浅谈反证法的原理及应用

浅谈反证法的原理及应用
浅谈反证法的原理及应用

摘要

反证法是一种重要的证明方法,它不仅对数学科学体系自身的完善有促进作用,而且对人的思维能力的培养和提高也有极其重要的作用.如果能恰当的使用反证法,就能达到化繁为简,化难为易,化不能为可能的目的.反证法的逻辑思维强,数学语言准确性高,对培养学生严谨的逻辑思维能力,阅读能力,树立正确的数学观具有重要的意义.

本论文主要研究的容有反证法的由来;具体阐述了反证法的定义,即反证法的概念、分类和作用;反证法具有广泛应用的科学根据;并且着重介绍了反证法的应用,包括反证法在初等数学和高等数学的应用,并提出应用反证法应注意的问题;针对各种问题提出一些具体的教学建议,从而为改进反证法教学提供参考.

关键词:反证法,否定,矛盾,应用

Principle and application of the reduction to absurdity

ABSTRACT:Reduction to absurdity is an important method, it not only to improve its own system of mathematical science have stimulative effect, but also has an extremely important role in cultivating and improving the people's thinking ability. If you use apagoge properly, can be simplified, the difficult easy, words can not be as likely to. The logical thinking of reduction to absurdity, the language of mathematics of high accuracy, to cultivate students' rigorouslogical thinking ability, reading ability, is of great significance to establish a correct conception of mathematics.

The origin of the main content of the paper is the reduction to absurdity;expounds the definition of absurdity, and concept, apagoge classification; the reduction to absurdity has wide application of scientific basis; and introducesthe application of reduction to absurdity, including the application of reduction to absurdity in elementary mathematics and higher mathematics, and proposed should note that the application of reduction to absurdity problems;to solve these problems and puts forward some specific suggestions for teaching, so as to provide reference for the improvement of the teaching of reduction to absurdity.

Keywords: reduction to absurdity, negation, contradiction, application

目录

一、引言 0

二、反证法的由来 0

三、反证法的概念及分类 0

(一)反证法的定义 0

(二)反证法的分类 0

1.归谬法 0

2.穷举法 (1)

(三)反证法的作用 (1)

四、反证法的科学依据 (2)

(一)反证法的理论依据 (2)

(二)反证法的步骤 (2)

(三)反证法的可信性 (2)

五、反证法的应用 (3)

(一)反证法在初等数学中的应用 (3)

(二)反证法在高等数学中的应用 (5)

1.在数学分析中的应用 (5)

2.在高等代数中的应用 (7)

(三)应用反证法应注意的问题 (8)

1.反设要正确 (8)

2.明确推理特点 (8)

3.善于灵活运用 (9)

4.了解矛盾种类 (9)

六、反证法的教学价值及建议 (9)

(一)反证法的教学价值 (9)

1.训练逆向思维 (9)

2.促进数学思维的形成 (9)

3.培养思维严密性 (10)

4.渗透数学史 (10)

(二)反证法的教学建议 (10)

1.多次反复,螺旋上升 (10)

2.精心研究,训练反设 (11)

3.渗透数学思想方法,训练严密 (11)

七、结束语 (11)

八、参考文献 (12)

一、引言

在现代数学中反证法成为最有用和最有效的解决问题的方法之一,但在现行的各种教材中没有对反证法给出系统的介绍,学生在运用上又不如直接证法那样顺理成章,而且在归谬过程学生对所学的定义、定理以及命题本身又要有分析、判断、联想和创造能力,对在怎样的情况下才可采用反证法,学生又不容易判断,所以对反证法的理解和在恰当地应用上都存在不少的问题,因此本文就反证法做一些介绍和探讨.

二、反证法的由来

反证法顾名思义是一种证明方法,在数学和逻辑上是统一的.早期古希腊的数学在毕达哥拉斯学派的影响下认为万物皆数,用整数和几何图形构建了一个宇宙图式.万物皆数这个思想当时在数学家的脑海里是根深蒂固的.随着2的出现,希腊人渐渐开始重新审视他们的数学,图形和直观并不是万能的,推理和逻辑走上了数学的舞台.此时西方数学成为以证明为主的证明数学,他们要的是准确的数学,或者说他们的数学推崇准确性.表现形式就是:逻辑、演绎的体系.可见它是指证明的数学与算的数学正好相反.希腊人重视逻辑和演绎的证明,反证法最早应用在欧几里得的《几何原本》中.

三、反证法的概念及分类

(一)反证法的定义

反证法有多种不同的描述,其本质都是一样的.

最早的法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了如下的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”.

维基百科中这样描述“反证法,就是由否定命题结论的正确性出发,根据题设条件、定义、法则、公理、定理,进行一系列正确的逻辑推理,最后得到一个矛盾的结果.”即就是结论的反面不能成立,从而肯定命题结论的正确性,这种驳倒命题结论反面的证法叫做反证法.

(二)反证法的分类

反证法分类分为:归谬法和穷举法.

1.归谬法

若命题的反面只有一种情形,则只需把这一种情形驳倒,便可达到反证

的目的.

例1.两条直线同时平行于第三条直线,则原两条直线互相平行. 已知:,,EF CD EF AB ////

求证:.//CD AB

现用反证法予以证明.

假设AB 与CD 不平行,

则{}P CD AB =?(利用平行定义的反面意义),

EF AB // (即EF AP //)、EF CD //(即EF CP //)(题设), ∴过P 点有两条不同的直线与EF 平行,但这与平行公理矛盾(平行公理),临时假设AB 不平行CD (矛盾律),

故CD AB //(排中律).

2.穷举法

若命题题设反面不止一种情况,则必须将其逐一驳倒,才能间接证明题设的正面成立.这就叫穷举法.

例2.若121≥>x x ,则有n n x x 21>,

证明:若不然,则有,

()21211x x x x n n =?=,与题设矛盾,

()21212x x x x n n

因此,n n x x 21>.

(三)反证法的作用

牛顿曾经说过:“反证法是数学家最精当的武器之一”.最早在数学中引用反证法的是古希腊毕达哥拉斯学派的希波克拉提斯(前460年左右),在欧几里得的《几何原本》中也有不少用反证法的例.我国在五世纪时《邱建算经》中已有运用.反证法是数学证明中的一种重要方法,当正面不容易或者不能证明时,我们可以从命题的反面来思考问题,若能恰当使用,往往可以收到较好的效果.特别是有些数学命题至今除了反证法还别无它法,因此认识和掌握反证法就显得十分重要.

A C E

B D F

图1

四、反证法的科学依据

(一)反证法的理论依据

反证法所依据的是亚里士多德的形式逻辑的基本规律中的“矛盾律”和“排中律”.

其基本容是:在同一论证过程中,对同一对象的两个相矛盾的、对立的判断,不能同时都为真,至少有一个是假的,这就是“矛盾律”.如对2这个对象,“2是有理数”和“2是无理数”的两个判断中至少有一个是假的.在同一论证过程中,对同一对象的肯定判断和否定判断,这两个相矛盾的判断必有一个是真的,这就是“排中律”.如要证明“2是无理数”,只要证明“2是有理数”不真就够了.因为“2是有理数”和“2不是有理数”,是对象2的两个相矛盾的判断,依据排中律,其中必有一个判断是真的.如

能证明“2不是有理数”不真,是无理数”为真. (二)反证法的步骤

反证法的三个步骤:“反设”、“归谬”、“结论”,三者之间相辅相成,不可分割.

1、“反设”是基础.“反设”是反证法证题的第一步.反设的正确与否,直接影响反证法的后续步骤.因此,实施教学时,应指导学生做到:先弄清所证命题的条件部分和结论部分各是什么;再找出结论的相反情况,要求做到不重不漏;最后对结论加上“不”或“不是”,这样就完成了“反设”.

2、“归谬”是关键.“归谬”即利用“反设”导致矛盾.这不但是反证法的核心部分,而且也是反证法教学的难点所在.一些学生也知道需要经过逻辑推理,才能导出矛盾,但不明确怎样去寻找矛盾.因此,实施教学时,应指导学生明确:反设后条件部分是什么;逻辑推理应向哪个方向前进;矛盾将在何处产生.

3、“结论”是目的.“归谬”后,其矛盾的产生并非别的原理,只因“反设”所致,所以命题的原结论就得以成立.至此,反证法证题已经完成,目的也就达到了.

(三)反证法的可信性

反证法在其证明过程中,根据“矛盾律”,对“原结论”和“否定的原结论”来说,这两个相矛盾的判断不能同时都为真,必有一假,而已知条件、已知公理、定理、法则或者已证明为正确的命题都是真的,所以“否定的原

不动点定理及其应用

不动点定理及其应用 一、不动点定理 不动点定理fixed-point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =???,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。 (一)、压缩算子: 1、定义: 设(1)X 距离空间; (2)算子:T X X →的映射。 若(01),..,s t x y X θθ?≤

(2)定理的条件是结论成立的充分非必要条件。 (3)迭代的收敛性和极限点与初始点无关。但T 的选取及初始点0x 的选取对迭代速度有影响。初始点离极限点越近,其收敛速度越快,而不影响精确度。 (4)误差估计 ①事前(或先验)误差:根据预先给出的精确度,确定计算步数。此方法有时理论上分析困难。 设迭代到第n 步,将* n x x ≈,则误差估计式为 * 0010(,)(,)(,)11n n n x x Tx x x x θθρρρθθ ≤=-- ②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取* n x x ≈。此方法简单,但有时无法估计计算步数。 设迭代到第n 步,将*n x x ≈,则误差估计式为 *1(,)(,)1n n n x x x x θ ρρθ -≤ - 或 *11 (,)(,)1n n n x x x x ρρθ +≤ - 3、求解不动点的具体步骤: Step1 提供迭代初始点0x ; Step2 计算迭代点10x Tx =; Step3 控制步数,检查10(,)x x ρ,若10(,)x x ρε>。则以1x 替换0x 转到第二步,继续迭代,当10(,)x x ρε≤时终止,取1x 为所求结果。误差不超过 1θ εθ -。 对于不动点理论,为了便于应用,下面给出两种不同情况下所适合的方法。 推论1 设(1)X ----完备的距离空间; (2):T X X →的算子。

应用动能定理解题的基本步骤

应用动能定理解题的基本步骤 (1)确定研究对象,研究对象可以是一个单体也可以是一个系统. (2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速率关系”问题. (3)若是,根据W合=E k2-E k1列式求解. 动能定理和功能原理 动能定理 把几个有相互作用的质点所组成的系统作为研究对象,探讨功与能之间所遵循的规律。首先,把动能定理的关系式推广到由几个质点组成的系统。这时,用E k和E k0分别表示系统内所有质点在终态和初态的总动能,W表示作用在各质点上所有的力所做的功的总和,则有

W=E k-E k0 值得注意的是,所有的力所做的功的代数和,不是合力的功。因为由几个质点组成的系统,不同于一个质点,各力作用点的位移不一定相同。作用力又可区分为外力和内力,外力是指系统外其它物体对系统内各质点的作用力,内力是指系统内各质点之间的相互作用力。虽然内力的合力为零,但内力的功一般不为零,因为各力作用点的位移不一定相同。因此,对于系统来说,上式中的W 应等于外力所做的功与内力所做的功之和,所以,上式可改写为 W外+W内=E k-E k0(1) 这就是质点系的动能定理,它在惯性参考系中成立。

功能原理 系统的内力可分为保守内力和非保守内力。因此,内力的功W内应等于保守内力的功与非保守内力的功之和。所以(1)式可写为 W外力+W保守内力+W非保守内力=E k-E k0 (从系统的动能定理出发阐述系统的功能定理,根据系统的动能定理表达式,把内力功分为保守性内力功和非保守性内力功) 由于保守内力所做的功可用系统势能的减少来表示,即W保守内力=Ep0-E p,所以,上式可改写为 W外力+W非保守内力=(E k+E p)-(Ek0+Ep0)

动能定理及其应用

动能定理及其应用 1.动能定理 (1)三种表述 ①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=12m v 2-12 m v 02或W 合=E k -E k0; ③图象表述:如图6所示,E k -l 图象中的斜率表示合外力. 图6 (2)适用范围 ①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功; ③力可以是各种性质的力,既可同时作用,也可分阶段作用. 2.解题的基本思路 (1)选取研究对象,明确它的运动过程; (2)分析受力情况和各力的做功情况; (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 例1 我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m /s 2 匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m ,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,取g =10 m/s 2. 图1 (1)求运动员在AB 段下滑时受到阻力F f 的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大. 答案 (1)144 N (2)12.5 m 解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax ① 由牛顿第二定律有mg H x -F f =ma ② 联立①②式,代入数据解得F f =144 N ③ (2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得 mgh +W =12m v C 2-12m v B 2 ④ 设运动员在C 点所受的支持力为F N ,由牛顿第二定律有 F N -mg =m v 2 C R ⑤ 由题意和牛顿第三定律知F N =6mg ⑥ 联立④⑤⑥式,代入数据解得R =12.5 m.

不动点原理及其应用

题目:不动点原理及其应用 摘要 本文主要讨论了压缩映射原理,Schauder不动点定理以及不动点的应用三个方面。在解决微分方程,积分方程,以及其他方程的解的存在唯一性时,将问题转换为求某一映射的不动点,利用不动点原理进行解决。 关键词:压缩映射原理;Schauder不动点定理;不动点原理应用

Abstract In this paper ,we talked about contraction mapping principle,Schauder’s fixed point theorem and the application of the fixed point theorem.As we deal with the solutions about differential equation, integral equation and other kinds of equations, it is a useful way to transform the problem into fixed point theorem.We can use it to solve plenty of practice problems too. Keywords: contraction mapping principle; Schauder’s fixed point theorem;the application of fixed point theorem.

目录 引言 (1) 1.压缩映射原理 (1)

1.1压缩映射原理(距离空间) (1) 1.2压缩映射原理(巴拿赫空间) (7) 2.Schauder不动点定理 (9) 3不动点定理的应用 (11) 总结 (12) 参考文献 (14)

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

泛函分析中不动点理论及其应用

泛函分析与微分方程有着密切的联系,泛函分析的算子半群理论、巴拿赫代数、拓扑线性空间理论,不动点原理等在常微分方程中都有重要的应用。 首先,算子半群最简单的原型在线性常微分方程的初值问题,且由 H i l l e Yo s i d a -定理表明:当稠定闭算子A 满足定理条件时,是下列方程的解, 且解是唯一的。 设A 是一个n n ?实矩阵,方程组 () ()()00n dx t Ax t dt x x R ?=? ? ?=∈? 在空间中解存在唯一。设0t ≥,考察映射 ()()0:.T t x x t → 则(){}0T t t ≥是强连续算子半群。在常微分方程中把算子半群(){} 0T t t ≥通过矩阵写出来: ()0 !n n tA N t A T t e n ∞ ===∑. 且不动点在常微分方程中有很多应用。例如,应用不动点定理证明微分方程解的存在性定理 微分方程解的存在性与唯一性定理 若常微分方程 ()0 0,,x dy F x y y y dx ==满足以下条件: (1)(),F x y 在整个平面上连续; (2)()()11,,F x y F x y K y y -≤-,其中K >0; 那么存在唯一的连续函数()y x j =满足 () (),d x F x y dx ?=且()00x y ?=。 证明:用()() 0,X C U x d =表示所有定义在()0,U x d 上取值于R 的连续函数全 体,其中d 满足1K d <。,f g X "?,用()( ) ()()0,,m a x xUx f g f x g x a r ? =-表示,f g 间 的距离,同样由泛函分析的知识知X 为完备度量空间。上述常微分方程等价于

动能定理的应用

动能定理的应用 教学目标: 知识目标 1通过评讲:达到理解动能定理的确切含义 2.通过练习:达到应用动能定理解决实际问题. 能力目标 通过应用动能定理解决多过程问题. 重难点: 动能定理及其应用 教学步骤: 一导入新课 思考 用动能定理解题的一般步骤是什么? 学生答 用动能定理解题的一般步骤 1.明确研究对象、研究过程,找出初末状态的速度情况. 2.要对物体进行正确的受力分析,明确各个力的做功大小及正负情况. 3.明确初末状态的动能. 4.由动能定理列方程求解,并对结果进行讨论 二自主探究 问题展示

1合力做功有两种求解方法 2动能定理如何应用于变力做功或物体做曲线运动的情况? 师生互动 1合力做功有两种求解方法,一种是先求出物体受到的合力.再求合力做的功,一种方法是先求各个力做功,然后求各个力做功的代数和. 2当物体受到的力是变力,或者物体的运动轨迹是曲线时,我们仍然采用过去的方法,把过程分解为很多小段,认为物体在每小段运动中受到的力是恒力,运动的轨迹是直线,这样也能得到动能定理. 三精析点拨 1用动能定理求变力做的功 由于某些力F的大小或方向变化,所以不能直接由公式W=FScosα计算它们做的功,此时可由其做功的结果——动能的变化来求变力F做的功。 2、在不同过程中运用动能定理 由于物体运动过程中可能包括几个不同的物理过程,解题时,可以分段考虑,也可视为一整体过程,往往对全过程运用动能定理比较简便. 四知能内化 习题展示 1总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭发动机滑行,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少? 2一列质量为M=5.0×105kg的火车,在一段平直的轨道上始终以额定功率P 行驶,在300S内的位移为2.85×103m,而速度由8m/s增加到火车在此轨道上行驶的最大速度17m/s。设火车所受阻力f大小恒定,求1、火车运动中所受阻力f的大小;2、火车头的额定功率P的大小 3如图6-25所示,ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,BC是与AB和CD都相切的一小段圆弧,其长度可以不计。一个质量为m的小滑块由A点静止释放沿轨道滑下,最后停在D点,现用一平行轨道的力推滑块,使它缓慢地由D点到A点时停下,求推力对滑块所做的功。

动能定理及其应用专题

《动能定理及其应用》专题复习一.基础知识归纳: (一)动能: 1.定义:物体由于______而具有的能. 2.表达式:E k=_________. 3.物理意义:动能是状态量,是_____.(填“矢量”或“标量”) 4.单位:动能的单位是_____. (二)动能定理: 1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中的___________. 2.表达式:W=_____________. 3.物理意义:_____________的功是物体动能变化的量度. 4.适用条件: (1)动能定理既适用于直线运动,也适用于______________. (2)既适用于恒力做功,也适用于_________. (3)力可以是各种性质的力,既可以同时作用,也可以_______________. 二.分类例析: (一)动能定理及其应用: 1.若过程有多个分过程,既可以分段考虑,也可以整个过程考虑.但求功时,必须据不同的情况分别对待求出总功,把各力的功连同正负号一同代入公式. 2.应用动能定理解题的基本思路: (1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W合=E k2-E k1及其他必要的解题方程,进行求解. 例1.小孩玩冰壶游戏,如图所示,将静止于O点的冰壶(视为质点)沿直线OB用水平恒力推到A点放手,此后冰壶沿直线滑行,最后停在B点.已知冰面与冰壶的动摩擦因数为μ,冰壶质量为m,OA=x,AB=L.重力加速度为g.求: (1)冰壶在A点的速率v A;(2)冰壶从O点运动到A点的过程中受到小孩施加的水平推力F. 吴涂兵

不动点理论及其应用

不动点理论及其应用 主要内容: ●不动点理论—压缩映像原理 ●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用 目录: 一、引言 二、压缩映像原理 三、在微分方程中的应用 四、在中学数学中的应用 五、其它

一、 引言 取一张照片,按比例缩小,然后把小照片随手放在大照片上, 那么大小两张照片在同一个部位,一定有一个点是重合的。 这个重合点就是一个不动点。 函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。 二、 压缩映像原理 定理:(Banach 不动点定理—压缩映像原理) 设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。

这里有三个概念:距离空间,完备的距离空间,压缩映射 距离空间又称为度量空间。 定义:(距离空间)设 X 是一个非空集合。X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件: (1)。0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。),(),(x y y x ρρ=; (3)。),(),(),(z y y x z x ρρρ+≤, (X ,,∈?z y x )。 这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。 定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。 定义:(压缩映射)称映射 ),(),(:ρρX X T → 是一个压缩映射,如果存在 10<

不动点定理研究

前言 不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3]. 我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、 许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。 作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧

谈对系统应用动能定理

谈对系统应用动能定理 一、关于动能定理的理解 功和能是两个基本物理量.功和能的关系可概括为:功是能量转化的量度.这句话包括三层含义:一是各种形式的能量之间可以相互转化,各物体的能量可以相互转移;二是能量的转化或转移可以通过做功来完成;三是在某一过程中,做了多少功,就有多少能量发生转化或转移.当在某一过程中只考虑动能这一种形式的能量,功和能的关系就表现为:功是动能转化的量度.这就是动能定理的本质含义. 对于某一个孤立的物体,外力对它所做的总功与合力所做的功是同一个意思,做功过程就是物体与外界进行能量交换、转移的过程,外界对物体做了多少总功,物体的动能就改变多少.对于一个由几个存在相互作用的物体组成的系统,外力可以对系统做功,内力也可以对系统做功,内力做功就表示系统的动能可以和系统内部某种形式的能量进行转化.即系统动能的变化是由系统的内力与外力做功之和来决定的.可见,对于系统也可以运用动能定理。 二、系统的动能定理及应用 1.系统的动能定理 如图1,光滑水平面上有A 、B 两物体,质量分别为m 1、m 2,设A 、B 之间存在大小恒定的引力f .开始两物体之间距离为L 1,初速度均为零,现有一水平拉力F 作用在B 物体上,作用一段位移S 时,A 、B 两物体间距离变为L 2, A 、B 对于A 物体: 212111()02 f s L L m v +-=- 对于B 物体:22102 Fs fs mv -=- 将这两个方程相加得:2212112211()22 Fs f L L m v m v +-=+

其中, 1W Fs =表示外力对于系统所做的功,212()W f L L =-表示系统内力对于系统所做的功.因此,系统的动能定理可以表示为: K W W E +=?外内 当系统的内力f 大小恒定时,cos W f s θ=???内.其中θ取决于内力f 方向 与相对位移△S 的方向:两者方向相同时,0θ=,相当于12L L ?,内力方向与相对位移方向相同时,系统内力做正功,可以理解为系统有势能转化为系统的动能;两者方向相反时,θπ=,相当于12L L ?,系统内力方向与相对位移方向相反,系统内力做负功,可以理解为系统有动能转化为系统的势能;当0s ?=,即系统内物体间无相对位移时,系统内力不做功,系统的势能不变化.在其它情景中W 内不一定代表系统势能与动能转化的量度. 2.系统的动能定理的应用 例1:如图2,一质量为M 的长不板,静止在光滑的水平面上,一质量为m 的小滑块(可视为质点)以水平速度0v 从长木板的一端开始在木板上滑行,直到离开木板.滑块离开木板时的速度为 03 v .若把此木板固定在水平桌面上,其它条件相同时,求滑块离开木板时的速度. 分析与解:设第一次滑块离开时木板速度为v ,由系统的动量守恒,有: 003 v mv m Mv =+ 设滑块与木板间摩擦力为f ,木板长为L ,则对于滑块与木板组成的系统,只有两者间的内力即摩擦力做功,对系统应用动能定理,得: 22200111()2322 v fL m Mv mv -=+- 当木板固定时,滑块离开木板时速度为v /,对滑块应用动能定理,得: /2201122fL mv mv -=- 图2

不动点定理及其应用(高考)

摘要 本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式.其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用. 关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性. Abstract This article firstly introduced the Fixpoint Theorem in Banach space, the one-dimensional extended form of the Fixpoint Theorem in other linear topological space and the extended form in general complete metric space. Then, we summarized the problem on sequence of number using Fixpoint Theorem, analyzing the characteristics of tests emerged on math papers of all parts of our country recent years, including the problem of general term and boundedness of a sequence of number. At last, attractive fix point and rejection fix point in Fixpoint Theorem v/ere introduced v/hich can solve the problem about the monotonicity and astringency of sequence of number. Keywords:Banach fixed point theorem, Sequence, Boundedness, Monotonicity Convergence. 第1章绪论 (1) 1.1导论 (1) 1.1.1选题背景 (1)

Banach不动点理论及其应用

不动点定理及其应用综述 摘要本文主要研究Banach 空间的不动点问题。[1]介绍了压缩映射原理证明隐函数存在定理和常微分方程解得存在唯一性定理上的应用;[2][3]介绍了应用压缩映射原理需要注意的问题;[4]介绍了不动点定理在证明Fredholm 积分方程和V olterra 积分方程解的存在唯一性以及在求解线性代数方程组中的应用;[5]讨论了不动点定理在区间套定理的证明中的应用。 一、压缩映射原理 压缩映射原理的几何意义表示:度量空间中的点x 和y 在经过映射后,它们在像空间中的距离缩短为不超过d(x,y)的α倍(1α<)。它的数学定义为: 定义1.1设X 是度量空间,T 是X 到X 的映射,若存在α,1α<,使得对所有 ,x y X ∈,有下式成立 (,)(,)d Tx Ty d x y α≤(1.1) 则称T 是压缩映射。 定理1.1(不动点定理):设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有唯一的不动点,即方程Tx=x 有且只有唯一解。 证明:设0x 是X 种任意一点,构造点列{}n x ,使得 21021010,,,n n n x Tx x Tx T x x Tx T x -===== (1.2) 则{}n x 为柯西点列。实际上, 111(,)(,)(,)m m m m m m d x x d Tx Tx d x x α+--=≤ 21212(,)(,)m m m m d Tx Tx d x x αα----=≤ 10(,)m d x x α≤≤ (1.3) 根据三点不等式,当n m >时, 1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++ 1101()(,)m m n d x x ααα+-≤++ 011(,)1n m m d x x ααα --=- (1.4) 由于1α<,故11n m α--<,得到 01(,)(,)()1m m n d x x d x x n m αα ≤>-(1.5) 所以当,m n →∞→∞时,(,)0m n d x x →,即{}n x 为柯西列。由于X 完备, x X ?∈,

动能和动能定理的应用

动 能 定 理 的 应 用 一、动能定理应用的思路 动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在各段位移内的功和这段位移始末两状态动能变化去研究,无需注意其中运动状态变化的细节,又由于功和动能都是标量,无方向性,无论是对直线运动或曲线运动,计算都会特别方便。当题给条件涉及力的位移效应,而不涉及加速度和时间时,用动能定理求解一般比用牛顿第二定律和运动学公式求解简便。用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力作用过程、曲线运动等问题。 二、应用动能定理解题的一般步骤: ① 确定研究对象和研究过程。 ② 分析物理过程,分析研究对象在运动过程中的受力情况,画受力示意图,及过程状态草图,明确各力做功情况,即是否做功,是正功还是负功。 ③ 找出研究过程中物体的初、末状态的动能(或动能的变化量) ④ 根据动能定理建立方程,代入数据求解,对结果进行分析、说明或讨论。 例题评讲: 1、应用动能定理求变力的功。 例1. 如图1所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道, 长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静 止起下滑到C 点刚好停止。求物体在轨道AB 段所受的阻力对物体做的功。 解答:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩 擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J 点评:如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。 例2 .电动机通过一条绳子吊起质量为8kg 的物体。绳的拉力不能超过120N ,电动机的功率不能超过1 200W ,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s 2) 解答 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊。 在匀加速运动过程中,加速度为8 108120?-=-=m m g F a m m/s 2=5 m/s 2, 末速度 120 2001==m m t F P v m/s=10m/s , 上升时间 5101==a v t t s=2s , 上升高度 5 21022 21?==a v h t m=10m 。 在功率恒定的过程中,最后匀速运动的速度为 1082001?== mg P v m m m/s=15m/s , 由动能定理有 22122 121)(t m m mv mv h h mg t P -=--, 解得上升时间 t 2=5.75s 。 图1

动能定理应用论文

动能定理的应用分析 [摘要]:通过对动能定理、功能原理和机械能守恒定律的简明推导,总结出动能定理、功能原理和机械能守恒定律三者之间的相互关系及各自的应用条件。重点阐述了动能定理与机械能守恒定律应用的区别。 [关键词]:动能定理功能原理机械能守恒定律 analyse the use of kinetic energy theorem wang xiang,zhou jin,ma kui lanzhou city university,lanzhou 730070,china abstract:through concise short derivation of kinetic energy theorem,work energy theory and principle of conservation of mechanical energy. we summarized relationship and use condition of kinetic energy theorem,work energy theory and principle of conservation of mechanical energy. explained the difference between kinetic energy theorem and work energy theory in use. key words:kinetic energy theorem,work energy theory ,principle of conservation of mechanical energy 中图分类号:tj866 文献标识码:tj

不动点定理及其应用

不动点定理及其应用 摘要不动点定理是研究方程解的存在性与唯一性理论的重要工具之一.本文给出了线性泛函分析中不动点定理的几个应用,并通过实例进行了说明.同时,介绍了非线性泛函分析中的不动点定理——Brouwer不动点定理和Leray-Schauder不动点定理. 关键词不动点;不动点定理;Banach空间 Fixed Point Theorems and Its Applications Abstract The fixed point theorem is one of important tools in studying the existence and uniqueness of solution to functional equation .In this paper,the fixed theorem in linear functional analysis and its applications are introduced and the corresponding examples are given.Meanwhile,the Brouwer and Leray-Schauder fixed point theorems are also involved. Key Words Fixed point , Fixed point theorem, Banach Space

不动点定理及其应用 0 引言 在线性泛函中,不动点定理是研究方程解的存在性与解的唯一性理论 [1-3] .而在非线性泛函中是 研究方程解的存在性与解的个数问题[4],它是许多存在唯一性定理(例如微分方程,积分方程,代数方程等)的证明中的一个有力工具. 下面给出不动点的定义. 定义 0.1设映射X X T →:,若X x ∈满足x Tx =,则称x 是T 的不动点.即在函数取值的过程中,有一点X x ∈使得x Tx =. 对此定义,有以下理解. 1)代数意义:若方程x Tx =有实数根0x ,则x Tx =有不动点0x . 2)几何意义:若函数()x f y =与x y =有交点()00,y x 则0x 就是()x f y =的不动点. 在微分方程、积分方程、代数方程等各类方程中,讨论解的存在性,唯一性以及近似解的收敛性始终是一个极其重要的内容. 对于许多方程的求解问题,往往转化为求映射的不动点问题,同时简化了运算. 本文将对不动点定理及其变换形式在线性分析和非线性分析中的应用加以探索归纳. 1 Banach 不动点定理及其应用 1.1相关概念 首先介绍本文用的一些概念. 定义1.1.1[3] 设X 为距离空间,{}n x 是X 中的点列,若对任给的0>ε,存在 0>N ,使得当N n m >,时,()ερ

动能定理在实际中的应用

动能定理在实际中的应用 【知识归纳】 例53.(2009安徽理综卷第24题)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m。一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以 v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m。小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取g=10m/s2,计算结果保留小数点后一位数字。试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二圆形轨道,B、C间距L应是多少; (3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离。 【解析】: 【点评】动能定理在实际中应用广泛,在机械能守恒和机械能不守恒两种情况下都可以应用。 衍生题1.(2012黄冈期中测试)滑板运动已成 为青少年所喜爱的一种体育运动,如图所示, 某同学正在进行滑板运动。图中AB段路面 是水平的,BCD是一段半径R =20m的拱起 的圆弧路面,圆弧的最高点C比AB段路面高出h =1.25m。已知人与滑板的总质量为M=60kg。该同学自A点由静止开始运动,在AB路段他单腿用力蹬地,到达B点前停止蹬地,然后冲上圆弧路段,结果到达C点时恰好对地

面压力为零,不计滑板与各路段之间的摩擦力及经过B 点时的能量损失(g 取10m/s 2)。 求(1)该同学到达C 点时的速度. (2)该同学在AB 段所做的功. 【解析】:(1) 【点评】此题考查动能定理、牛顿运动定律等知识点。 衍生题2.(2012河北正定中学月考) 如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A 位置)上,随跳板一同向下做变速运动到达最低点(B 位置)。对于运动员从开始与跳板接触到运动至最低点的过程,下列说法中正确的是( ) A .运动员到达最低点时,其所受外力的合力为零 B .在这个过程中,运动员的动能一直在减小 C .在这个过程中,跳板的弹性势能一直在增加 D .在这个过程中,运动员所受重力对他做的功小于跳板的作用力对他做的功 【解析】: 【点评】此题考查动能定理、弹性势能、功等知识点。 衍生题3.(2012江西三校联考)“六十甲子”是古人发明用来计时的方法,也是一种表示自然界五行之气循环流转的直观表示法。某 学校物理兴趣小组用空心透明粗糙塑料管制作了如 图所示的竖直“60”造型。两个“O ”字型圆的半径 均为R 。让一质量为m 、直径略小于管径的小球从入 口A 处无初速度放入,B 、C 、D 是轨道上的三点,E 为出口,其高度低于入口A 。已知BC 是“O ”字型的一条竖直方向的直径,D 点是左侧“O ”字型上的一点,与圆心等高,A 比C 高R ,当地的重力加速度为g ,不计一切阻力,则B A

反证法在数学中的应用

论文编码:O1-0 摘要 反证法是数学证明方法中很重要的一部分,本文主要介绍了反证法再出等数学中的应用。首先阐述反证法的概念、逻辑根据和一般步骤。然后讨论了反正法的适用范围,这也是本文的重点内容,任何一种方法都要以应用为首要任务,我们学习它、了解它、掌握它,学会用反证法解决更多的实际问题才是我们的目的。其次研究了反证法的教学,反证法的这种数学思想在课堂教学中的渗透是很有必要的。最后讨论了应用反证法应注意的问题,真正用好反证法并非一件易事,所以我们的研究学习是很有必要的。 关键词:反证法逻辑基础教学方法适用范围;

Abstract Apagoge is an important part of math demonstration.This article introduces the application of Apagoge in elementary math.First,expounds the Apagoge's concept,logic ground and the general steps.Next,discusses the range of application,which is highlighted.Whatever methods we use,we should base on application.So we must study the method and use it to help us solve many practical problem.Then,studies how to teach the Apagoge's thinking into people's minds in the https://www.360docs.net/doc/dd3122585.html,st,talks about the problem which should pay attention to in Apagoge's application.It is difficult to make a good use of the Apagoge,so we are supposed to study continuously. Keywords:Apagoge ;Logical basis;Teaching methods; Scope;

专题(21)动能定理及其应用(原卷版)

2021年高考物理一轮复习必热考点整合回扣练 专题(21)动能定理及其应用(原卷版) 考点一 对动能定理的理解 做功的过程就是能量转化的过程,动能定理表达式中的“=”既表示一种因果关系,又表示在数值上相等. 1、(多选)如图所示,一块长木板B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离,在此过程中( ) A .外力F 做的功等于A 和 B 动能的增量 B .B 对A 的摩擦力所做的功,等于A 的动能增量 C .A 对B 的摩擦力所做的功,等于B 对A 的摩擦力所做的功 D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和 2、如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径PQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( ) A .W =12 mgR ,质点恰好可以到达Q 点 B .W >12 mgR ,质点不能到达Q 点 C .W =12 mgR ,质点到达Q 点后,继续上升一段距离 D .W <12 mgR ,质点到达Q 点后,继续上升一段距离 3、在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重

力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A .mgh -12mv 2-12mv 20 B .-12mv 2-12 mv 20-mgh C .mgh +12mv 20-12mv 2 D .mgh +12mv 2-12 mv 20 【提 分 笔 记】 应用动能定理求变力做功时应注意的问题 (1)所求的变力做的功不一定为总功,故所求的变力做的功不一定等于ΔE k . (2)合外力对物体所做的功对应物体动能的变化,而不是对应物体的动能. (3)若有多个力做功时,必须明确各力做功的正负,待求的变力做的功若为负功,可以设克服该力做的功为W ,则表达式中用-W 表示;也可以设变力做的功为W ,则字母W 本身含有符号. 考点二 动能定理的基本应用 应用动能定理的流程 4、(多选)如图所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则( ) A .动摩擦因数μ=67 B .载人滑草车最大速度为 2gh 7

相关文档
最新文档