斜拉桥混凝土索塔施工实用工艺工法

斜拉桥混凝土索塔施工实用工艺工法
斜拉桥混凝土索塔施工实用工艺工法

实用标准文档

斜拉桥混凝土索塔施工工艺工法

(QB/ZTYJGYGF-QL-0601-2011)

桥梁工程有限公司廖文华罗孝德

1 前言

1.1 工艺工法概况

斜拉桥的主塔承受的荷载主要有:塔身自重力、拉索传递的水平及竖向分力、风力、地震力等。这些力在塔身上产生的综合效应为沿桥塔纵横向的水平剪力和弯矩,以及轴向压力等。

一般斜拉桥的顺桥布置形式基本为单柱式、倒Y形、A字形等,如下图所示。

图1 塔柱形式(顺倾向)

a)单柱式;b) 倒Y形;c) A字形

索塔沿横桥向的布置主要有:柱式、门式、A字形、倒Y形、菱形(宝石形)等,如下图所示。

图2 塔柱形式(横倾向)

a)柱式;b)、 c)门式;d) A字形;e)倒Y形;f)菱形(宝石形)

本工法以重庆巫奉高速公路何家坪特大桥花瓶型(门式)钢筋混凝土索塔施工为依托,全面阐述斜拉桥索塔施工所采用的先进施工技术和施工工艺特点。

1.2 工艺原理

1.2.1索塔的施工可视其结构、体形、材料、施工设备和设计要求综合考虑,选用适合的方法。裸塔施工宜用爬模法,横梁较多的高塔,宜采用劲性骨架挂模提升法。

1.2.1斜拉桥施工时,应避免塔梁交叉施工干扰。必须交叉施工时应根据设计和施工方法,采取保证塔梁质量和施工安全的措施。

1.2.2斜塔柱施工时,必须对各施工阶段塔柱的强度和变形进行计算,应分高度设置横撑,使其线形、应力、倾斜度满足设计要求并保证施工安全。

1.2.3索塔横梁施工时应根据其结构、重量及支撑高度,设置可靠的模板和支撑系统。要考虑弹性和非弹性变形、支承下沉、温差及日照的影响,必要时,应设支承千斤顶调控。体积过大的横梁可分两次浇筑。

1.2.4索塔混凝土现浇,应选用输送泵施工,超过一台泵的工作高度时,允许接力泵送,但必须做好接力储料斗的设置,并尽量降低接力站台高度。

1.2.5必须避免上部塔体施工时对下部塔体表面的污染。

1.2.6索塔施工必须制定整体和局部的安全措施,如设置塔吊起吊重量限制器、断索防护器、钢索防扭器、风压脱离开关等;防范雷击、强风、暴雨、寒暑、飞行器对施工影响;防范吊落和作业事故,并有应急的措施;应对塔吊、支架安装、使用和拆除阶段的强度稳定等进行计算和检查。

2 工艺工法特点

2.1 翻模工艺

模板制造简单,构件种类少,可根据施工起吊能力、索塔造型进行分块,施工缝易于处理,外观美观,施工速度快。

图3 翻模提升示意图

2.2 液压自爬模工艺

爬升稳定性好,操作方便,安全性高,可节省大量工时和材料。一般情况下

爬模架一次组装后,一直到顶不落地,节省了施工场地,而且减少了模板的碰伤损毁。结构施工误差小,纠偏简单,施工误差可逐层消除,施工速度快。模板自爬,原地清理,大大降低塔吊的吊次。

图4 液压自爬模流程图

2.3 移动脚手架爬模工艺

能适应塔柱变坡和塔柱横梁同步施工,避免了液压自爬模施工在塔柱变坡和塔柱横梁施工时爬架需拆除重新安装的弊端,另外,上塔柱作为锚索区,存在环向预应力束,可以充分利用钢管脚手支架完成预应力施工而不影响塔柱爬升,施工速度快,操作简单,安全性高。

3 适用范围

本工法适用于同类斜拉桥门式混凝土索塔施工,其他类型混凝土索塔施工可以参照使用。

4 主要技术标准

《公路桥涵施工技术规范》JTG/T F50

《公路斜拉桥设计规范》JTJ027

《公路桥涵钢结构及木结构设计规范》JTJ025

《钢结构工程施工质量验收规范》GB50205

《公路工程质量检验评定标准》JTGB80-1

5 施工方法

混凝土索塔根据索塔的造型和施工程序,选用合适的塔吊起重设备,配置人员上下通道,确定混凝土输送路径。通过采用翻模施工工艺、液压自爬模施工工

艺、移动脚手架爬模施工工艺,落地支架法和悬空支架法等施工方法,逐步完成索塔钢筋、劲性骨架、预应力、索导管、混凝土等各项施工作业,各种施工方法综合运用,达到施工效益最大化。

6 工艺流程及操作要点

6.1 施工工艺流程

钢筋混凝土索塔施工工艺流程如下:

图5 施工工艺流程图

索塔节段施工工艺流程如下:接头凿毛、清洗、测量放样→接高劲性骨架→绑扎钢筋(预应力体系的安装)→内外模板提升及安装→测量、调整模板→验收符合要求后固定模板→浇筑混凝土→混凝土养生→进入下一节段施工。

横梁施工工艺流程如下:牛腿、支架安装→支架预压→底模安装→底腹板钢筋、预应力安装→内、侧模安装→第一次浇筑混凝土→混凝土养生→第一次张拉预应力→顶内模安装→顶板钢筋、预应力安装→第二次浇筑混凝土→混凝土养生→第二次张拉预应力→压浆封锚→支架拆除。

6.2 操作要点

6.2.1 施工准备

1 设备的选型与布置方案设计

2 选择索塔和横梁的施工方法,对相关临时设施进行结构设计。

3下塔柱横桥向外倾,为防止下塔柱根部出现拉应力而将混凝土拉裂,同时控制塔柱施工线形,设置临时拉杆。拉杆设置可用钢绞线、钢管,施力根据监控确定,下横梁施工完成后予以拆除。

4 中塔柱横桥向内倾,为防止中塔柱根部出现拉应力而将混凝土拉裂,同时控制塔柱施工线形,设置两道临时主动撑杆。撑杆常用钢管制作,也可根据现场用其它材料代替。施力根据监控确定,施力完成后将撑杆焊接加固成整体。中横梁施工完成后拆除临时撑杆。

6.2.2 起重设备的选型与安装

1 选型原则

起重设备的选用应根据索塔的结构形式、规模及桥位地形等条件而定,起重设备应满足索塔施工的垂直运输、起吊荷载及起吊范围的要求,并考虑安拆操作简便、安全、经济等综合因素。对大型斜拉桥一般选用附着式塔吊并配以电梯的施工方法。

2 塔吊的安装

在索塔中心线的下游侧布置一台TC5023塔吊,塔吊基础单独设立,塔吊附着在下游侧塔柱侧壁上。其优点是可以一次安装完成全塔施工。该方案适合双柱、门式、A型、倒Y型和钻石型等索塔。

3 人行通道的设置

人行通道设置要求安全、稳定、经济、不妨碍施工、方便安拆。在索塔中心线的上游侧布置一台SC100施工电梯,电梯在下塔柱施工之前安装。在电梯安装之前,在塔墩大里程侧搭设钢管支架供人员通行,电梯安装后,对通往电梯的地面通道全部围闭、遮挡,防止坠物伤人。

6.2.3 塔座施工

塔座是塔墩与承台连接的重要结构物。施工时,塔墩劲性骨架和主筋预埋的准确性直接影响塔墩的施工定位精度,必须准确测量定位。塔座混凝土的浇筑应尽可能在承台浇筑后立即进行。相对承台而言,塔座混凝土体积小,标号高,混凝土收缩较大,受承台的约束影响,塔座容易产生收缩裂纹,且塔座为实心结构,属大体积混凝土,施工时采取内散外储的温控措施,降低水化热,防止混凝土收缩开裂。

6.2.4 塔墩施工

塔墩截面为空心矩形结构,施工采用翻模法,每节段高度4.5m。模板分节高度可以根据施工能力适当调整。外模采用大块自制钢模板,内模各倒角一般采用竹胶板,其余内模采用组合钢模板,圆拱形部分单独加工圆弧钢模板。模板采用塔吊提升,塔墩内腔搭设钢管脚手操作平台,塔墩内腔顶部采用安装预制混凝土板封顶。塔墩盖板施工,按大体积混凝土施工,内布冷却水管,防止混凝土开裂。塔墩施工时,下塔柱劲性骨架、钢筋的预埋必须准确。

6.2.5 下塔柱施工

下塔柱截面为空心矩形结构,横桥向外倾,施工采用液压自爬模工艺,模板按节段高4.5m配置。施工内模采用组合钢模,搭设钢管脚手支架操作平台。模板爬升高度与机位可根据塔柱倾斜度、施工能力等适当调整。

液压自爬模由:埋件、模板、支架、导轨、换向装置及液压动力装置六部分组成。液压自爬模体系的安装工作流程为:第一层墙体砼浇筑→安装埋件→安装支架和操作平台→第二层墙体砼浇筑→安装埋件、导轨和液压系统→爬升支架→安装下挂架→爬升。

下塔柱在起步段施工时,应充分利用爬模模板,不足部分可用普通竹胶板代替。

6.2.6 下横梁施工

下横梁截面为空心矩形结构,施工一般采用落地支架法。施工支架采用塔吊标准节加贝雷梁。一般情况下,施工支架用大直径钢管支撑加贝雷梁或万能杆件桁架形式,主要根据施工现场材料考虑。下横梁与该段索塔同时施工,便于支架搭设和横梁预应力施工。下横梁分两次浇筑,为减小支架所承担的恒载,避免搭设非常强大施工支架,使支架和第一次浇筑的混凝土共同承担第二次浇筑的混凝土的重力,采用二次张拉预应力工艺,即在第一次混凝土达到80%设计强度时按设计张拉力的50%对称张拉底腹板预应力索,待第二次混凝土达到强度后,再张拉完全部预应力索。

下横梁施工支架搭设完毕,必须对支架进行预压重,以消除非弹性变形。预压重可根据施工现场条件,采用水箱、沙袋、预制块、预应力反压等措施。

6.2.7 中塔柱施工

中塔柱截面为空心矩形结构,横桥向内倾。施工时,不再使用液压自爬模工艺,而改为搭设钢管脚手支架作为施工操作平台,取消爬模支架,利用塔吊直接提升爬模模板的施工方法,钢管脚手支架可以循环倒用。模板根据截面变化拆切改制后使用。

起步段施工时,利用沿塔柱四周预埋好的钢板,焊接2[20a三角型钢支架作为立模支撑以及搭设钢管脚手支架的支承平台。随着塔柱节段的升高,钢管脚手支架的搭设也相应加高,钢管脚手支架每搭设10—20m进行一次循环倒用,倒用时安装三角支架托架,三角支架托架用∠100×100×10加工制作,高度2m,宽度1.8m,横桥向设四片,纵桥向设五片,通过预埋在塔柱四周的φ25螺栓连接套筒连接固定于塔柱侧面,托架顶面焊接φ32的钢筋头固定脚手钢管,脚手钢管设置两排,间距1m,内侧离塔柱0.8m。钢管脚手每5m高度水平杆与塔柱预留钢筋焊接固定,每10m高度搭设剪刀撑,确保支架的稳定。

6.2.8 中横梁施工

中横梁距离下横梁较高,采用落地支架法施工不经济,采用悬空支架法,施工支架采用预埋钢牛腿加贝雷梁的形式。中横梁与该段索塔同时施工。

6.2.9 上塔柱施工

上塔柱为斜拉索锚固区,模板施工工艺与中塔柱相同。上塔柱与上横梁施工采用先塔柱后横梁的施工顺序,上横梁对应塔柱位置提前预埋钢筋和预应力管道。

上塔柱施工工艺流程如下:劲性骨架安装→索导管的安装定位→钢筋安装→预应力施工→凹槽包裹钢板安装→浇注混凝土→预应力张拉(强度达到85%后进行)。索导管采用全站仪测量定位,采用先粗定位再精确定位的方法保证定位精度满足设计要求。索塔在温度变化时会产生变形,影响索导管定位精度,测量时宜选择当天气温低且较稳定时段进行。

图6 索导管定位示意图

6.2.10 上横梁施工

上横梁在上塔柱施工完成后进行。施工方法与中横梁相同。施工时,对相交面凿毛处理,修整预埋钢筋和预应力管道,进行后续施工作业。

6.2.11 塔冠施工

塔冠施工时,主要考虑避雷针、航标指示灯、塔顶吊架等预埋件的埋设。 6.2.12 钢筋工程

钢筋直径在20mm 及以上时,全部采用等强直螺纹连接,其余采用焊接连接形式。箍筋和主筋交叉处均采用绑扎方式固定。钢筋在钢筋加工场统一加工,分类堆放,塔吊吊运至施工部位安装。在安装过程中,钢筋与预应力管道、索导管相冲突时,适当挪动钢筋,钢筋必须截断时,预应力、索导管施工完后,将钢筋按等强度原则进行补强。钢筋的其他施工要求遵守图纸及相关施工规范。塔柱预埋件最后通过钢筋、劲性骨架牢固定位。

6.2.13 劲性骨架

劲性骨架安装在索塔内,起钢筋定位、模板固定、增大索塔整体刚度的作用。根据施工方便和吊装能力,确定劲性骨架分片长度和重量,一般自由伸臂长度为6m 或9m ,根据索塔四个面分四片在车间加工。安装时,需要测量定位,倾斜索塔会发生位移,施工时,采取向反向预偏的方法来保证钢筋、模板定位的准确。劲性骨架、预应力钢束、普通钢筋相遇时,处理原则是:劲性骨架避让预应力钢束;

a)斜拉索锚固钢套管

锚垫板中心

o

o

b)圆盘标志件示意图

o o d)半圆标志件示意图

c)斜拉索锚固钢套管管口中心

图 2-2-2

'

'

普通钢筋避让劲性骨架。

6.2.14 混凝土工程

索塔混凝土采用现场拌合站搅拌,混凝土输送泵泵送至浇筑位置。泵送采用一泵到顶的方式。混凝土地泵直接布置在拌合楼下,泵管沿索塔侧壁敷设,每个塔支敷设一条。为保证混凝土在泵送时不堵管,不产生离析,应严格保证混凝土的施工配合比和搅拌时间,施工时严格控制混凝土坍落度。拌合站和索塔左侧各设置一个水池,供混凝土拌合和养生之用。索塔较高时,在横梁上再设置小水箱,保证施工用水到使用部位。

6.2.15 测量控制

索塔施工精度要求高,测量控制难度大,塔柱上需要精确定位的项目多,诸如:劲性骨架、模板、索导管及塔柱外形的转折点等等,要精确完成这些项目,除建立一个全桥控制测量系统外,针对索塔施工,还建立了一个局部测量控制体系。

测量控制是本桥索塔施工过程中至关重要的一环,不仅影响到桥梁施工的精度,还能通过测量工作把握桥梁的变形规律,从而指导施工控制。

在索塔施工前除对设计院提供的控制点及全桥控制网进行复核联测外,还应对控制点进行加密,并将控制点引到塔墩上相对变形较小的位置上。最好在桥轴线上,两主塔外建立轴线控制点,以便于两主塔进行轴线测量控制。

索塔施工中,认真熟悉各种安装要求的精度及施工放样的工作内容及方法。

当塔柱施工到一定高度时,要加强例行测量工作;在气温变化大,施工荷载发生明显变化及预应力施工后的情况下要进行测量监控,并做好记录,分析变化规律。

塔柱施工测量的主要内容包括:劲性骨架定位、索导管安装定位、模板调校和混凝土体检测。采用全站仪三维极坐标法直接测量每节塔体。

6.2.16 拆除支架、起重设备

在索塔完成之后,支架按设计程序逐一拆除,塔吊、施工电梯等不再使用时,逐节段拆除。拆除方案在安装之前确定,保证拆除简便、安全。

7 劳动力组织

索塔施工技术要求高,专业性强,工种多,现场组织一个作业队伍便于协调

管理,队伍由各工种组成,流水作业施工,同时配备专业技术人员。实际施工时,可酌情增减。

表1 劳动力配置表

8 主要机具设备

索塔施工所使用的机具设备主要包括起吊设备、运输设备、钢筋、钢材、模板、混凝土、预应力等施工设备。实际施工时,可酌情增减。

表2 主要设备配置表

9 质量控制

9.1 易出现的质量问题

9.1.1 线形控制

索塔倾斜度大,截面变化大,钢筋、劲性骨架安装容易偏位,模板在混凝土浇筑过程中容易出现变形,索塔悬出高度大时,内倾或外倾位移不易控制。

9.1.2 外观

混凝土外露面平整度差,色泽不一致;容易出现露筋和孔洞,表面蜂窝麻面,裂纹,混凝土错台等。

9.2 保证措施

9.2.1 塔柱和横梁的外模板采用大面积钢模,除强度应满足浇注砼的各项要求外,为保证其表面平整度,设计时主要以刚度控制。

9.2.2 对模板的拼接缝,力求做到设计合理,加工制作精细,减少或避免漏浆现象发生。

9.2.3 尽量减少对拉螺杆数量,以减少塔身砼上的孔洞,并对塔身施工完成后留下的孔洞及时封堵修补。采用与塔身相同标号的水泥浆进行,力求做到与塔身砼颜色一致,并安排专人负责。

9.2.4 对塔身砼配合比进行优化选择,砼搅拌均匀,保证其工作性能,确保塔身砼整体上色泽一致。

9.2.5 对模板的准确安装定位,砼的搅拌、泵送入模、振捣、养护等工艺过程采取有效措施,加强控制。对现场管理人员和操作人员进行质量意识教育,做好每个关键工序的技术交底。通过保证各个工艺环节的工作质量来确保工程的质量。

9.2.6 塔身的施工放样测量,除采取正确合理的测量方法外,严格执行两人复测制度,复核必须采用不同的方法进行,以确保塔身放样准确,防止因测量误

差过大而导致塔身砼线条不平顺。

10 安全措施

10.1 主要安全风险分析

索塔施工属高空作业,作业人员施工过程中必须切实做好安全防护工作,防止高空坠落,防止物体打击伤害。另外,在施工作业中,防止出现触电、雷击事故。

10.2 保证措施

10.2.1 制定主要分项工程的安全操作规程,作业前认真进行安全技术交底与安全教育培训。

10.2.2 施工操作平台必须稳固,周围设置栏杆封闭,挂设密目安全网,脚手板满铺或使用定型钢丝网脚手板。

10.2.3 作业人员必须系好安全带、戴安全帽、穿防滑鞋,禁止打赤脚或穿拖鞋作业。

10.2.4 遇6级以上大风,不得进行高空作业,同时需要对支架模板进行加固。

10.2.5 超前安装索塔避雷针,雷雨天气严禁施工作业。经常检查各类电器线路,确保用电安全。

11 环保措施

环境的影响有两层含义:一层含义是指内部环境,即施工作业环境;另外一层是外部环境,即对周边环境的影响,对周边环境的影响主要指因各种原因引起的地表下沉;水文条件变化、枯水、水位降低、水质污染等;对周边结构物的影响;对社会、生活环境的影响。

11.1 水环境保护

针对现场实际情况,本标段施工时,不对原地层造成较大的破坏,确保当地居民的生活用水;废水排放前要经过处理并排放到远离居民生活用水区,并由环保协调部定期联系当地环保监督部门对水质进行检验,确保当地水质不被污染。

11.2 生态环境保护

在施工准备阶段,结合设计图纸,对现场各种材料拌和站的设置、弃碴场的选择、施工便道的设置等进行进一步的调查,详细掌握第一手资料,以“减少植被破坏,少占耕地”为原则,合理规划临时用地,最大限度地减少施工用地。严

格遵守《环境保护法》以及相关的法律、法规、规章制度,严格执行“三同时”即:同时设计、同时施工、同时竣工,不留尾巴、不留后患,采取一切合理措施保护现场内外的环境,确保环保目标圆满实现。

12 应用实例

12.1 工程简介

重庆巫奉高速公路何家坪特大桥主桥为(58+84+180)m三跨一联独塔双索面预应力混凝土边主梁斜拉桥。索塔为花瓶型,由塔座、塔墩、下塔柱、中塔柱、上塔柱、上横梁、中横梁、下横梁等组成。承台以上塔柱总高151.2m。塔座高3m,塔墩高20.5m,下塔柱高25.5m,中塔柱高39m,上塔柱高57.2m。两上塔柱横向净距9.0m,塔柱采用空心矩形截面,顺桥向全宽6.5m,横桥向最宽处为4.0m。下塔柱顺桥向全宽由6.5m向底部加宽到8.54m。塔墩横向宽10.2m。上塔柱为斜拉索锚固区,锚固端局部构造采用凹槽式,槽表面以厚1cm钢板包裹。在上塔柱锚固区,采用U形预应力束。塔柱设有劲性骨架,塔内设有检修爬梯。横梁均为空心矩形截面,下横梁兼作主梁0#块,与塔柱固结。上、中、下横梁均设置预应力钢束,预应力管道均采用塑料波纹管,压浆工艺全部采用真空辅助压浆法。

12.2 施工情况

何家坪特大桥7#主塔承台自2008年9月14日浇筑完成后,该桥正式转入索塔施工,并于2010年4月8日索塔全部封顶。在塔座施工中,采用大体积混凝土施工工艺,采取内散外储的温控措施,塔座未出现温度裂缝。塔墩施工中,自制大块钢侧模,采用翻模施工工艺,混凝土外观美观,接缝平整。塔柱施工采用液压自爬模与移动脚手架爬模施工工艺,施工安全、简便,加快了索塔施工速度,有效控制了索塔外观线形,保证了内在实体质量。横梁采用落地支架与悬空支架,二次浇筑二次张拉的工艺,简化了支架设计和材料用量,减小了横梁施工跨中挠度。

12.3 工程结果评价

索塔施工所采用的翻模、液压自爬模、移动脚手架爬模、落地支架、悬空支架等施工技术,充分利用施工现场材料,成功解决了花瓶型钢筋混凝土索塔等复杂造型的索塔施工,大大降低了施工成本,提高了施工效率。在施工场地受限,材料进场困难等恶劣环境下,有效控制了索塔施工线形,保证了索塔结构内实外

美,这为以后类似桥梁工程积累了施工经验,提高了公司施工技术管理水平,在重庆地区为公司创造了良好的施工业绩,具有明显的社会经济效益。

12.4 建设效果及施工图片

图7 塔座施工图8 塔墩施工

图9 下塔柱施工图10 下横梁施工

图11中塔柱施工图12 中横梁施工

图13 上塔柱施工

浅谈大跨径桥梁的混凝土索塔施工

浅谈大跨径桥梁的混凝土索塔施工 摘要:索塔施工是大跨度桥梁施工的关键技术之一,有必要对混凝土索塔施工技术进行研究。本文主要介绍了混凝土塔柱的施工顺序、施工方法(支架法、滑模法、爬模法和翻模法)等内容。 关键字:索塔施工,内容,方法 一.引言 索塔可采用钢塔或钢筋混凝土塔,但无论是斜拉桥还是悬索桥,其施工方法基本相同。仅有的区别是斜拉桥的索塔要考虑斜缆索的锚固问题,而悬索桥则要考虑塔顶主鞍座问题。与悬索桥索塔相比,斜拉索塔柱横向内倾或外倾的斜率较大。塔柱倾斜时,应考虑每隔一定的高度设置受压支架(塔柱内倾)或受拉拉条(塔柱外倾)来保证斜塔柱的受力、变形和稳定性。特大跨径桥梁索塔较高,而且有些索塔位置由于受现场地理环境的制约,特别是斜拉桥大都处于水中施工,设备进场及现场布置都比较困难。 塔柱多为空心变截面,且高空作业,给模板工程带来一定困难。在高空中进行大跨度、大断面现浇高标号预应力混凝土横梁,混凝土浇筑次数及预应力钢束张拉顺序应合理安排;支撑系统应稳定可靠,并考虑支撑系统连接间隙变形、弹性变形、不均匀沉降以及环境温差对横梁施工的影响。 索塔施工倾斜度施工允许偏差小于1/3000,且不大于30mm(或设计规定的最大值)。保证索塔位置准确,可减小塔柱偏位引起的承台和基础的附加应力,施工精度对加劲梁的架设影响也很大。悬吊结构特有的大跨度、弱阻尼特性造成在大自然界地震、风和车辆交通等外界激励下的结构响应值越来越大,未完体系(架设时)施工阶段的风致振动往往影响到施工的安全和质量,也影响到桥梁的工期。因此应根据施工结构的振动特性及其风洞试验,采取有效的振动控制措施。 实心塔柱部分(常为塔柱根部和塔冠部分),往往体积较大,应采取大体积混凝土的技术措施,防止温度裂缝。 二.索塔施工的主要机械设备选型及平面布置 特大桥索塔由于垂跨比要求一般都比较高,而且有些索塔位置由于受现场地理环境的制约,特别是斜拉桥大都处于水中施工,设备进场及现场布置都比较困难。因此设备的正确选型及合理位置往往会影响整个索塔施工,甚至会影响上部结构工程的顺利转换。 一般来讲,悬索桥索塔高度在100m以上,桥面宽度30m左右,宜设置2台塔吊,2台电梯。桥面宽度20m左右可设置1台塔吊,1台电梯。斜拉桥一般安装1台塔吊,1台电梯即能满足施工需要,也可安装1台塔吊,2台电梯。塔吊既可安装在两塔柱中间,也可附着在上、下游任何一侧。塔柱如安装在两柱中间,桥面施工时必须进行二次拆除或直接浇埋在桥面1号块中。斜拉桥施工电梯必须安装专门设计的斜爬附璧电梯。 且由于索塔较高,一般常规塔吊难以满足施工要求,而配置特大塔吊费用高,增加了施工成本,进场、安装、拆卸都相对比较困难。忠县大桥南塔现场条件限制安装常规塔吊,设计开发了一种自重轻(10t)、起重量大(最大起重量达6t)的附璧自爬塔吊,随着爬架同步爬升,具有很好的实用效果。 三.索塔施工测量方法 索塔测量施工要根据大桥施工规范和设计的精度要求,以及现场的地形、地质条件建立平面控制网。对施工中常用的点位采取加固及防晒、防风措施。 1索塔施工放样测量内容

斜拉桥索塔施工工法及其工程实例(优秀工作范文)

斜拉桥索塔施工工法及其工程实例 一、前言 随着高速公路的迅猛发展,公路等级不断提高,斜拉桥、悬索桥等具有高墩、大跨径特点的桥梁被广泛应用到工程实际,同时也发挥了越来越重要的作用.索塔作为斜拉桥、悬索桥一个十分重要的组成部分,造价高昂、施工周期长,如何科学组织施工,优质高效地完成施工任务,具有十分重要的意义.本工法依托江苏省连盐高速公路灌河特大桥索塔施工工程实例,全面系统地阐述了索塔施工技术和工艺特点.已建成的索塔成品倾斜度、空间尺寸以及外观质量均满足规范要求,处于良好的受控状态,施工进度科学合理.该工法被证明是一项行之有效的施工工法,代表了目前索塔施工的先进水平. 二、工法特点 1、本工法工艺简练,操作性强,施工易于实现.在合理设计模板、支架和爬架系统的基础上,可以实现高度较大的索塔施工. 2、本工法施工结构设计合理,力学模型明确,设计计算量不大,易于被工程技术人员掌握. 3、质量易于控制,通过采用相对基准极坐标法进行测量控制,以及模板支撑体系的优化,结构物实体质量和外观质量优良. 4、本工法投入的大型机械设备相对较少,施工成本较低,循环施工周期较短,具备较高的投入产出比. 三、适用范围 本工法具有施工快捷,结构合理,经济实惠等特点,可以被广泛应用到斜拉桥、悬索桥的索塔施工中,尤其适合于索塔截面比较规则,塔柱高为100~200米的中小型钢筋砼索塔.通过对模板系统以及爬架提升装置的改进和优化,也可以应用到变截面及高度较大的索塔施工中. 四、工法原理 本工法是索塔施工的一种非常有效的工艺方法.工法原理:在塔柱内预先安装劲性骨架作为钢筋模板安装定位的依托,纵向主钢筋采用机械连接,下塔柱采用钢管支架模板体系、中上塔柱采用内翻外爬附爬架的分节段爬模施工模式,砼采用拖泵泵管输送,在中塔柱上设置横向临时撑架,防止塔柱根部产生拉应力,斜拉索与索塔的锚固形式采用钢锚梁锚固体系,直接传递给索塔,横梁采用钢管落地支架支撑体系,通过合理布设塔吊、电梯、泵管、水电等设施以及进行预埋件的埋设,并运用塔吊以及吊车进行施工材料的垂直运输的一种高效的索塔施工工艺. 根据索塔形式、高度以及所采用的施工工艺、方法、设备性能和具备的施工能力,索塔分节长度不尽相同,一般分节长度为4.0~5.0米. 五、施工工艺流程及操作特点 (一)索塔施工工艺流程

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

索塔钢锚梁安装施工工法

《索塔钢锚梁安装施工工法》 中交第二公路工程局有限公司 中交第二航务工程局有限公司XXXX高速公路工程有限责任公司 20XX年9月

目录 1、前言 2、工法特点 3、适用范围 4、工艺原理 5、施工工艺流程及操作要点 6、材料与设备 7、质量控制 8、安全措施 9、环保措施 10、效益分析 11、应用实例

索塔钢锚梁安装施工工法 1、前言 斜拉桥是一种拉索体系,是大跨度桥梁的主要桥型之一。斜拉桥由索塔、主梁、斜拉索组成,斜拉索一端连接主梁,另一端连接索塔,主梁的自重通过斜拉索传递给索塔及基础。 斜拉索与索塔锚固方式传统的施工方法为混凝土锚固齿块,每节段锚固区需布设大量钢筋,增加了索套管定位和混凝土浇筑的难度,施工质量难以控制。在本项目中,采用了组合钢锚梁锚固方式,它具有施工快捷、安装精度高等优点。同时,由于钢锚梁承受斜拉索的水平分力,竖向分力全部通过牛腿、塔壁钢板传到塔身,使得结构受力更明确。目前,越来越多的斜拉桥索塔上塔柱锚固区采用钢锚梁的设计。 本工法结合九江长江公路大桥的施工实践,将钢锚梁安装、精确定位的经验加以总结,为今后类似结构施工提供参考或借鉴。 2、工法特点 2.0.1钢锚梁到场后现场再次进行工地预拼装,可以清楚了解钢锚梁加工高度累计误差和倾斜趋势等情况,以便后续制作时进行必要调整,保证了钢锚梁安装的精度。 2.0.2钢锚梁采用塔吊整体吊装,施工快捷、安装周期短。 2.0.3首节钢锚梁安装采用调节支架,便于钢锚梁在高空进行平面位置及高程的调整,使首节基准钢锚梁安装精度更高,为提高标准节钢锚梁的安装精度打下了良好的基础。 2.0.4钢锚梁安装采用专用吊具,避免钢锚梁整体吊装时扭曲、变形。 3、适用范围 适用于斜拉桥索塔钢锚梁安装施工。 4、工艺原理

斜拉桥混凝土索塔施工工艺工法.

斜拉桥混凝土索塔施工工艺工法 (QB/ZTYJGYGF-QL-0601-2011) 桥梁工程有限公司廖文华罗孝德 1 前言 1.1 工艺工法概况 斜拉桥的主塔承受的荷载主要有:塔身自重力、拉索传递的水平及竖向分力、风力、地震力等。这些力在塔身上产生的综合效应为沿桥塔纵横向的水平剪力和弯矩,以及轴向压力等。 一般斜拉桥的顺桥布置形式基本为单柱式、倒Y形、A字形等,如下图所示。 图1 塔柱形式(顺倾向) a)单柱式;b) 倒Y形;c) A字形 索塔沿横桥向的布置主要有:柱式、门式、A字形、倒Y形、菱形(宝石形)等,如下图所示。 图2 塔柱形式(横倾向) a)柱式;b)、 c)门式;d) A字形;e)倒Y形;f)菱形(宝石形) 本工法以重庆巫奉高速公路何家坪特大桥花瓶型(门式)钢筋混凝土索塔施工为依托,全面阐述斜拉桥索塔施工所采用的先进施工技术和施工工艺特点。 1.2 工艺原理

1.2.1索塔的施工可视其结构、体形、材料、施工设备和设计要求综合考虑,选用适合的方法。裸塔施工宜用爬模法,横梁较多的高塔,宜采用劲性骨架挂模提升法。 1.2.1斜拉桥施工时,应避免塔梁交叉施工干扰。必须交叉施工时应根据设计和施工方法,采取保证塔梁质量和施工安全的措施。 1.2.2斜塔柱施工时,必须对各施工阶段塔柱的强度和变形进行计算,应分高度设置横撑,使其线形、应力、倾斜度满足设计要求并保证施工安全。 1.2.3索塔横梁施工时应根据其结构、重量及支撑高度,设置可靠的模板和支撑系统。要考虑弹性和非弹性变形、支承下沉、温差及日照的影响,必要时,应设支承千斤顶调控。体积过大的横梁可分两次浇筑。 1.2.4索塔混凝土现浇,应选用输送泵施工,超过一台泵的工作高度时,允许接力泵送,但必须做好接力储料斗的设置,并尽量降低接力站台高度。 1.2.5必须避免上部塔体施工时对下部塔体表面的污染。 1.2.6索塔施工必须制定整体和局部的安全措施,如设置塔吊起吊重量限制器、断索防护器、钢索防扭器、风压脱离开关等;防范雷击、强风、暴雨、寒暑、飞行器对施工影响;防范吊落和作业事故,并有应急的措施;应对塔吊、支架安装、使用和拆除阶段的强度稳定等进行计算和检查。 2 工艺工法特点 2.1 翻模工艺 模板制造简单,构件种类少,可根据施工起吊能力、索塔造型进行分块,施工缝易于处理,外观美观,施工速度快。 图3 翻模提升示意图 2.2 液压自爬模工艺 爬升稳定性好,操作方便,安全性高,可节省大量工时和材料。一般情况下

索塔施工

索塔施工 10.1.1 工艺概述 斜拉桥主塔分为钢筋混凝土主塔、钢结构主塔和结合型主塔,本工艺适用于钢筋混凝土主塔施工作业。 索塔是斜拉桥的主要承重结构,索塔的施工质量直接影响到整个桥梁的使用寿命及结构安全。根据索塔的结构特点,主要有如下特点: 一、高空作业,斜拉桥索塔一般都有几十米,上百米、甚至几百米高,所有施工作业均为高空作业,施工风险很大。 二、立体交叉施工,索塔施工包含劲性骨架、钢筋,混凝土、预应力、模板、支架、斜拉索等工程,各种工程施工交叉作业,但一般不在一个高程平台上,施工均在多层平台上穿插进行,相互干扰,影响很大。 三、多工序转换的循环作业,钢筋混凝土索塔施工包括钢筋、混凝土、预应力、模板、劲性骨架及斜拉索等作业,各工序循环施工,转换速度快,一般只有一两天,甚至仅有几个小时。 10.1.2 作业内容 钢筋混凝土主塔作业内容包括劲性骨架、钢筋、混凝土、预应力、模板、支架、索导管等。钢结构主塔主要为吊装作业。 10.1.3 质量标准及检验方法 《铁路混凝土工程施工质量验收标准》(TB10424-2010) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010)

10.1.4 工艺流程图 图10.1.4-1 斜拉桥主塔施工工艺流程图 10.1.5 工艺步骤及质量控制 一、塔吊及电梯的设置 索塔施工均为高空作业,其主要起重、吊装设备一般为高塔吊机,并根据现场实际情况设置上下电梯。 1.塔吊的选型 高塔吊的选型主要考虑吊重和吊距,吊重与吊距均应满足施工需要。 2.塔吊的布置 高塔吊的布置应遵循便于斜拉索安装及主塔钢筋混凝土施工,同时兼顾主梁施工的原则进行。在塔吊布置时,首先应保证其基础位置的结构,同时应考虑其附着与施工对施工

(推荐)斜拉桥索塔工法

斜拉桥索塔施工工法中交一公局第三工程有限公司

斜拉桥索塔施工工法 一、前言 随着高速公路的迅猛发展,公路等级不断提高,斜拉桥、悬索桥等具有高墩、大跨径特点的桥梁被广泛应用到工程实际,同时也发挥了越来越重要的作用。索塔作为斜拉桥、悬索桥一个十分重要的组成部分,造价高昂、施工周期长,如何科学组织施工,优质高效地完成施工任务,具有十分重要的意义。本工法依托江苏省连盐高速公路灌河特大桥索塔施工工程实例,全面系统地阐述了索塔施工技术和工艺特点。已建成的索塔成品倾斜度、空间尺寸以及外观质量均满足规范要求,处于良好的受控状态,施工进度科学合理。该工法被证明是一项行之有效的施工工法,代表了目前索塔施工的先进水平。 二、工法特点 1、本工法工艺简练,操作性强,施工易于实现。在合理设计模板、支架和爬架系统的基础上,可以实现高度较大的索塔施工。 2、本工法施工结构设计合理,力学模型明确,设计计算量不大,易于被工程技术人员掌握。 3、质量易于控制,通过采用相对基准极坐标法进行测量控制,以及模板支撑体系的优化,结构物实体质量和外观质量优良。 4、本工法投入的大型机械设备相对较少,施工成本较低,循环施工周期较短,具备较高的投入产出比。 三、适用范围 本工法具有施工快捷,结构合理,经济实惠等特点,可以被广泛应用到斜拉桥、悬索桥的索塔施工中,尤其适合于索塔截面比较规则,塔柱高为100~200m的中小型钢筋砼索塔。通过对模板系统以及爬架提升装置的改进和优化,也可以应用到变截面及高度较大的索塔施工中。 四、工法原理 本工法是索塔施工的一种非常有效的工艺方法。工法原理:在塔柱内预先安装劲性骨架作为钢筋模板安装定位的依托,纵向主钢筋采用机械连接,下塔柱采用钢管支架模板体系、中上塔柱采用内翻外爬附爬架的分节段爬模施工模式,砼采用拖泵泵管输送,在中塔柱上设置横向临时撑架,防止塔柱根部产生拉应力,斜拉索与索塔的锚固形式采用钢锚梁锚固体系,直接传递给索塔,横梁采用钢管落地支架支撑体系,通过合理布设塔吊、电梯、泵管、水电等设施以及进行预埋件的埋设,并运用塔吊以及吊车进行施工材料的垂直运输的一种高效的索塔施工工艺。 根据索塔形式、高度以及所采用的施工工艺、方法、设备性能和具备的施工能力,索塔分节长度不尽相同,一般分节长度为4.0~5.0m。 五、施工工艺流程及操作特点 (一)索塔施工工艺流程

斜拉桥方案图纸汇总

斜拉桥方案图纸汇总 的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 斜拉桥施工图纸 斜拉桥施工图纸 大桥主通航孔420斜拉桥施工图纸 大桥斜拉桥上部结构图纸 斜拉桥实例 斜拉桥的计算 斜拉桥施工组织设计 桥南汊斜拉桥施工控制设计图纸 大桥主桥斜拉桥主梁牵索挂篮施工工艺 斜拉桥主塔施工技术方案 斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。 斜拉桥(92第1版)大桥局

斜拉桥设计--刘士林,王似舜主编 斜拉桥施工组织设计 斜拉桥建造技术 斜拉桥125m部分斜拉桥方案设计图纸 某斜拉桥工程毕业设计 预应力混凝土斜拉桥工程毕业设计 双塔双索面斜拉桥施工图集 MIDAS-斜拉桥成桥阶段和正装分析 独塔斜拉桥设计 铁路斜拉桥施工挂篮设计计算书 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4月2日试通车。 小跨斜拉桥图纸 南京钢箱梁斜拉桥全套图纸

斜拉桥

哈尔滨工业大学毕业设计(论文) 第1章绪论 1.1概述 斜拉桥是一种桥面体系受压、支承体系受拉的结构,其桥面体系由加劲梁构成,其支承体系由钢索组成。 上世纪70年代后,混凝土斜拉桥的发展可分成三个阶段: 第一阶段:稀索,主梁基本上为弹性支承连续梁; 第二阶段:中密索,主梁既是弹性支承连续梁,又承受较大的轴向力; 第三阶段:密索,主梁主要承受强大的轴向力,又是一个受弯构件。 近年来,结构分析的进步、高强材料的施工方法以及防腐技术的发展对大跨斜拉桥的发展起到了关键性的作用。斜拉桥除了跨径不断增加外,主梁梁高不断减小,索距减少到10m以下,截面从梁式桥截面发展到板式梁截面。混凝土斜拉桥已是跨径200m~500m范围内最具竞争力的桥梁结构。 1.1.1 结构体系 斜拉桥的基本承载构件由梁(桥面)、塔和索三部分组成,且三者以不同的方式影响总体结构的性能。实际设计时三者是密不可分的。塔、梁及索的不同变化和相互组合,可以构成具有各自结构性能且力学特点和美学效果的突出的斜拉桥。正因为如此,斜拉桥基本体系可按力学性能分为漂浮体系、支承体系、塔梁固结体系和刚构体系: 漂浮体系为塔墩固结、塔梁分离,主梁除两端有支承外,其余全部用拉索悬吊,是具有多点弹性支承的连续梁。 支承体系即墩梁固结、塔梁分离,在塔墩上设置竖向支承,为具有多点弹性支撑的三跨连续梁。 塔梁固结体系即塔梁固结并支承在墩上,梁的内力和挠度同主梁与塔柱的弯曲刚度比值有关。其支座至少有一个为纵向固定。 刚构体系为梁塔墩互为固结,形成跨度内具有多点弹性支承的刚构。这种体系的优点是既免除了大型支座又满足悬臂施工的稳定要求,结构整体刚度较好,主梁挠度小;缺点是主梁固结处负弯矩较大,较适合于单塔斜拉桥。在塔墩很高的双塔斜拉桥中,若采用薄壁柔性墩来适应温度和活载等对结构产生的水平变形,形成连续刚构,能保持刚构体系的优点,并使行车平顺。采用这种体系的有美国的Dames Point桥和我国的广东崖门大桥等。 - 1 -

(完整版)斜拉桥监理要点

斜拉桥施工监理要点 斜拉桥属于高次内部超静定结构,施工与设计关联非常紧密,有互补和互反馈的关系。监理工程师和承包商在施工前要全面了解设计的要求和意图,吃透设计文件中的施工建议、工艺要求和施工程序,在此基础上编制监理实施细则、实施性施工组织设计和监控方案,在施工过程中要不断采集监测数据,反馈给设计单位,使之及时调整设计参数、修正并完善后续施工方案等措施,循环往复,以达到成桥后线形和内力状态符合设计要求的最终目的。 斜拉桥监理的重点是斜拉桥组合体系的三要素:即索塔,主梁和拉索,以及施工监控四个方面。 1索塔施工的监理要点 ⑴索塔一般采用现场浇筑钢筋砼或部分预应力钢筋砼结构。索塔施工与高桥墩的施工要求基本相同,具体施工时要根据不同的索塔型式采用相应的施工方式。因索塔高度较高,要着重控制各部位的平面位置、轴线控制、截面尺寸、倾斜度、预埋件制作及安装的精度和质量,施工测量控制要严格满足有关规范要求, ⑵索塔基础和承台的施工工艺与一般桥梁基础、承台施工工艺基本相同,施工监理要点也类似。应注意的是承台和基础施工要根据现场水文条件采用适宜的筑岛、围堰方式;承台砼体积很大,责成承包人做好设备、材料供应及人员的组织工作,按设计要求一次浇筑完成;为防止大体积砼水化热高导致砼开裂的现象,要求承包人必须按设计要求采取在砼中预埋冷凝管道的方法降低砼水化热,并可采用矿渣水泥、粉煤灰水泥、掺加缓凝剂等措施。 ⑶斜拉桥索塔施工常用的方法可采用支架翻模法,承包人事先应进行结构强度、刚度和稳定性验算。当采用两种不同材料搭设施工支架时,相互之间的牢固连接是支架整体稳定的关键,必须采取可靠措施予以保证;支架和操作平台要有足够的强度、刚度和抗风稳定性,一般宜间隔5m高度与索塔连接;为配合模板和张拉千斤顶的垂直提升,支架与索塔的间距宜在50cm左右。 ⑷索塔横梁施工的关键是模板和支撑系统,要考虑弹性和非弹性变形、支承下沉、温差及日照的影响,必要时应设支承千斤顶调控。

混凝土斜拉桥

第四篇混凝土斜拉桥 第一章概述 第一节斜拉桥的发展 一、国外的发展 20世纪30年代,德国工程师迪辛格(Dischinger)首先认识到斜拉桥结构上的优越性,建成第一座现代斜拉桥――主跨182m的新斯特雷姆伍特桥(Stromsumd)于1955年在瑞典建成。 1962年建成的马拉开波桥是第一座混凝土斜拉桥,主跨为160+5×235+160,采用稀索布置,索塔两侧仅一对预应力拉混凝土拉索。 此后斜拉桥得到迅速发展,全球建成300多座。 1994年建成法国诺曼底桥,主跨为856m,是目前世界上最大跨径的混合型斜拉桥。1998年底日本建成的主跨为890m的多多罗大桥,是20世纪最大跨径的钢斜拉桥。 二、斜拉桥在我国发展(19座,L>400m) 我国在1993年建成了上海杨浦大桥,主跨为603m,是20世纪世界上最大跨径的结合梁斜拉桥。 三、斜拉桥的发展阶段 第一阶段:稀索布置,主梁基本上是弹性支承连续梁 第二阶段:中密索,既是弹性支承连续梁,又承受较大的轴向力 第三阶段:密索布置承受强大的轴向力,同时又是一个受弯构件 20年的发展中,混凝土斜拉桥的发展异常迅速,除了跨径不断增加外,主梁高不断减小,主梁的高跨比从1/40左右发展到1/254,索距从60m-70m减少到10m以下,截面型式从梁式桥截面型式发展到扁平的板式梁截面,最大跨径已达530m。 根据国内外桥梁专家的研究分析,混凝土斜拉桥的最大跨径可达700m,钢斜拉桥跨径可达1300m,结合梁斜拉桥(主梁为钢-混凝土结合梁)最大跨径可达1000m。经济跨径在200m-500m之间。 第二节总体布置及结构体系 一、总体布置

世界十大斜拉桥

世界十大斜拉桥 1.苏通长江大桥1088米,中国,2008 双塔双索面钢箱梁 苏通大桥位于江苏省东部的南通市和苏州(常熟)市之间,是交通部规划的黑龙江嘉荫至福建南平国家重点干线公路跨越长江的重要通道,也是江苏省公路主骨架网“纵一”——赣榆至吴江高速公路的重要组成部分,是我国建桥史上工程规模最大、综合建设条件最复杂的特大型桥梁工程。建设苏通大桥对完善国家和江苏省干线公路网、促进区域均衡发展以及沿江整体开发,改善长江安全航运条件、缓解过江交通压力、保证航运安全等具有十分重要的意义。 大桥建设工程情况:苏通大桥工程起于通启高速公路的小海互通立交,终于苏嘉杭高速公路董浜互通立交。路线全长32.4公里,主要由北岸接线工程、跨江大桥工程和南岸接线工程三部分组成。 l、跨江大桥工程:总长8206米,其中主桥采用100+100+300+1088+300+100+100=2088米的双塔双索面钢箱梁斜拉桥。斜拉桥主孔跨度1088米,列世界第一;主塔高度306米,列世界第一;斜拉索的长度580米,列世界第一;群桩基础平面尺寸113.75米X 48.1米,列世界第一。专用航道桥采用140+268+140=548米的T型刚构梁桥,为同类桥梁工程世界第二;南北引桥采用30、50、75米预应力混凝土连续梁桥; 2、北岸接线工程:路线总长15.1公里,设互通立交两处,主线收费站、服务区各一处;

3、南岸接线工程:路线总长9.1公里,设互通立交一处。 苏通大桥全线采用双向六车道高速公路标准,计算行车速度南、北两岸接线为120公里/小时,跨江大桥为100公里/小时,全线桥涵设计荷载采用汽车一超20级,挂车一120。主桥通航净空高62米,宽891米,可满足5万吨级集装箱货轮和4.8万吨船队通航需要。全线共需钢材约25万吨,混凝土140万方,填方320万方,占用土地一万多亩,拆迁建筑物26万平米。工程总投资约64.5亿元,计划建设工期为六年。 四项世界之最: 最大主跨: 苏通大桥跨径为1088米,是当今世界跨径最大斜拉桥。 最深基础: 苏通大桥主墩基础由131根长约120米、直径2.5米至2.8米的群桩组成,承台长114米、宽48米,面积有一个足球场大,是在40米水深以下厚达300米的软土地基上建起来的,是世界上规模最大、入土最深的群桩基础。 最高桥塔: 目前世界上已建成最高桥塔为多多罗大桥224米的钢塔,苏通大桥采用高300.4米的混凝土塔,为世界最高桥塔。 最长拉索: 苏通大桥最长拉索长达577米,比日本多多罗大桥斜拉索长100米,为世界上最长的斜拉索。 2.香港昂船洲大桥1018米,中国,2008 双塔双索面 主梁边跨及中跨两边为24m混凝土箱梁,中部为钢箱梁。

3-8特殊梁型(斜拉桥、拱桥、悬索桥)全解

特殊梁型施工技术试题 (斜拉桥、拱桥、悬索桥) (含选择题45道,填空题12道,简答题5道) 一.选择题:(共45题) 1. 分段拼装梁的接头混凝土或砂浆,其强度不应低于构件的设计强度。不承受内力的构件的接缝砂浆,其强度不应低于(A)。 A. M10 B. M20 C. M30 2. 跨径大于或等于(B)的拱圈或拱肋,应沿拱跨方向分段浇筑。 A、15 m B、16 m C、18m 3. 装配式拱桥构件在脱模、移运、堆放、吊装时,混凝土的强度不应低于设计所要求的强度,一般不得低于设计强度的(A)。 A、60% B、75% C、80% 4. 转体合龙时,应严格控制桥体高程和轴线,误差符合要求,合龙接口允许相对偏差为(C)。 A、±5mm B、±8mm C、±10mm 5.钢管混凝土拱桥所用钢管直径超过(B)mm的应采用卷制焊接管,卷制钢管宜在工厂进行。在有条件的情况下,优先选用符合国家标准系列的成品焊接管。 A、300 B、600 C、800 6.下列不属于拱桥的优点的是:(B) A、耐久性好 B、自重小 C、构造简单 7. 箱形拱桥拱圈横截面由几个箱室组成。截面挖空率大,可达全截面的(B),较实体板拱桥可减少圬工用料与自重,适用于大跨度拱桥。

A、30%-50% B、50%-70% C、70%-90% 8.拱桥拱箱横隔板的主要作用是(A)。 A、提高抗扭能力 B、提高抗弯能力 C、便于分节施工 9. 当桥梁的建筑高度受到严格限制时,可采用(C )满足桥下建筑高度。 A、上承式拱 B、中承式拱桥 C、下承式拱桥 10.在不等跨的多孔连续拱桥中,为了平衡左右桥墩的水平推力,将较大跨径一孔的失跨比加大,做成(B),可以减小大跨的水平推力。 A、上承式拱 B、中承式拱桥 C、下承式拱桥 11.在平坦地形的河流上,不易选用(A),有利于改善桥梁两端引道的工程数量。 A、上承式拱 B、中承式拱桥 C、下承式拱桥 12. 转体合龙时,应控制合龙温度。当合龙温度与设计要求偏差3℃或影响高程差±10mm时,应计算温度影响,修正合龙高程。合龙时应选择当日(B)进行。 A、最高温度 B、最低温度 C、平均气温 13. 转体合龙时,宜先采用钢楔刹尖等瞬时合龙措施。再施焊接头钢筋,浇筑接头混凝土,封固转盘。在混凝土达到设计强度的(C)后,再分批、分级松扣,拆除扣、锚索。 A、75% B、70% C、80% 14.封拱合龙温度应符合设计要求,如设计无规定时,宜在接近当地年平均温度或(A)时进行,封拱合龙前用千斤顶施加压力的方法调整拱圈应力时,拱圈(包括已浇间隔槽)的混凝土强度应达到设计强度。 A、5-15℃ B、10-20℃ C、15-25℃ 15.钢管拱肋(桁架)安装,采用斜拉扣索悬拼法施工时,扣索与钢管拱肋的连接件

主桥索塔施工方案

主桥索塔施工方案 一、工程概况 沙颍河大桥周口市大庆路中段,跨越沙颍河。桥梁工程起点桩号K0+193.04,终点桩号K0+490.04,桥梁全长297m。跨径布置为3×20m+(2×81m)(独塔单索面斜拉桥)+4×18.75m,索塔中心桩号K0+334.04。 索塔塔墩为为单箱三室箱型断面,每个塔墩断面尺寸为9.5×2.2m的钢筋混凝土结构,混凝土标号C50。塔柱为箱型断面的钢筋混凝土结构。下塔柱截面尺寸顺桥向外轮廓 2.2m宽不变,壁厚0.65m,横桥向外轮廓尺寸变宽,最窄处宽3.7m,壁厚0.8m;上塔柱横桥向外轮廓尺寸2.0m不变,壁厚0.5m,顺桥向外轮廓尺寸变宽,最窄的上部尺寸为3.4m,壁厚0.8m。上塔柱锚固区段设置“#”字形预应力加强筋,预应力筋采用φ32精扎螺纹钢筋。索塔内设置了 型钢劲性骨架。 主塔施工:承台以上部分,包括塔座、塔柱劲性骨架安装、钢筋制作安装、塔柱、横向预应力及横梁,塔内爬梯安装,防雷设施,各种预埋件安装等。主塔为钢筋砼结构,塔高74.1m,自桥面以上55.75m。从上到下分为塔尖区、锚固区、上塔柱区、下塔柱区、塔墩区。

主要工程量一览表 二、主塔施工 1.塔吊布置 塔吊操作严格按作业要求进行,由专人负责,操作手经考核合格后方可上岗。在索塔的东面靠北向承台上,安装QTZ5008型塔吊,解决索塔施工中的起重工作,塔吊附着在塔柱上,每20米设置一道附着。为保证桥面系预应力的完整性,塔吊过桥面时不留大的孔位,仅留塔身杆件小孔。塔吊拆除是把该塔身标准节切割即可(报废一节)。

电梯安装 索塔采用施工电梯,最大载重2吨。电梯附着在塔吊上,每9米设一道附墙。电梯出口设置在塔吊上的移动通道。同时分层连接到围护脚手架上。 电梯由专人操作,在电梯内设置电铃,上、下端设置按钮。 2、塔座施工工艺 塔座位于承台和塔墩之间,是一不规则几何形状。塔座施工工艺流程为:测量放样→钢筋绑扎→模板安装→浇筑砼→拆模及外观检查→养护。 2.1、测量放样 用尼康DTM-530E全站仪放出塔座底面四角,再放出塔座顶面纵横轴线,并标示出模板的安装位置。 2.2、钢筋工程 1)塔座主筋伸入承台,在浇筑承台混凝土时,已经预埋好。 2)钢筋绑扎:钢筋应按顺序绑扎。按图纸要求划线、铺筋、穿箍、绑扎,最后成型。 3)受力钢筋搭接接头位置应正确。其接头相互错开。 4)绑砂浆垫块:底部钢筋下的砂浆垫块,间隔1m,侧面的垫块应与钢筋绑牢,不应遗漏。 5)钢筋绑扎成型后,要预埋塔墩钢筋和骨架。

混凝土双塔斜拉桥的稳定分析

混凝土双塔斜拉桥的稳定分析 【摘要】长春光复高架桥跨铁路双塔斜拉桥桥长368m,采用84m+200m+84m双塔双索面结构,主梁为预应力混凝土双边箱结构,桥塔采用h型箱型薄壁结构。文章用midas 2010程序对运营状态下桥梁结构稳定性进行了分析。 【关键词】混凝土斜拉桥;稳定性;稳定系数;预应力 1 工程概况 1.1 主桥设计简介 长春光复高架桥跨铁路双塔斜拉桥位于长春站东侧,本桥在该处跨越京哈上下行线共计18条铁路线和长吉城际上下行线,是该区域的重要景观。主桥的桥梁结构形式采用双塔双索面结构,半漂浮体系,孔跨布置为84m+200m+84m,边跨计算跨径83m,边中跨比为0.42。主塔为h型,箱型薄壁结构,结构高度为54.5m,h/l=0.2725。梁上索距6m,每个塔设15对拉索,每对斜拉索和主梁相交处设横梁。 1.2 设计标准及技术条件 1.2.1 公路等级:城市快速路,v=60km /h,双向6车道; 1.2.2 荷载标准:公路—ⅰ级; 1.2.3 桥面布置: 0.50米(风嘴)+1.5米(拉索锚固区)+0.5 米(防撞护栏)+11.5米(行车道)+1.0米(中央分隔带)+11.5米(行车道)+0.5米(防撞护栏)+1.5米(拉索锚固区)+0.50米(风嘴)=29米。 1.2.4 抗震设防烈度:ⅶ度;

1.2.5 设计风速:35.4米/秒; 1.2.6 环境类别:ⅱ类; 1.2.7 桥上纵坡:2.2%和-3%,竖曲线半径4000m,桥上横坡:1.5%; 1.2.8 桥下净空:铁路:电气化铁路净高按不小于7.96m。长吉城际不小于7.5m。 1.3 主要材料特征 1.3.1 主梁 主梁标准断面采用c50混凝土双边箱梁,梁宽29m,中心处梁高3.0m,桥面板厚0.3m,桥面板设1.5%双向横坡。边箱箱底板宽4m,三角部分宽4.5m,主梁标准段长度为6.0m,标准段底板、腹板厚为0.4m,三角部分底板、顶板厚为0.3m,在标准段两边箱间不设底板;三角部分底板厚为0.45m;边跨密索区梁段长度为2.5m,箱形截面为单箱四室结构,三角部分底板、顶、底板、腹板及桥面板厚度同索塔区箱梁。主梁纵向预应力采用精轧螺纹粗钢筋和预应力钢绞线,精轧螺纹粗钢筋抗拉标准强度为fpk=930mpa,弹性模量ey=2.0×105mpa;预应力钢束采用高强度低松弛1860级钢绞线,直径φs15.24mm,fpk=1860mpa,fpd=1260 mpa,ep=1.95×105mpa。主梁腹板设竖向预应力,采用精轧螺纹粗钢筋。 1.3.2 主塔 主塔截面采用矩形空心断面,上塔柱和中塔柱横桥向标准尺寸3.5米,纵桥向标准尺寸6.5米,拉索锚固处塔壁厚1.2米,拉索锚固区塔内净空4.1×1.9米。下塔柱横桥向尺寸3.5米,纵桥向尺寸

斜拉桥索塔施工关键技术

摘要:斜拉索塔的施工设计对于桥梁建设是极为重要的,本文通过对于斜拉桥索塔的施工特点、施工设计与关键技术进行分析,力求为斜拉桥索塔施工的方案进行创新与改进。 1斜拉桥索塔的施工特点 (1)安全风险大 主塔施工材料进场,部分采用运输船,运输船穿越主航道需要避让过往船舶。索塔施工时,作业人员上下、液压爬模安装和爬升、大件构件和材料吊装,以及横梁支架搭设等属高处作业,需要针对索塔施工特点编制专项的安全施工方案组织实施。 索塔施工期,经历季风和台风季节,需要做好防季风和台风的专项预案和措施。横梁施工水平不分层,避免上层混凝土自重通过下层传递,导致下层底板混凝土开裂;竖向中间可设后浇带,尽可能降低先浇节段收缩裂缝产生。本工程采取不分层不分段的一次性浇注成型,极大地考验横梁支架和内模支撑体系的可靠性。 (2)施工组织难度大 单幅横梁一次性浇注接近700m3,尤其是Z3#主塔,混凝土施工的原材料均由栈桥运抵现场,相邻标段干扰较大。索塔施工钢锚梁异地制造,现场堆存条件有限,其进场需提前安排,否则影响现场上塔柱施工。 塔柱第一节段与起步段之间的施工间隔不能超过17天,考虑塔柱初始施工工作量大,需要搭设脚手架,安装大块钢模板,第一节段施工周期为15天。塔柱第2节段开始安装液压爬模,考虑12天工期。

索塔从第23节段开始安装钢锚梁,考虑7天工期,其余节段考虑6天工期。 (3)大型设备要求高 索塔以及后续的上部结构施工,需要在单个索塔墩承台上布置900t.m和250t.m塔吊各1台,满足索塔钢锚梁和斜拉索上桥面的吊装需要。索塔高度超过150m,需要配置满足高塔施工的HBTl05.21.286RS混凝土拖式泵。另外,索塔塔肢相对独立,需要每个塔肢布设1台施工电梯和1套液压爬模系统。 2斜拉桥索塔的施工设计 3斜拉桥索塔施工的关键技术 以泉州湾跨海大桥A4合同段主桥索塔施工为例,主要施工内容为塔座、下塔柱、下横梁、上塔柱、上横梁、塔冠施工以及钢锚梁的吊装施工等内容。 (1)安装塔座模板,绑扎塔座钢筋,设置温控水管及其它预埋件,凿毛、清洗承台表面,同时浇筑塔座和0.5m高起步段塔柱混凝土。 (2)塔柱采用液压爬模逐段连续施工,模板保证足够的刚度,以确保塔柱混凝土外观质量;每段浇筑混凝土的高度控制在3.60-5.0m以内,衔接面认真凿毛,且每次衔接面的处理力求整齐、清洁,以保证新老混凝土的接缝质量。 (3)严格控制塔柱倾斜度、高程及各断面尺寸。为消除索塔混凝土收缩、徐变和塔柱弹性变形的影响,索塔设置预抬量,在塔柱施

(完整版)公路斜拉桥设计规范

公路斜拉桥设计规范(试行) Design Specifications of Highway Cable Stayed Bridge (on trial) 主编部门:交通部重庆公路科学研究所 批准部门:中华人民共和国交道部 试行日期:1996年12月1日 人民交通出版社 1996-北京 1总则 1.0.1为了使公路斜拉桥设计达到技术先进、经济合理、安全适用、确保质量,特制定本规范。 1.0.2本规范适用于混凝土斜拉桥、结合梁斜拉桥、钢斜拉桥的设计,为现行公路桥涵设计规范的补充。除本规范明确规定外,应遵照现行有关公路桥涵设计规范要求执行。 1.0.3斜拉轿总体方案,应与环境协调并综合考虑经济与安全、设计与施工、材料与机具、营运与管理,以及桥位处地质、水文、气象、地震等因素确定结构体系。 1.0.4桥宽应满足交通发展的要求,并应符合《公路工程技术标准(JTJ01--88)(1995年版)的规定。 1.0.5设计主梁、索塔与拉索时,宜进行多方案比较。 1.0.6所选方案除进行静力分析外,应重视动力分析,结构体系应满足强度、刚度、稳定性要求,并有较好的抗震性能,混凝土斜拉桥宜注意收缩徐变影响 2术语 2.0.1混凝土斜拉桥:主梁为钢筋混凝土或预应力混凝土的斜拉桥。 2.0.2钢斜拉桥:主粱及桥面系均为钢结构的斜拉桥。 2.0.3结合梁斜拉桥:主梁为钢结构,桥面系为混凝土结构,主梁与桥面系结合在一起共同受力的斜拉桥。 2.0.4拉索:承受拉力并作为主梁主要支承的结构构件。 2.0.5索塔:用以锚固拉索,并将其索力直接传递给下部结构的受力构件。

2.0.6主梁:主要由拉索支承,直接承受荷载的结构构件。 2.0.7辅助墩:为改善主跨的受力状态,在边跨内设置的既能承受压力又能承受拉力的墩。 2.O.8训拉力:安装拉索时,给拉索施加的张拉力。 2.0.9拉索调整力:为改善主梁及索塔的截面内力状态而调整拉索的拉力。 2.0.10跨径:原则上为两支座中心线间的距离,中跨为两个索塔中心线间的距离,边跨为后锚索处的墩上支座中心线与临近的索塔中心线间的距离。 3一般规定 3.1材料 3.1.1混凝土 用于斜拉桥各部分构件的混凝土标号、混凝土设计强度和标准强度、混凝土受压及受拉时的弹性模量,按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023--85)的规定采用. 预应力混凝土主粱的混凝土标号不宜低于40号,预应力混凝土索塔的混凝土标号不宜低于30号,钢筋混凝土主梁的混凝土标号小宜低于30号,钢筋混凝土索塔的混凝土标号不宜低子30号。 3.1.2钢材 钢筋混凝土及预应力混凝土构件所采用的钢筋类别、钢筋的设计强度和标准强度、钢筋的弹性模量按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023--85)的规定采用。 拉索采用强度及弹性模量较高的高强钢丝、钢绞线及高强粗钢筋。 销稿拉桥主梁所用钢板、高强螺栓、粗制螺栓、铆钉等材料的技术要求,焊接材料及钢材的弹性模量等按交通部现行《公路桥涵钢结构及木结构设计规范》(JTJ 025--86)的规定采用。 3.1.3锚具用钢材 拉索锚具及预应力锚头应采用45号钢及其他优质钢材。 3.1.4拉索防护材料 拉索防护材料应选用具有防锈蚀、耐老化及经济的聚乙烯、玻璃钢、防腐涂料等材料。 3.2结构型式

斜拉桥索塔上横梁60m高落地钢管支架施工工法

斜拉桥索塔上横梁60m高落地钢管支架 施工工法 1 前言 随着桥梁设计理论、施工工艺的不断提高,大跨度桥梁设计已经成为国内外设计者追求的目标。斜拉桥作为一种高次超静定结构的拉索桥梁体系,由于其具有强大的跨越能力、优秀的结构受力性能、美观的桥型等特点,在全世界范围内得到了广泛的认可与发展。我国紧随时代潮流,在短短几十年的时间内成功建立了几百座斜拉桥,已成为世界上拥有斜拉桥最多的国家。随着设计理念以及施工工艺的不断进步,新材料、新工艺的不断涌现,大大促进了我国斜拉桥的建设。 传统的混凝土斜拉桥施工工艺基本采用先主塔后主梁,其施工工期较长,越来越不适应快节奏的施工要求。目前国内外有些项目采用了塔梁同步施工的施工工艺,但上横梁的模板利用已浇筑的索塔埋设牛腿方法进行支撑,上横梁荷载全部通过支撑系统传递到索塔上,使得索塔产生较大的水平位移;且高空操作,施工定位困难。中铁十七局在甘肃酒泉西一斜拉桥施工中,采用塔梁同步施工工艺的同时,创新的采用落地钢管支架对塔60m高处上横梁进行了浇筑,大大缩短了施工工期,取得了很好的社会经济效益。在此基础上,我项目部总结提炼出混凝土斜拉桥塔梁同步施工时上横梁60m高落地钢管支架施工工法。 2 工法特点 2.1 传力明确,安全可靠 通过竖直钢管支架与横向贝雷梁组成上横梁模板支撑系统,将上横梁荷载传递至基础与索塔,系统传力明确,安全可靠。 2.2 科技含量高、技术先进 在浇筑过程中,采用动态监控技术监测上横梁变形以及0号块主梁支架位置变形情况,将桥梁理论结构分析、现场监控与施工组织有效的联系在一起,使斜拉桥的上横梁浇筑过程始终处于一个动态控制中。 2.3 施工质量高 采用全站仪对支架钢管垂度进行监测,桥面作业,易于控制,支架安装定位精度高;由于支架系统承担了一部分上横梁施工荷载,相比只预埋牛腿搭设双层贝雷梁的支撑施工工艺,对索塔的位移影响小,保证施工质量。 2.4 分层浇筑、二次张拉,降低支架系统失稳可能性 上横梁采用分层浇筑,二次张拉施工方法。第一次浇筑高度 2.5m,张拉预应力50%;当混凝土强度强度达到设计强度85%之后进行二次浇筑与完全张拉,此方法充分利用了先浇上横强度与刚度,分担了上横梁一部分荷载,降低支撑系

相关文档
最新文档