限责任公司专用码头。 1.1.3、工程概况: 江都海昌港务实业有限责任公司由安徽海螺创业投资有限责任公司和香港昌兴建材有限公司共同出资组建,规划建设年吞吐能力2000万吨的5万吨级公用码头泊位3座,以及年产150万吨的超细矿渣粉磨生产线。 扬州港江都港区海昌公用码头工程位于江苏省江都市经济开发区沿江公业园区,使用长江岸线830m及相应水域。 扬州港江都港区海昌公用码头工程包含一座主体码头和三座引桥,主体码头为高桩梁板式结构,长795m,宽30m,码头桩基采用Ф1000mmPHC(C型)管桩和Ф1000mmδ16钢管桩相结合的形式,引桥桩基岸侧部分采用Ф1000mm钻孔灌注桩,与码头衔接部分采用Ф1000mmPHC(C型)管桩。 1.1.4、建设单位:江都海昌港务实业有限责任公司 设计单位:中交第二航务工程勘察设计院 监理单位:镇江兴华工程建设监理有限公司 施工单位:上海三航奔腾建设工程有限公司 1.2、主要工程量 本码头为下横梁和上横梁两个部分,其中下横梁在桩基完成后进行,上横梁在纵向梁系安装完成后进行,本工程码头部分共有横梁108榀,本工程引桥部分横梁共有63榀。 二、码头横梁施工工艺 ⑴、下横梁 横梁施工需在一个排架的PHC管桩和钢管桩打设完成以后,且距离超过后续打桩影响范围后进行。根据下横梁设计要求,下横梁混凝土分二次浇筑,第一次为安装靠船构件的端部下突部分,第一次浇筑下横梁到+2.65m。第二次浇注下

斜拉桥主塔施工方案

2.5.(重点工程)颍河特大桥主塔塔身施工方案、方法与技术措施 颍河特大桥共设置两座斜拉索塔,均为人字形。塔身总高度为38m,分上塔柱(20.443m)和下塔柱(17.557m),上塔柱采用圆端型矩形截面,共设置七道斜拉索,下塔柱为两道独立圆端型矩形柱,与桥墩及箱梁固结。颍河特大桥主塔为本标段施工控制重点。 桥塔布置及断面如图2.5-1所示。 颍河台湾大桥主塔总体布置 主塔塔身剖面图 图2.5-1 桥塔布置及塔身断面示意 下塔柱全高17.557m,采用C50混凝土,拟定沿塔身垂直方向分4个节段,其中1~3

每个节段5m,第4节段2.557。模板系统采用3层模板翻模施工,每层模板高2.5m,外模采用定形钢模板和弧形小模板拼装而成。模板由专业模板厂家加工制造,其强度、钢度、垂直度、同心度、表面光洁度等都应满足要求,以保证其安装、拆卸方便,脱模容易。模板加工好后,应在工厂试拼,确保无误后出厂。 下塔柱为钢筋混凝土结构,无预应力,根部5m内横桥向壁厚由100cm渐变至60cm,顺桥向壁厚由150cm渐变至90cm。 在完成承台施工后,按每节5m浇筑下塔柱。每个节段的施工程序是:安装劲性骨架→绑扎钢筋→立模→验收→浇塔柱混凝土→待强、凿毛、养生→拆模、翻模。 下塔柱施工工艺流程见图2.5.1-1所示。 在主塔施工前,精确测量定出主塔的平面位置,放出模板轮廓线,用砂浆找平模板下部的标高,以保证模板的垂直度;将塔柱处承台顶面的混凝土表面进行凿毛处理,并用清水冲洗干净,以保证墩台连接的质量。 2.5.1.2.下塔柱劲性骨架施工 为满足下塔柱高空施工过程中塔柱施工导向、钢筋定位、模板固定的需要,同时方便

斜拉桥混凝土索塔施工工艺工法.

斜拉桥混凝土索塔施工工艺工法 (QB/ZTYJGYGF-QL-0601-2011) 桥梁工程有限公司廖文华罗孝德 1 前言 1.1 工艺工法概况 斜拉桥的主塔承受的荷载主要有:塔身自重力、拉索传递的水平及竖向分力、风力、地震力等。这些力在塔身上产生的综合效应为沿桥塔纵横向的水平剪力和弯矩,以及轴向压力等。 一般斜拉桥的顺桥布置形式基本为单柱式、倒Y形、A字形等,如下图所示。 图1 塔柱形式(顺倾向) a)单柱式;b) 倒Y形;c) A字形 索塔沿横桥向的布置主要有:柱式、门式、A字形、倒Y形、菱形(宝石形)等,如下图所示。 图2 塔柱形式(横倾向) a)柱式;b)、 c)门式;d) A字形;e)倒Y形;f)菱形(宝石形) 本工法以重庆巫奉高速公路何家坪特大桥花瓶型(门式)钢筋混凝土索塔施工为依托,全面阐述斜拉桥索塔施工所采用的先进施工技术和施工工艺特点。 1.2 工艺原理

1.2.1索塔的施工可视其结构、体形、材料、施工设备和设计要求综合考虑,选用适合的方法。裸塔施工宜用爬模法,横梁较多的高塔,宜采用劲性骨架挂模提升法。 1.2.1斜拉桥施工时,应避免塔梁交叉施工干扰。必须交叉施工时应根据设计和施工方法,采取保证塔梁质量和施工安全的措施。 1.2.2斜塔柱施工时,必须对各施工阶段塔柱的强度和变形进行计算,应分高度设置横撑,使其线形、应力、倾斜度满足设计要求并保证施工安全。 1.2.3索塔横梁施工时应根据其结构、重量及支撑高度,设置可靠的模板和支撑系统。要考虑弹性和非弹性变形、支承下沉、温差及日照的影响,必要时,应设支承千斤顶调控。体积过大的横梁可分两次浇筑。 1.2.4索塔混凝土现浇,应选用输送泵施工,超过一台泵的工作高度时,允许接力泵送,但必须做好接力储料斗的设置,并尽量降低接力站台高度。 1.2.5必须避免上部塔体施工时对下部塔体表面的污染。 1.2.6索塔施工必须制定整体和局部的安全措施,如设置塔吊起吊重量限制器、断索防护器、钢索防扭器、风压脱离开关等;防范雷击、强风、暴雨、寒暑、飞行器对施工影响;防范吊落和作业事故,并有应急的措施;应对塔吊、支架安装、使用和拆除阶段的强度稳定等进行计算和检查。 2 工艺工法特点 2.1 翻模工艺 模板制造简单,构件种类少,可根据施工起吊能力、索塔造型进行分块,施工缝易于处理,外观美观,施工速度快。 图3 翻模提升示意图 2.2 液压自爬模工艺 爬升稳定性好,操作方便,安全性高,可节省大量工时和材料。一般情况下

索塔施工

索塔施工 10.1.1 工艺概述 斜拉桥主塔分为钢筋混凝土主塔、钢结构主塔和结合型主塔,本工艺适用于钢筋混凝土主塔施工作业。 索塔是斜拉桥的主要承重结构,索塔的施工质量直接影响到整个桥梁的使用寿命及结构安全。根据索塔的结构特点,主要有如下特点: 一、高空作业,斜拉桥索塔一般都有几十米,上百米、甚至几百米高,所有施工作业均为高空作业,施工风险很大。 二、立体交叉施工,索塔施工包含劲性骨架、钢筋,混凝土、预应力、模板、支架、斜拉索等工程,各种工程施工交叉作业,但一般不在一个高程平台上,施工均在多层平台上穿插进行,相互干扰,影响很大。 三、多工序转换的循环作业,钢筋混凝土索塔施工包括钢筋、混凝土、预应力、模板、劲性骨架及斜拉索等作业,各工序循环施工,转换速度快,一般只有一两天,甚至仅有几个小时。 10.1.2 作业内容 钢筋混凝土主塔作业内容包括劲性骨架、钢筋、混凝土、预应力、模板、支架、索导管等。钢结构主塔主要为吊装作业。 10.1.3 质量标准及检验方法 《铁路混凝土工程施工质量验收标准》(TB10424-2010) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010)

10.1.4 工艺流程图 图10.1.4-1 斜拉桥主塔施工工艺流程图 10.1.5 工艺步骤及质量控制 一、塔吊及电梯的设置 索塔施工均为高空作业,其主要起重、吊装设备一般为高塔吊机,并根据现场实际情况设置上下电梯。 1.塔吊的选型 高塔吊的选型主要考虑吊重和吊距,吊重与吊距均应满足施工需要。 2.塔吊的布置 高塔吊的布置应遵循便于斜拉索安装及主塔钢筋混凝土施工,同时兼顾主梁施工的原则进行。在塔吊布置时,首先应保证其基础位置的结构,同时应考虑其附着与施工对施工

码头施工方案(b版)

一.工程概述 一)总平面布置 本码头属杭州湾跨海大桥北航道桥施工临时设施,码头平台设在杭州湾跨海大桥里程桩号K51+589~609之间,与本标段栈桥横向搭接相连,平面尺寸64×20m,面积为1280m2。码头纵轴线在大桥里程桩号K51+599,即与北侧高墩区引桥B1墩中心线相距20m,东侧边线与大桥中心线(桥轴线)相距92.7m,并与其平行布置,码头平台前沿线垂直于大桥桥轴线。码头平台设1000t级甲板驳泊位一个,后沿线设交通船泊位一个。可满足在各阶段施工的需要。 (二)水工结构 1. 码头平台 码头结构型式为直立式高桩码头,设计使用年限为5年 (1)下部结构 码头平台由44根Φ800×10mm钢管桩支撑,钢管桩布置采用直斜桩相结合的形式,其中直桩28根、斜桩16根,桩顶面标高为7.0m和4.99m两种,设计桩底高程为-36.0m。基础排架1-2及7-8榀间距8.25m,其余间距均为9m。 每榀排架设5条钢管桩间距为4.75m, 第1、7榀排架两端头加设2根平面扭角16°、坡度为3.5:1的斜桩作为加强桩,码头外围钢管桩(直桩),通过Φ600×8mm

和Φ400×6mm的钢管联系撑将平台连成整体,形成一个受力合理、结构稳定的下部结构。 (2)上部结构 上部结构为梁板组合结构,主要采用型钢结构,材料主要有钢管、贝雷架、工字钢、钢板等。 码头平台主横梁选用3拼45a工字钢,主纵梁选用贝雷梁架,横向分配梁选用Ⅰ36a工字钢、纵向分配梁选用Ⅰ14工字钢,面板铺设δ8mm钢板。 2.附属设施 为兼顾高低水位船舶均能系靠码头,方便人员在不同水位上下,在码头前、后沿设系船柱、系船环及护轮坎;在码头前沿设置橡胶弦梯,后沿设置扶梯,平台外围设置栏杆、等附属设施。 二.使用功能及标准 (一)使用功能 临时码头平台主要功能是为北航道桥B11、12、13墩施工提供材料、设备及施工人员的上、下船。码头平台使用期限为5年。 (二)使用标准 1)靠泊船型: ≤1000t级驳船,船舶停靠时,应减速缓行,靠船速度V≤0.25m/s。 2)作业标准: 风力六级及六级以上大风时码头停止作业。 3)停泊标准: 允许风力≤9级。 4)荷载限量: 均布荷载码头平台20KN/m2 流动荷载挂车120,限速5Km/h 起重设备 25t汽车式起重机,履带吊70。

斜拉桥施工-主塔爬模

第七节区间斜拉桥施工 一、概述 该桥是本合同段高架桥群第六联,起止里程为K23+242.673~K23+452.673,桥跨布置为108m+66m+36m的钢筋砼箱梁结构,由28对斜拉索悬挂于主塔上,跨越清河和立军路,位于R=400m的曲线上。清河河宽60m 左右,常水位在0.7m~0.8m。 主塔墩基础采用钻孔灌注桩,桩径φ2.0m,共布置15根;边墩及辅助墩均采用板式桥墩,基础采用φ1.5m钻孔桩,每墩下设4根桩基础。 主塔采用A形塔,塔高65m,为钢筋砼箱形结构,其顺桥向壁厚120cm,横桥向壁厚60cm,塔柱顺桥向顶宽4m,底宽5m,横桥向塔柱宽2.2m,下横梁与承台联为整体,横梁高6.5m,承台顶以上30m处设上横梁一道,梁高2m,上下横梁都是箱形空心结构。预心力采用φj15钢绞线和φ32筋,OVM系列锚具。 主梁为预应力钢筋砼箱梁,梁高2.6m,全长210m,纵向设62个横隔板,除主塔中心处三个横隔板间距为3m外,其余间距均为3.5m,横向为单箱双室截面;主梁顶宽11m,顶板厚25cm,底板宽5m,底板厚30cm,中腹板厚40cm,外腹板厚35cm,内腹板厚25cm,翼缘板厚为80cm。主梁采用双向预心力,纵向预心力体系为高强低松驰钢绞线R y b=1860MPa,松驰率≤2.5%;为平衡斜拉索的竖向分力,斜腹板上布置竖向预应力粗钢筋,轧丝锚体系,纵向预应力采用φj15钢绞线,OVM系列锚具,支座采用盆式橡胶支座。 斜拉索采用φ7mm镀锌平行钢丝索,外包双层PE护套,钢丝标准强度R y b=1670MPa,梁上索距7m,塔上索距2m。主要工程数量见表3-7-1。

(推荐)斜拉桥索塔工法

斜拉桥索塔施工工法中交一公局第三工程有限公司

斜拉桥索塔施工工法 一、前言 随着高速公路的迅猛发展,公路等级不断提高,斜拉桥、悬索桥等具有高墩、大跨径特点的桥梁被广泛应用到工程实际,同时也发挥了越来越重要的作用。索塔作为斜拉桥、悬索桥一个十分重要的组成部分,造价高昂、施工周期长,如何科学组织施工,优质高效地完成施工任务,具有十分重要的意义。本工法依托江苏省连盐高速公路灌河特大桥索塔施工工程实例,全面系统地阐述了索塔施工技术和工艺特点。已建成的索塔成品倾斜度、空间尺寸以及外观质量均满足规范要求,处于良好的受控状态,施工进度科学合理。该工法被证明是一项行之有效的施工工法,代表了目前索塔施工的先进水平。 二、工法特点 1、本工法工艺简练,操作性强,施工易于实现。在合理设计模板、支架和爬架系统的基础上,可以实现高度较大的索塔施工。 2、本工法施工结构设计合理,力学模型明确,设计计算量不大,易于被工程技术人员掌握。 3、质量易于控制,通过采用相对基准极坐标法进行测量控制,以及模板支撑体系的优化,结构物实体质量和外观质量优良。 4、本工法投入的大型机械设备相对较少,施工成本较低,循环施工周期较短,具备较高的投入产出比。 三、适用范围 本工法具有施工快捷,结构合理,经济实惠等特点,可以被广泛应用到斜拉桥、悬索桥的索塔施工中,尤其适合于索塔截面比较规则,塔柱高为100~200m的中小型钢筋砼索塔。通过对模板系统以及爬架提升装置的改进和优化,也可以应用到变截面及高度较大的索塔施工中。 四、工法原理 本工法是索塔施工的一种非常有效的工艺方法。工法原理:在塔柱内预先安装劲性骨架作为钢筋模板安装定位的依托,纵向主钢筋采用机械连接,下塔柱采用钢管支架模板体系、中上塔柱采用内翻外爬附爬架的分节段爬模施工模式,砼采用拖泵泵管输送,在中塔柱上设置横向临时撑架,防止塔柱根部产生拉应力,斜拉索与索塔的锚固形式采用钢锚梁锚固体系,直接传递给索塔,横梁采用钢管落地支架支撑体系,通过合理布设塔吊、电梯、泵管、水电等设施以及进行预埋件的埋设,并运用塔吊以及吊车进行施工材料的垂直运输的一种高效的索塔施工工艺。 根据索塔形式、高度以及所采用的施工工艺、方法、设备性能和具备的施工能力,索塔分节长度不尽相同,一般分节长度为4.0~5.0m。 五、施工工艺流程及操作特点 (一)索塔施工工艺流程

斜拉桥施工方案

南阳市光武大桥建设工程 斜拉索挂索、张拉专项施工方案 中铁十五局集团 南阳市光武大桥建设工程项目经理部 二0一二年三月

一、工程概况 光武大桥采用两联80+80m单塔双索面斜拉桥,塔高34.21米。全桥采用现浇预应力混凝土连续梁。斜拉索为双索面,每个箱梁中央布置一个索面,横桥向对称布置在索区里。斜拉索直接穿过中腹板锚固于箱梁底面。斜拉索在梁上索距为8.0m;塔上索距2.05m,等间距布置。拉索的水平倾角在25.153°~37.682°。 斜拉索采用防腐性能优越的喷涂环氧钢绞线斜拉索体系,规格为OVM250AT-61,两端采用可换索式250AT锚具。每个索塔斜拉索横向单排布置,斜拉索采用高强度低松弛单层环氧涂层无粘结钢绞线斜拉索体系,单根钢绞线直径15.24mm,钢绞线标准强度fpk=1860Mpa。斜拉索外包HDPE整圆式护套管规格为ф260mm。全桥斜拉索共12对拉索,钢绞线约191吨。整束斜拉索钢绞线防护体系由单根钢绞线PE管、哈弗管外套、锚具、锚头防腐固体油脂、锚头环氧砂浆等组成。 全桥斜拉索布置情况 二、编制依据 1、《南阳市光武大桥施工图设计》 2、《公路桥涵施工技术规范》(JTJ041—2000) 3、《公路工程质量评定标准》(JTGF80/1—2004) 4、《OVM平行钢绞线斜拉索施工指南》 三、OVM250AT斜拉索体系结构说明 斜拉索由锚固段+过渡段+自由段+抗滑锚固段+塔柱内索鞍段+抗滑锚固段+自由段+过渡段+锚固段构成, 1、锚固段

主要由锚板、夹片、锚固螺母、密封装置、防松装置及保护罩组成。在锚固段锚具中,夹片、锚板、锚固螺母是加工上主要控制件,也是结构上的主要受力件。 A.密封装置:其主要起防止漏油、防水的密封作用。它由防损板、内外密封板、密封圈构成。并在密封装置内注防腐油脂对剥除PE层的钢绞线段起防护作用。 B.防松装置:主要由空心螺栓和压板构成,在钢绞线张拉并预压结束后安装此装置,可实现有效地对单个锚固夹片保持夹紧力,从而对夹片起防松、挡护作用。 C.保护罩:保护罩安装在锚具后端,并涂抹无粘结筋专用防护油脂,主要对外露钢绞线起防护作用。 2、过渡段 主要由预埋管及锚垫板、减振器组成。 2.1预埋管及垫板:在体系中起支承作用,同时在垫板正下方最低处应设有排水槽,以便施工过程中临时排水。 2.2减振器:对索体的横向振动起减振作用,从而提高索的整体寿命。本桥拟采用可调式减振器,以充分发挥减振器的减振作用。 3、自由段 主要由带HDPE护套的无粘结镀锌钢绞线、索箍、HDPE外套管、梁端防水罩、塔端连接装置等构成。 3.1无粘结镀锌钢绞线:为拉索的受力单元。 3.2索箍:因受张力大而采用钢质索箍,它是在紧索完成后安装的。主要作用是将索体形成一个规则的几何整体形状。 3.3 HDPE外套管:主要对钢绞线拉索起整体防护作用,本工程采用规格分别为ф260mm,HDPE管的连接方式采用专用HDPE焊机进行对焊。 A.梁端防水罩:主要起支承HDPE外套管和防止雨水由梁端预埋管进入拉索锚具的防 护作用。 B.塔端连接装置:由于HDPE外套管的热胀冷缩特性,其主要为塔端HDPE自由端热胀冷缩过程中提供空间和起密封防护作用。 4、抗滑锚固段 主要由锚固筒、减振器、索箍组成。 4.1锚固筒:锚固筒安装在塔外预埋的索鞍(分丝管)钢垫板上,主要对减振器起支承作用。 4.2减振器:对索体的横向振动起减振作用,从而提高索的整体寿命。 4.3索箍:因受张力大而采用钢质索箍,它是在紧索完成后安装的。主要作用是将索体形成一个规则的几何整体形状。

相关文档
最新文档