毛细管电泳技术在植物学研究中的应用

毛细管电泳技术在植物学研究中的应用
毛细管电泳技术在植物学研究中的应用

毛细管电泳技术在植物学研究中的应用

一、毛细管电泳在植物学研究领域中的应用

毛细管电泳在经过二十多载的发展和完善之后,目前已成为一种主流的分析技术手段,而被广泛地应用于研究、方法开发以及质量控制实验室而有其特定的位置,并且在不断加速地得予应用。毛细管电泳技术正在向着替代许多传统平板凝胶电泳技术、薄层层析技术、高效液相色谱技术等方向前进。据不完全统计,国际上已有近万台的毛细管电泳仪在各种实验室中运行着。目前,毛细管电泳技术已常规地应用于核酸、蛋白质、药物、糖类以及各种其它小分子、离子等的日常分析,尤其在碱性药物分析、手性分子拆分等更有其独特的应用。毛细管电泳技术与其它技术如激光诱导荧光检测技术、免疫分析技术、多级串联质谱、电化学检测技术等的联用也日趋活跃。食品的组成成分复杂,所以无论用GC 还是用HPLC 分析时,都要求对样品进行复杂的前处理,以免造成污染。高效毛细管电泳克服了HPLC 试验成本高,GC 应用面窄,TPLC 柱效低,重现性差,时间长的缺点。毛细管电泳在植物学研究中常见组分如无机离子、有机酸、碳水化合物、蛋白质、游离脂肪酸,以及食品添加剂与农药残留等方面有着广泛的应用。高效毛细管电泳以其样品处理简单、多组分可同时测定、快速、自动化及越来越低的检出限,被广泛应用在农业分析检测中。

在植物学研究中,被分析物通常是植物提取物等等,这些样品的组成成分复杂,所以无论用GC 还是用HPLC 分析时,都要求对样品进行复杂的前处理,以免造成污染。高效毛细管电泳克服了HPLC 试验成本高,GC 应用面窄,TPLC 柱效低,重现性差,时间长的缺点。毛细管电泳在食品成分如无机粒子、有机酸、碳水化合物、蛋白质、游离脂肪酸,以及食品添加剂与农药残留等方面有着广泛的应用。高效毛细管电泳以其样品处理简单、多组分可同时测定、快速、自动化及越来越低的检出限,被广泛应用在食品添加剂检测中。在1997 年的第48 届分析化学与应用光谱学会议上,HPCE 被列为食品分析、饮食安全检查等方面重点发展内容之一。

与通常的分析手段相比,毛细管电泳方法有以下的一些优势:

①清洗速度快,只要在测定样品间将毛细管充分冲洗,便可避免样品间的交叉干扰; ②较低的检出限完全满足国标的要求; ③由于HPLC 无法分析酸性防腐剂,所以不得不采用传统的滴定法,该法操作比较繁琐,而且误差很大,HPCE 成功地实现了对该类物质的分离测定,最低检出限可达 5 mg/ kg ,在国标中该类物质限量范围是50~450 mg/ kg ; ④HPCE 可用于毫无相关的混合添加剂的分离分析; ⑤HPCE 的一个显著特点是分析速度快,一般在几分钟内就可以完成分析。⑥样品的前处理要求很低,有些样品可以不需要前处理就可以进样分析。

1、各种农产品中蛋白质/多肽/氨基酸的分析

蛋白质是食品的一个重要组成部分,通过对蛋白质的测定,不仅可以从营养方面评价食品的价值,还可以研究食品在加工过程中的变化,或作为鉴定食品的依据。毛细管电泳技术比其他色谱技术更适合蛋白质分析,因为它有着非凡的分离效率和很低的分析成本。毛细管电泳应用于食品中蛋白质的分析已经有很多文献报道,Luguera采用毛细管凝胶电泳测定了葡萄酒在生产过程中蛋白质的变化,用以研究提高葡萄酒的质量;Recio用毛细管电泳研究了牛奶在高温处理过程中蛋白质的变化状况及耐热蛋白酶所产生的多肽;Kanning用毛细管电泳研究了母乳、牛乳、山羊乳中蛋白和多肽的构成,发现根据电泳图的特征可以判断乳的种类和是否掺假;也有文献报道用毛细管电泳分析谷物中的高分子量麦谷蛋白。氨基酸也是很多食品的营养成分,毛细管电泳可以同时对常见的20中氨基酸进行分析。

2、糖类及其缀合物的分析

天然产物中的糖种类繁多、结构复杂,常与蛋白、脂肪形成复合物。近年来,随着毛细管电泳技术的不断发展,各种新的糖衍生化反应和检测技术的发现,毛细管电泳已成为分析单糖、寡糖、糖肽、糖蛋白等糖类化合物的有力武器。单糖的pKa值一般大于11,故需选用强碱性的缓冲液(pH>11),使糖基上的羟基去质子而带负电荷,直接进行电泳分离,用紫外(195 nm)检测.也可以选用硼酸盐缓冲液,硼酸盐

与糖基络合形成带负电荷的络合物以进行电泳分离,用紫外检测.简单单糖的分析方法也适于简单寡糖的分析.多糖一般利用酸解或酶解的方法将其转化为寡糖后进行分析。糖胺聚糖(GAG)类糖基的聚糖部分有透明质酸、硫酸软骨素、硫酸角质素和肝素等,一般都含有重复的二糖单元,而且可用裂解酶降解成糖醛酸化酸性寡糖,这些寡糖既带电荷又有紫外吸收(232 nm),因此很适合用CE进行分析.另外CE 在糖型分析方面也取得了较大的成功。在糖的检测方面,紫外分析是最早用于CE进行糖类检测的,目前仍较多的被科研人员所采用。利用激光诱导荧光检测,对糖类进行柱前高效荧光标记,可使检出限达到10-9mol水平。

3、天然活性化合物-生物碱、酮、甙、酚酸的分析

生物碱是一类含氮的有机化合物,有似碱的性质,在低pH下荷正电,所以生物碱能用毛细管电泳在pH<7的缓冲溶液中得到分离分析。对于酚酸类化合物,在高pH下,不但酚酸上的羧基能离解,而且酚羟基也能部分离解,在电场的作用下实现分离。对于天然活性物质来说,毛细管电泳与HPLC、经典柱色谱等相比,分析速度更快,效果更好,条件更易于接受。

4、奶粉中的植物蛋白掺假检测

ISO 17129标准中规定了采用毛细管电泳的方法测定奶粉中是否含有大豆或豌豆蛋白等植物性蛋白的掺假。蛋白质由于其大分子的属性,分离分析并不是一个件很容易做到的事情,毛细管电泳相对来说是一个很有力的蛋白质分析手段。在ISO 17129标准中,无掺假的奶粉的毛细管电泳谱图与有植物性蛋白掺假的毛细管电泳谱图有很大的差异。国内多家单位,如伊利集团、蒙牛乳业、农业部乳品检测中心、农业部天津绿色食品认证中心也都在采用毛细管电泳方法来检测乳品中的各种蛋白质含量及掺假情况。

5、维生素、有机酸和阴离子的分析

维生素的测定方法很多,与传统的HPLC分析相比,毛细管电泳在Vc、尼克酸、

VB1、VB2、VB6、VB12、乳清酸、泛酸等维生素的分析方面有速度快,方法简单的

优势。目前报道的能够用毛细管电泳分析的有机酸有柠檬酸、苹果酸、酒石酸、琥珀酸、草酸、醋酸、乳酸等等。Devries用毛细管电泳同时检测了啤酒中的柠檬酸、苹果酸、醋酸、乳酸、琥珀酸、丙酮酸等几种有机酸;Cotter对酒中的氯离子和乳酸进行了分析;Oehole用毛细管电泳-间接紫外的方法测定了多种ppb级的有机酸和无机阴离子。

6、食品添加剂、生物毒素和抗生素检测

1.防腐剂可以对软饮料、酒、水果和果汁、人造黄油、果酱、干酪片、蔬菜、海产品等中存在的山梨酸、苯甲酸、乙酸、亚硫酸进行分析。

2.色素可以分析果汁饮料、冰淇淋、软饮料和乳品饮料中的赤鲜红、日落黄、胭脂红、朱红4R等很多中色素。

3.发色剂蔬菜、干酪、白菜、果汁及肉制品中的硝酸盐和亚硝酸盐

4.抗氧化剂芝麻油、葡萄酒和果汁中的BHQ、BHA、BHT、PG、葵酯、没石子酸、植酸等

5.生物毒素玉米中的黄曲霉毒素B1,果汁和酒中的棒曲霉素,埃希氏菌污染物的检测

6.抗生素残留动物组织或牛奶中的磺胺类抗生素药,牛奶中的氯霉素,鸡肉中的乙胺嘧啶、氟甲喹、恩诺沙星,鱼和鸡肉中的欧索林酸残留

7、食用油中的反型脂肪酸含量

反型脂肪酸可能是造成血管硬化的危险因素,也会提高血液中低密度胆固醇含量增加罹患心血管疾病的机会。

8、转基因食品的检测

有文献报道用于大豆、玉米等转基因食品的检测。

9、代谢组学研究

由于毛细管电泳的高分辨能力、低样品消耗以及众多可选择的分离模式,这一技术被用于代谢组学研究。

10、蛋白质翻译后修饰研究

很多基因表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。毛细管电泳对修饰水平不同的蛋白质isoform的分离和CE-MS和CE-LIF结合能够对翻译后修饰蛋白进行高灵敏度快速鉴定。

毛细管电泳实验报告

毛细管电泳实验报告 高乃群S0 实验目的 1.了解毛细管电泳实验的原理 2.掌握毛细管电泳仪的操作方法,并设计样品组分的分析过程. 3.学会处理实验数据,分析实验结果. 实验原理C E所用的石英毛细管柱, 在pH>3情况下, 其内表面带负电, 和溶液接触时形成了一双电层。在高电压作用下, 双电层中的水合阳离子引起流体整体地朝负极方向移动的现象叫电渗, 粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和, 正离子的运动方向和电渗流一致, 故最先流出;中性粒子的电泳流速度为“零”,故其迁移速度相当于电渗流速度;负离子的运动方向和电渗流方向相反, 但因电渗流速度一般都大于电泳流速度, 故它将在中性粒子之后流出, 从而因各种粒子迁移速度不同而实现分离。 电渗是CE中推动流体前进的驱动力, 它使整个流体像一个塞子一样以均匀速度向前运动, 使整个流型呈近似扁平型的“塞式流”。它使溶质区带在毛细管内原则上不会扩张。 一般来说温度每提高1℃, 将使淌度增加2% (所谓淌度, 即指溶质在单位时间间隔内和单位电场上移动的距离)。降低缓冲液浓度可降低电流强度, 使温差变化减小。高离子强度缓冲液可阻止蛋白质吸附于管壁, 并可产生柱上浓度聚焦效应, 防止峰扩张, 改善峰形。减小管径在一定程度上缓解了由高电场引起的热量积聚, 但细管径使进样量减少, 造成进样、检测等技术上的困难。因此, 加快散热是减小自热引起的温差的重要途径。

实验设备:电泳仪。仪器及试剂: 缓冲溶液(buffer):20 mmol/L Na 2B 4 O 7 缓冲溶液。1mol/L NaOH溶液,二次 去离子水。未知样饮料(雪碧和醒目) 1.实验步骤仪器的预热和毛细管的冲洗:打开仪器和配套的工作站。工作温度设置为30℃,不加电压,冲洗毛细管,顺序依次是:1 mol/L NaOH溶液5 min, 二次水5 min,10 mmol/L NaH 2PO 4 -Na 2 HPO 4 1:1缓冲溶液5 min,冲洗过程中出 口(outlet)对准废液的位置,并不要升高托架。 2.混合标样的配制:毛细管冲洗的同时,配制标样苯甲酸浓度依次为、、、、1 mg/ml。 3.做标准曲线:待毛细管冲洗完毕,取1 ml混合标样,置于塑料样品管,放在电泳仪进口(Inlet)托架上sample的位置,然后调整出口(outlet)对准缓冲溶液(buffer),升高托架并固定,然后开始进样。进样压力30 mbar,进样时间5 s。进样后将进口(Inlet)托架的位置换回缓冲溶液(buffer),切记换回buffer 的位置!选择方法,修改合适的文件说明,然后开始分析,电压25 kV,时间约10 min。 4.未知浓度混合样品的测定:方法与条件同上,测试未知浓度混合样品,分析时间约25min,据苯甲酸钠标准曲线测雪碧与醒目这两种饮料中的苯甲酸钠的

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用 摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。 关键词:毛细管电泳原理分离模式应用 1概述 毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端[1]。现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。C E只需高压直流电源、进样装置、毛细管和检测器。 毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

毛细管电泳电化学发光联用技术及应用新进展

信阳师范学院 研究生课程论文 2014—2015学年第1学期 毛细管电泳电化学发光联用技术及应用新进展提交日期:2015 年 1 月 6 日研究生签名:

毛细管电泳电化学发光联用技术及应用新进展 姓名:学号:2 摘要:生命与健康是关系人类生活和可持续发展的永恒话题。为了检测食品中的有毒物质和人类身体内的有害物质,并达到快速检测和灵敏度高的目的,毛细管电泳(CE)和电化学发光(ECL)技术相结合的方法应运而生。这种方法充分利用了CE技术快速、灵敏、需样量少的优点及ECL线性范围宽和仪器简单的特点,使其在生命和医药等方面得到了广泛的应用。 关键词:毛细管电泳;电化学发光;生命;医药 引言 毛细管电泳法(Capillary Electrophoresis,CE)也叫做高效毛细管电泳(HPCE),是二十世纪八十年代问世的高效液相分离法之一[1],是将经典的电泳技术和现代微柱分离相结合的产物。它是一类以毛细管为分离通道,以高压直流电场为驱动力,以样品的多种特性(大小、电荷、等电点、极性、亲和行为、相分配特性等)为依据的液相微分离分析技术。与传统的分离分析方法相比,毛细管电泳显著特点是简单、高效、快速和微量。另外,毛细管电泳还有经济、清洁、易于自动化和环境污染小等优点。因此,毛细管电泳迅速发展为高效的分离和检测技术,广泛应用于物质的检测与分离。 电化学发光(electrochemiluminescence,ECL)是指电极表面通过电子的转移形成激发态,电子从激发态返回基态而产生的发光过程[2],由电极上施加的电压所引发和控制[3],以电激发为驱动力,通过电化学反应产生光信号。因此,电化学发光兼有化学发光的特点,是一种可控性强,灵敏度高的检测方法。 将毛细管电泳和电化学发光技术联用,产生了毛细管电泳-电化学发光检测技术(CE-ECL),该技术兼有CE微量、迅速、高效及ECL高选择性、高灵敏等特点。这些特点使CE-ECL检测技术在药物分析、生命分析等领域应用越来越广泛,在实际样品的分离和分析工作中也发挥着重要的作用。本文主要简述毛细管电泳-电化学发光联用技术在各个领域的应用进展。 1. 毛细管电泳-电化学发光联用技术

毛细管电泳及其应用

毛细管电泳及其应用 摘要:毛细管电泳技术(Capillary Electrophoresis, CE),是近二十年来发展最为迅速的新型液相分离分析技术之一。CE实际上包含电泳、色谱及其相互交叉的内容,是继高效液相色谱之后的又一重大进展,具有分离效率高、简单、经济、快速和微量、自动化程度高等优点。毛细管电泳这些特点使其成为一种极为有效的分离技术,目前已是生命科学及其它学科中一种常用的分析手段,已广泛应用于蛋白质、氨基酸、无机离子、有机化合物等的分离分析。关键词:毛细管电泳,分离效率高,生命科学 引言 毛细管电泳是在传统电泳技术的基础上逐步发展起来的。电泳技术的出现可以追溯到100多年前[1]。1807-1809年,俄国物理学家F.F.Reuss首次发现黏土颗粒的电迁移现象,并开始研究带电粒子在电场中的电迁移行为,测定它们的迁移速度。起初电泳只是作为一种物理化学现象来研究。电泳真正意义上进入分析化学被视为一种重要意义的技术,是在瑞士化学家Tiselius[2]公布了移动界面电泳技术的细节之后。他首先将电泳现象成功的应用于人血清的分离,获得了多种血清蛋白,他制成第一台电泳仪,并进行自由溶液电泳。Tisedius对电泳技术的发展和应用所做的巨大贡献,使他获得了1948年诺贝尔化学奖。但是传统电泳最大的局限是难以克服由高电压引起的焦耳热。1967年Hjerten[3]最先使用慢速旋转的内径为3 mm的石英玻璃管进行自由溶波电泳,以UV进行检测,成功地分离了蛋白质、多肽、无机离子、有机离子等,Hjerten最早证明可以把高电场用于细内径的毛细管电泳,但他没有完全克服传统电泳的弊端。1974年Virtanen提出使用细毛细管提高分离效率,阐明电渗流就像泵一样可以驱动液体流过毛细管,并说明了使用更细内径的毛细管做毛细管电泳的特点。1979年Everaerts和Mikkers[4]使用内径为200μm聚四氟乙烯毛细管,提高了毛细管的分离效率,成功分离了16种有机酸。1981年Jorgenson和Luckas[5]发表了划时代的研究工作,采用内径为75μm 石英毛细管进行实验,采用高电场电迁移进样,以灵敏的荧光检测器进行检测,使丹酞化氨基酸高效、快速分离,首次获得理论塔板数高达4x105/m的柱效。Jorgenson和Lucas等人的开创性工作,使CE发生了根本性的变革,标志着CE从此跨入高效毛细管电泳时代。 1983年Hjerten[6]将毛细管的内壁填充聚丙烯酰胺凝胶并将其用于毛细管电泳分离,发展了毛细管凝胶电泳(CGE)。CGE具有极高的分辨本领。凝胶作为支持介质的引入大大促进了电泳技术的发展,可用于蛋白质碎片的分离及DNA序列的快速分析。 1984年Terabe等[7]将胶束引入毛细管电泳,开创了毛细管电泳的重要分支—胶束电动毛细管色谱(MECC)。他首次将表面活性剂十二烷基硫酸钠(SDS)加入缓冲液中,在溶液中形成离子胶束作假固定相,实现了中性离子的分离,目前,MEKC己成为应用非常广泛的电泳模式之一。1985年Hjerten[8]等把平板等电聚焦电泳过程转移到毛细管内进行,发展了等电聚焦毛细管电泳(CIEF)。他是将带有两性基团的样品、载体两性电解质、缓冲剂和辅助添加剂的混合物注入毛细管内[9],当在毛细管两端加上直流电压时,载体两性电解质可以在管内形成一定范围的pH梯度,从而达到使复杂样品中各组分分离的目的。1987年,Karger等[10]对凝胶填充技术进行了改进,优化了CGE技术,极大提高了其分离效率并阐明了用小内径毛细管可进行毛细管凝胶电泳。同年Smith等[11]将毛细管通过电喷射接口与质谱相连,从而实现了质谱和毛细管电泳联用的检测法,毛细管电泳-电喷雾质谱联用技术以其高效及高准确性被广泛应用于很多领域。 毛细管电泳根据分离机理和介质不同,具有多种分离模式,每种模式的选择性不同。毛细管电泳现有以下六种经典分离模式:毛细管区带电泳(Capillary Zone Electrophoresis, CZE),CZE是毛细管电泳中应用最广泛的一种分离模式,CZE用以分析带电溶质,其分离机理是基

苯甲醇苯甲酸水杨酸的毛细管电泳分离

苯甲醇、苯甲酸、水杨酸的毛细管电泳分离 一、实验目的 1.进一步理解毛细管电泳的基本原理; 2.熟悉毛细管电泳仪器的构成; 3.了解影响毛细管电泳分离的主要操作参数。 二、实验原理 1.电泳淌度 毛细管电泳(CE )是以电渗流 (EOF)为驱动力,以毛细管为分离通道,依据样品中组分之间淌度和分配行为上的差异而实现分离的一种液相微分离技术。离子在自由溶液中的迁移速率可以表示为: ν = μE (1) 式中ν是离子迁移速率,μ为电泳淌度,E 为电场强度。对于给定的荷电量为q 的离子,淌度是其特征常数,它由离子所受到的电场力(F E )和通过介质所受到的摩擦力(F F )的平衡所决定。 F E = qE (2) 对于球形离子: F F = -6πηr ν (3) 式中η为介质粘度,r 为离子的流体动力学半径。在电泳过程达到平衡时,上述两种力方向相反,大小相等: qE = -6πηr ν (4) 将式(4)代入式(1),得: r 6 q πημ= (5) 因此,离子的电泳淌度与其荷电量呈正比,与其半径及介质粘度呈反比。带相反电荷的离子其电泳淌度的方向也相反。需要指出,我们在物理化学手册中可以查到的离子淌度常数是绝对淌度,即离子带最大电量时测定并外推至无限稀释条件下所得到的数 值。在电泳实验中测定的值往往与此不同,故我们将实验值称为有效淌度(μe ) 。有些物质因为绝对淌度相同而难以分离,但我们可以通过改变介质的pH 值,使离子的荷电量发生改变。这样就可以使不同离子具有不同有效淌度,从而实现分离。下文中所提到

的电泳淌度除特别说明外,均指有效淌度。 2.电渗流和电渗淌度 电渗流(EOF )是CE 中最重要的概念,指毛细管内壁表面电荷所引起的管内液体的整体流动,来源于外加电场对管壁溶液双电层的作用。 在水溶液中多数固体表面根据材料性质的不同带有过剩的负电荷或正电荷。就石英毛细管而言,表面的硅羟基在pH 大于3以后就发生明显的解离,使表面带有负电荷。为了达到电荷平衡,溶液中的正离子就会聚集在表面附近,从而形成所谓双电层,如图1所示。这样,双电层与管壁之间就会产生一个电位差,叫做Zeta 电势。但毛细管两端施加一个电压时,组成扩散层的阳离子被吸引而向负极移动。由于这些离子是溶剂化的,故将拖动毛细管中的体相溶液一起向负极运 动,这便形成了电渗流。需要指出,很多非离 子型材料如聚四氟乙烯和聚丙烯等材料表面也 可以产生电渗流,原因可能是其表面对阴离子 的吸附。 电渗流的大小可用速率和淌度来表示: ()E EOF ηεξν/= (6) 或者 ηεξμ/=EOF (7) 式中νEOF 为电渗流速率,μEOF 为电渗淌度,ξ为Zeta 电势,ε为介电常数。 Zeta 电势主要取决于毛细管表面电荷的多 寡。一般来说,pH 越高,表面硅羟基的解离程度越大,电荷密度越大,电渗流速率就越大。 除了受pH 的影响外,电渗流还与表面性质(硅羟基的数量、是否有涂层等)、溶液离子强度有关,双电层理论认为,增加离子强度可以使双电层压缩,从而降低Zeta 电势,减小电渗流。此外,温度升高可以降低介质粘度,增大电渗流。电场强度虽然不影响电渗淌度,但却可改变电渗流速率。显然,电场强度越大,电渗流速率越大。

高效毛细管电泳实验

高效毛细管电泳实验 一、实验目的 1. 进一步理解毛细管电泳的基本原理; 2. 熟悉毛细管电泳仪器的构成; 3. 了解影响毛细管电泳分离的主要操作参数。 二、实验原理 1.电泳淌度 毛细管电泳(CE )是以电渗流 (EOF)为驱动力,以毛细管为分离通道,依据样品中组分之间淌度和分配行为上的差异而实现分离的一种液相微分离技术。离子在自由溶液中的迁移速率可以表示为: ν = μE (1) r 6 q πημ= (2) 式中ν是离子迁移速率,μ为电泳淌度,E 为电场强度。η为介质粘度,r 为离子的流体动力学半径,q 为荷电量。因此,离子的电泳淌度与其荷电量呈正比,与其半径及介质粘度呈反比。 2.电渗流和电渗淌度 电渗流(EOF )指毛细管内壁表面电荷所引起的管内液体的整体流动,来源于外加电场对管壁溶液双电层的作用。 在水溶液中多数固体表面根据材料性质的不同带有过剩的负电荷或正电荷。就石英毛细管而言,表面的硅羟基在pH 大于3以后就发生明显的解离,使表面带有负电荷。为了达到电荷平衡,溶液中的正离子就会聚集在表面附近,从而形成所谓双电层,如图1所示。这样,双电层与管壁之间就会产生一个电位差,叫做Zeta 电势。但毛细管两端施加一个电压时,组成扩散层的阳离子被吸引而向负极移动。由于这些离子是溶剂化的,故将拖动毛细管中的体相溶液一起向负极运动,这便形成了电渗流。 电渗流的大小可用速率和淌度来表示: ()E EO F ηεξν/= (3) 或者 ηεξμ/=EO F (4) 式中νEOF 为电渗流速率,μEOF 为电渗淌度,ξ为Zeta 电势,ε为介电常数。 3.毛细管电泳的分离模式 CE 有6种常用的分离模式,其中毛细管区带电泳(CZE )、胶束电动毛细管色谱(MEKC )和毛细管电色谱(CEC )最为常用。本实验的内容为CZE 。 4.毛细管电泳的基本参数

毛细管电泳技术发展及应用前景

毛细管电泳技术发展及应用前景 毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),毛细管电泳方法虽新工艺,但历史悠久,它是在电泳技术的基础上发展的一种分离技术。电泳作为一种技术出现,已有近百年的历史,但真正被视为一种在生物化学中有重要意义的技术,是由1937年A. Tiselius 首先提出。传统电泳最大的局限是难以克服由高电压引起的焦耳热,1967年Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis, CZE)。但他没有完全克服传统电泳的弊端。现在所说的毛细管电泳技术(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支:胶束电动毛细管色谱(MEKC)。1987年Hjerten 等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 当电泳从凝胶板上移到毛细管中以后,发生了奇迹般的变化:分析灵敏度提高到能检测一个碱基的变化,分离效率达百万理论塔片数;分析片段能大能小,小到分辨单个核苷酸的序列,大到分离Mb到DNA;分析时间由原来的以小时计算缩减到以分、秒计算。CE可以说是经典电泳技术与现代微柱分离技术完美结合的产物。它使分析科学得以从微升水平进入纳升水平,并使单细胞分析,乃至单分子分析成为可能。长期困扰我们的生物大分子如蛋白质的分离分析也因此有了新的转机。 毛细管电泳技术是一类以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度和分配行为上的差异而实现分离的一类液相分离技术,迅速发展于80年代中后期,它实际上包含电泳技术和色谱技术及其交叉内容,是分析科学中继高效液相色谱之后的又一重大进展,它使分析科学得以从微升水平进入纳升水平,并使细胞分析,乃至单分子分析成为可能。是分析科学中继高效液相色谱之后的又一重大进展,是近几年来分析化学中发展最为迅速的领域之一。 毛细管电泳技术的基本原理是根据在电场作用下离子迁移的速度不同而对组分进行分离和分析,以两个电解槽和与之相连的内径为20~100μm的毛细管为工具,毛细管电泳所用的石英毛细管柱,在 pH>3的情况下,其内表面带负电,和缓冲液接触时形成双电层,在高压电场的作用下,形成双电层一侧的缓冲液由于带正电荷而向负极方向移动形成电渗流。同时,在缓冲液中,带电粒子在电场的作用下,以不同的速度向其所带电荷极性相反方向移动,形成电泳,电泳流速度即电泳淌度。在高压电场的作用下,根据在缓冲液中各组分之间迁移速度和分配行为上的差异,带正电荷的分子、中性分子和带负电荷的分子依次流出,带电粒子在毛细管缓冲液中的迁移速度等于电泳淌度和电渗流的矢量和,各种粒子由于所带电荷多少、质量、体积以及形状不同等因素引起迁移速度不同而实现分离;在毛细管靠负极的一端开一个视窗,可用各种检测器。目前已有多种灵敏度很高的检测器为毛细管电泳提供质量保证,如紫外检测器(UV)、激光诱导荧光检测器(LIF)、能提供三维图谱的二极管阵列检测器(DAD)以及电化学检测器(ECD)。由于毛细管的管径细小、散热快,即使是高的电场和温度,都不会向常规凝胶电泳那样使胶变性,影响分辨率。 毛细管电泳技术的分离模式和检测模式的发展同样也是多方面的,经典的分离模式有毛细管区带电泳、毛细管胶束电动色谱、毛细管凝胶电泳等;新方法的发展研究难度大,但近年来却有不小的进展,其中建立新的分离模式和联用技术最为突出。比如建立了阵列毛细管电泳(CAE),亲和毛细管电泳技术(ACE),芯片毛细管电泳(CCE),非水毛细管电泳技术(NACE);本文作者尝试将分子信标技术与毛细管电泳技术相结合进行基因检测,取得

毛细管电泳发展历史

毛细管电泳的发展历史 中文摘要 本文简要的回顾了毛细管电泳的发展历史,对其发展和应用现状进行概述,并对未来的发展提出一些设想,作为我们研究课题的重点,特别对毛细管电泳安培检测技术进行了较为详细的评述。从电导检测、电位检测和安培检测的三种方法用于毛细管电泳这项分离技术的发展过程,到基础理论的研究、检测池的设计与改进、电极的改进及其应用的简单介绍到未来的发展动向等方向逐一涉及,一般的药物、氨基酸和糖类的分析到目前应用的热点进行了综述。从毛细管电泳安培检测技术需要进一步完善和发展考虑,提出了本论文的设想,在毛细管电泳安培检测的方法学研究及其在药物分析中的应用方面做出一些有意义的工作。 鉴于在毛细管电泳安培检测技术中,用于分离的高压电场对安培检测有着严重干扰,影响检测的灵敏度,而且分离毛细管与工作电极对接也存在一定困难等原因,前人已做了大量的研究工作,并提出了种种解决办法,但还存在不尽如人意的地方。在原有的工作基础上,我们进一步进行了毛细管电泳安培检测的研究工作,设计制作了一种高压电场隔离接口和相应的安培检测池,并对工作电极进行了改进,兹将主要研究内容报告如下:第一部分概述了毛细管电泳的发展历史,对电导检测、电位检测特别是安培检测的基本原理及其应用工作进行了详细介绍,指出了三种检测技术的优缺点,以及人们为降低噪音、提高检测度方面所做的一些工作,最后还简单介绍了本文的目的、意义和内容。 第二部分设计制作了一种电场隔离接口和安培检测池,并对检测电极做了进一步改进。对高压电场隔离接口的强度、稳定性、平衡时间、导电效率及隔离电场性能等进行了详细的研究。结果表明:该接口稳定,隔离电场效果好,可以满足实际工作的需要;制作的安培检测池可以解决分离毛细管与工作电极对接困难的问题,其工作电极可以方便的插入分离毛细管而不碰壁。组装了一套毛细管电泳安培检测系统,并利用该系统分离检测了三中种对苯二酚,结果令人满意。此外,我们通过对电极的改进,削弱了在毛细管电泳安培检测中存在的峰扩展现象,进一步提离了分离效率。 第三部分在自组装的毛细管电泳安培系统上,进行了毛细管电泳安培检测在药物分析中的方法学研究,建立了此种药物的毛细管电泳安培检测方法。 1. 用毛细管电泳安培检测法同时测定了银黄注射液中氯原酸与黄芩苷的含量,研究了各种实验条件对分离效果的影响,得到了较优化的实验条件。以直径为100μm的铜微电极为工作电极,于电极电位+0.8V(vs.Ag/Ag CI)处,40mmoI/L的Na2B407(pH值为13.4)min为缓冲溶液时, 氯原酸与黄苓苷在12min内得到良好的分离. 氯原酸与黄苓苷分别在5.0×10-3~0.5mg/mL浓度范围内与电泳峰电流呈良好的线性关系, 检测下限分别为1.0

毛细管电泳技术及在微生物学中的应用

湖南农业大学研究生课程论文 学院:食品科技学院 年级专业:07级营养与食品卫生学 姓名:章沙沙学号:s200700294 课程论文题目:毛细管电泳技术及在微生物学中的应用课程名称:现代食品分析技术 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

毛细管电泳技术及在微生物学中的应用 学生:章沙沙 (07级食品科技学院营养与食品卫生学,学号s200700294) 摘要: 毛细管电泳技术是一种新型高效液相分离技术,应用领域广泛。本文分别从毛细管电泳技术的发展概况及在微生物学检测中的应用加以综述。 关键词: 毛细管电泳;微生物;应用 毛细管电泳迅速发展于80年代中后期,是分析科学中继高效液相色谱技术之后的又一重大进展,使分析科学得以从微升水平进入纳升水平,并使单细胞分析乃至单分子分析成为可能[1]。毛细管电泳(CE)是一类以毛细管为分离通道,以高压直流电场为驱动力的新型液相分离技术。广泛应用于核酸、蛋白质、多肽、药物等大分子物质的分析,但是,不同于毛细管电泳在无机离子、有机小分子和生物大分子等方面取得的巨大成功,毛细管电泳在微生物方面的应用在最近几年才取得较大进展,并逐渐显现出巨大的应用潜力。在微生物学领域,毛细管电泳除了在微生物基因测序方面得到广泛应用外,在微生物学检测方面应用的报道不多见。本文主要介绍了毛细管电泳的发展、原理、特点、分离模式及在微生物检测中的应用。 1、毛细管电泳技术 1.1毛细管电泳发展历史 1937年瑞典化学家Tiselius[2]利用电泳技术第一次从人血清中分离出白蛋白和α、β、γ球蛋白,并研制成第一台电泳仪,使电泳作为一种分离分析技术有了突破性的进展。经典电泳法最大的局限性在于存在焦耳热,只能在低电场强度下操作,直接影响了其分离效率和分析速度的提高,为了解决这一问题,人们进行了多方探索。1981年,Jorgenson和Lukacs[3]使用内径75um的石英毛细管进行电泳,成功地对丹酰化氨基酸进行了快速,高效分离获得了40万块/m理论塔板的高效率。这一开创性工作成为电泳发展史上一个里程碑,使经典的电泳技术发展为高效毛细管电泳(HPCE)。从此,毛细管电泳在理论研究,分离模式,商品仪器,应用领域等各方面获得了迅猛发展。如今,HPCE可与GC、HPLC相媲美,成为现代分离科学的重要组成部分[4]。 1.2毛细管电泳基本原理和分离模式 按毛细管内分离介质和分离原理的不同,毛细管电泳有以下几种分离模式[5]: (1)毛细管区带电泳毛细管区带电泳(CZE)的分离原理是基于各个分离物质的净电荷与其质量比(比荷)间的差异而进行物质的分离。迄今CZE仍是应用最多的模式,应用范围包括氨基酸、肽、蛋白、离子等的分离。(2)毛细管凝胶电泳毛细管凝胶电泳(CGE)是将平板电泳的凝胶移到毛细管中作支持物进行电泳,不同体积的溶质分子在其分子筛作用的凝胶中得以分离。常用于蛋白质、寡聚核苷酸、核糖核酸、DNA片段分离和测序及聚合酶链反应(PCR)产物的分析。(3)毛细管胶束电动色谱毛细管胶束电动色谱(MECC)是采用表面活性剂在运动缓冲液内形成一疏水内核,外部带负电的动态胶束相,利用溶质具有不同的疏水性,在水相和胶束相间分配的差异进行分离。主要用于小分子、中性化合物和药物等的分离。(4)毛细管等电聚焦毛细管等电聚焦(CIEF)是用两性电解质在毛细管内建立pH梯度,使各种具

第五章 高效毛细管电泳分离技术

第五章高效毛细管电泳分离技术 第一节毛细管电泳技术发展简史及其特点 电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象。据此对某些化学或生物化学组分进行分离的技术称为电泳技术。 从1930年瑞典科学家Arne Tiselius首次提出电泳法至今已有70年的历史。电泳法的发展大致可分为三个阶段。1950年以前属初创阶段,主要是界面移动自由电泳,一般在U型管内进行,无支持物。50年代至80年代中期出现了各种有支持物的电泳方法,如纸电泳、醋酸纤维电泳、琼脂糖电泳、聚丙烯酰胺凝胶电泳等,70年代后实现了仪器的自动化。80年代后期出现了毛细管电泳方法,实现了微型化、自动化、高效、快速分析,毛细管电泳技术已经成为同现代色谱技术相比的分析化学领域中的一个令人瞩目的分支。 毛细管电泳(Capillary Electrophoresis,CE)或高效毛细管电泳(High Performance Capillary Electrophoresis,HPCE)是指以毛细管为分离室、以高压电场为驱动力的一类新型现代电泳技术。毛细管电泳仪的基本结构见图5-1。

HV(0-+30KV) 图1 毛细管电泳仪的结构图 C—毛细管;D—检测器;E—电极槽;HV—直流高压电源;Pt—铂电极;S—样品;DA—数据采集处理系统 完善的毛细管电泳仪应具备(1)有多种施压模式;(2)恒温精度高,恒温范围宽;(3)精确的进样控制;(4)检测器的灵敏度高等条件。 毛细管电泳分离技术用的是内径为5-100μm,外径为370μm,长为10-100cm的弹性熔融石英毛细管,毛细管的特点是(1)体积小;(2)散热快,可承受高电场;(3)可使用自由溶液、凝胶等为支持电解质,在溶液介质下可产生平面形状的电渗流。 毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:(1)高效(105-107理论塔板/米);(2)快速(几十秒至几十分钟);(3)分离模式多,选择自由度大;(4)分析对象广,从无机离子到整个细胞;(5)高度自动化;

毛细管电泳原理及其应用

毛细管电泳原理及其应用 学院:海洋港口学院班级:14制药工程学号:1423014113 姓名:蒋佳丽时间:2015年1月7日 前言 毛细管电泳(capillary electrophoresis, CE)是近十几年来迅速发展起来的一种分离技术,虽说在上世纪六七十年代就有人对毛细管内电渗流形式做了理论探索并也开始尝试毛细管电泳技术,但都因为受到检测器灵敏度限制、电 泳过程中产生的焦耳热无法有效散失等因素的制约,影响分离效果。八十年代初,外壁涂有聚二酞亚胺,内径小于100}m 的熔融石英毛细管的使用[1]及检测器灵敏度的提高大大推动了毛细管电泳技术的发展,由于CE具有普通电泳和色谱 的优点及具有高效、高灵敏度、快速、低运行成本、犬信息量和易于自动化等特点,近年来在生物化学、临床诊断、 法医刑侦学等领域应用广泛。 一、CE设备及原理 毛细管电泳是以高压电场为驱动力,以毛细管为分离通道,根据样品各组分之间的淌度及分配上的行为差异而实现分离目的的一类液相分离技术。其仪器装置一般由以下几部分组成(见图一)1.高压电源;2.毛细管;3.在线检测器;4.电极及电极液;5.加样系统。毛细管是由熔融石英加工制成的(内径20一100}m,长度为20一100cm ),外壁涂有一层聚二酞亚胺以增加其柔韧性,内壁通常直接和溶液接触,有时也可根据需要涂上一层高聚物。与平板凝胶电泳类似的, 毛细管内也可填充支持介质,如琼脂糖,聚丙烯酞胺及甲基纤维素等。 图一毛细管电泳仪装置示意图(Tagliaro, 1998)[1] 在线检测器位于距样品盘约三分之二至五分之四毛细管总长处,对毛细管壁内部进行光学聚焦(在此处的毛细管外 壁的保护层是被烧掉或刮去的,以利于光的通透)。在线检测器通常有紫外、荧光和激光等多种检测方式。对DNA的分析通常使用紫外检测,对200bp的DNA片段的最小检测浓度是O.5mg/L。但对于生物样品中在和许多其他成分共存的痕量物质测定时,或对特殊分析(如DNA序列测定)时就要使用激光诱导的荧光检测器(laser induced fluorescence, LIF),使用LIF在非液相毛细管电泳中的检测灵敏度要比非激光诱导的荧光检测提高6倍[2],比紫外检测高100倍。另外,加入染料EB还可改善分离度,能将碱基长度相同但序列不同的DNA片段分开[3]。 毛细管中充满具有一定离子强度的缓冲液后,在其两端加上高电压,带电粒子在电场作用下以不同速度向其所带电荷反方向迁移,当pH>3时,毛细管内壁的石英分子因玫Siq分子的解离,而在表面形成一层负电荷,吸引缓冲液中的正离子,形成一个双电层。在高电压作用下,双电层水合阳离子层引起整个溶液在毛细管中向负极方向移动,形成电 渗流。带电粒子在毛细管内的电解质溶液中的迁移速度等于电泳和电渗流二者的矢量和,因此阳离子首先从负极流出;中性离子的速度等于电渗流速度,随后流出;而由于电渗流速度大于电泳速度,因此阴离子最后流出。 内壁石英分子除能造成电渗流外,还会吸附溶质中带正电荷的分子,从而影响分离效果。为了避免分析物被管壁 吸附,可选用缓冲液的pH大于样品混合物中蛋白质和多肤的等电点,或者选用pH接近pH2.0,此时毛细管内壁无解离的负电荷,但在这种酸性环境下,蛋白质容易失活,一般仅用于多肤分析。有时也可对毛细管内壁进行涂层,如中性

高效毛细管电泳

高效毛细管电泳-非接触式电导检测法的应用 ——瓶装矿泉水中Na+、K+、Ca2+、Mg2+的分离检测 摘要本实验采用毛细管电泳–非接触式电导检测法,以8mmol?L-1Tris 和6mmol?L-1酒石酸为电泳运行液,分离电压为+15 kV,采用标准加入法,对瓶装矿泉水中Na+、K+、Ca2+、Mg2+四种阳离子同时进行直接分离和检测。实验测得逸仙泉矿泉水中Na+、K+、Ca2+、Mg2+的含量分别为2.57mg·L1、13.46mg·L-1、4.99mg·L-1、1.82mg·L-1,发现K+、Mg2+含量均大大超出厂家提供的含量范围。 关键词高效毛细管电泳非接触电导检测法中大逸仙泉水分离检测标准加入法 1 引言 Na+、K+、Ca2+、Mg2+是人体内重要的无机阳离子,这些离子含量的高低直接影响人体的生理功能。Mg2+是人体细胞内的主要阳离子,浓集于线粒体中,是体内多种细胞基本生化反应的必需物质,在神经肌肉的机能正常运作、血糖转化等过程中扮演着重要角色。K+在人体内的主要作用是维持酸碱平衡,参与能量代谢以及维持神经肌肉的正常功能。人体中的钙元素主要以羟基磷酸钙晶体的形式存在于骨骼和牙齿中。Na+是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压,此外,糖代谢、氧的利用、维持正常血压也需要钠的参与。矿物质水中这些离子含量的高低决定了水质是否符合标准。因此,研究快速分离测定这些离子的含量很有实际的意义。 由于要同时测量四种离子含量,因此传统的对单一离子测量的方法不能用,毛细管电泳–非接触式电导检测法,可以同时对K+、Na+、Ca2+、Mg2+四种阳离子同时进行直接分离并且检测含量,相比已有的实验方法,本实验具有灵敏度高,操作简便,而且可以同时测定四种不同离子的含量,离子之间不存在相互干扰,极大地提高了实验效率,实验结果令人满意。 高效毛细管电泳的检测器中,非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection, 简称C4D)是近年来发展起来一种新型的电导检测方法。非接触式电导检测法的电极与待测溶液隔离,避免了因电极与溶液接触而造成的诸多问题,有效地消除了电极中毒的问题,电极寿命长,抗干扰能力强,可检测物质的范围广。HPCE–C4D具有通用性好、灵敏高、分析成本低和环境友好的优点,在日常分析中具有广阔的应用前景。 2 实验部分 2.1仪器试剂

高效毛细管电泳色谱仪的介绍

高效毛细管电泳色谱仪的介绍 高效毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离。由于CE溶质区带的超小体积特性导致光程太短,圆柱形毛细管作为光学表面不够理想,对检测器灵敏度要求相当高。CE常用检测器有紫外检测器、激光诱导荧光检测器、质谱检测器和电化学检测器等。 一、紫外检测器: 紫外检测器是基于物质对紫外吸收进行检测,是成熟的检测器,在CE中应用广。 1、原理: 入射紫外光通过样品时,被吸收的多少符合朗伯-比耳定律。 检测点在毛细管的末端,检测点的毛细管的外涂层要烧掉。 2、检测方法: (1)固定波长: 光源为低紫外氘灯,用滤光片获得固定波长的光。 (2)可变波长: 光源为氘灯或钨灯,用单色器(棱镜或光栅)获得连续可调波长的光。 (3)快速扫描: 1)利用线性二极管阵列快速捕获紫外光。 2)利用硅光电倍增管作快速扫描。 3、特点: (1)通用性好,特别是对蛋白质的适用性很强。 (2)灵敏度不足。 4、提高灵敏度的方法: 由于CE检测池的光路长度为毛细管内径,一般不超过100μm,小内径的毛细管限制了紫外检测器的灵敏度,可采用以下几种方法来提高灵敏度。 (1)优化测定波长: 通过测定不同波长下的信噪比来选择测定波长,以提高灵敏度。

(2)减少检测噪音: 1)提高光源强度。 2)采用聚焦和狭缝等减少背景光的影响。 3)采用良好的信号放大系统。 (3)扩展吸光光路长度: 1)为了克服圆柱形毛细管表面引起的散射、失真等不利的光学特性和增加光路长度,可采用矩形、扁形、Z形和泡型等特殊毛细管。当然柱效会有所下降。 2)对于普通毛细管,可采用轴向照射和多次反射来增加光路长度。 ①轴向照射:将激光光束从毛细管末端沿管轴方向入射,在毛细管侧面进行检测。 ②多次反射:在毛细管壁镀上银,分别开入射窗和出射窗。当入射光以特定角度入射后,在毛细管内反射30~40次后从出射窗口射出。 二、激光诱导荧光检测器: 激光诱导荧光检测器采用激发光源使检测物质产生荧光进行检测。 检测下限为10ˉ12~10ˉ10mol/L。 三、质谱检测器: 在CE-MS联用中,毛细管区带电泳为常用。电子喷雾离子源可检测多种高质量的带电分子,从CE分离出来的分子经过接口后直接进入MS,是MS的离子源。 检测下限为10ˉ9~10ˉ7mol/L,通用性好,可获得溶质的结构信息,但接口复杂。 四、电化学检测器: 电化学检测器可避免光学类检测器遇到的光程太短的问题,是CE中灵敏的检测器之一。 1、电导检测器: 柱上电导检测是在毛细管壁上用激光钻两个孔,插上两根铂电极,再将孔封住进行检测。 检测下限为10ˉ7~10ˉ5mol/L,通用性好,但需专门装置和毛细管处理。 2、安培检测器: CE中微量样品可使库仑效率大大提高,可达40%以上,而在HPLC中很少超过10%。 检测下限为10ˉ9~10ˉ8mol/L,灵敏度高,选择性好,但仅适用于电活性物

毛细管电泳技术的应用

毛细管电泳技术及在微生物学中的应用 摘要: 毛细管电泳技术是一种新型高效液相分离技术,应用领域广泛。本文分别从毛细管电泳技术的发展概况及在微生物学检测中的应用加以综述。 关键词: 毛细管电泳;微生物;应用 毛细管电泳迅速发展于80年代中后期,是分析科学中继高效液相色谱技术之后的又一重大进展,使分析科学得以从微升水平进入纳升水平,并使单细胞分析乃至单分子分析成为可能[1]。毛细管电泳(CE)是一类以毛细管为分离通道,以高压直流电场为驱动力的新型液相分离技术。广泛应用于核酸、蛋白质、多肽、药物等大分子物质的分析,但是,不同于毛细管电泳在无机离子、有机小分子和生物大分子等方面取得的巨大成功,毛细管电泳在微生物方面的应用在最近几年才取得较大进展,并逐渐显现出巨大的应用潜力。在微生物学领域,毛细管电泳除了在微生物基因测序方面得到广泛应用外,在微生物学检测方面应用的报道不多见。本文主要介绍了毛细管电泳的发展、原理、特点、分离模式及在微生物检测中的应用。 1、毛细管电泳技术 1.1毛细管电泳发展历史 1937年瑞典化学家Tiselius[2]利用电泳技术第一次从人血清中分离出白蛋白和α、β、γ球蛋白,并研制成第一台电泳仪,使电泳作为一种分离分析技术有了突破性的进展。经典电泳法最大的局限性在于存在焦耳热,只能在低电场强度下操作,直接影响了其分离效率和分析速度的提高,为了解决这一问题,人们进行了多方探索。1981年,Jorgenson和Lukacs[3]使用内径75um的石英毛细管进行电泳,成功地对丹酰化氨基酸进行了快速,高效分离获得了40万块/m理论塔板的高效率。这一开创性工作成为电泳发展史上一个里程碑,使经典的电泳技术发展为高效毛细管电泳(HPCE)。从此,毛细管电泳在理论研究,分离模式,商品仪器,应用领域等各方面获得了迅猛发展。如今,HPCE可与GC、HPLC相媲美,成为现代分离科学的重要组成部分[4]。 1.2毛细管电泳基本原理和分离模式 按毛细管内分离介质和分离原理的不同,毛细管电泳有以下几种分离模式[5]: (1)毛细管区带电泳毛细管区带电泳(CZE)的分离原理是基于各个分离物质的净电荷与其质量比(比荷)间的差异而进行物质的分离。迄今CZE仍是应用最多的模式,应用范围包括氨基酸、肽、蛋白、离子等的分离。(2)毛细管凝胶电泳毛细管凝胶电泳(CGE)是将平板电泳的凝胶移到毛细管中作支持物进行电泳,不同体积的溶质分子在其分子筛作用的凝胶中得以分离。常用于蛋白质、寡聚核苷酸、核糖核酸、DNA片段分离和测序及聚合酶链反应(PCR)产物的分析。(3)毛细管胶束电动色谱毛细管胶束电动色谱(MECC)是采用表面活性剂在运动缓冲液内形成一疏水内核,外部带负电的动态胶束相,利用溶质具有不同的疏水性,在水相和胶束相间分配的差异进行分离。主要用于小分子、中性化合物和药物等的分离。(4)毛细管等电聚焦毛细管等电聚焦(CIEF)是用两性电解质在毛细管内建立pH梯度,使各种具有不同等电点的蛋白质在电场作用下迁移到等电点的位置,形成窄的聚焦区带。已成功用于测定蛋白质的等电点、分离异构体等。(5)毛细管等速聚焦毛细管等速聚焦(CITP)利用先导电解质和尾随电解质,使溶质按其电泳淌度不同得以分离。现常用于富集样品。(6)毛细管电色谱将高效液相色谱(I-IPLC)中众多的固定相微粒填充到毛细管中,以样品与固定

毛细管电泳技术的研究现状与进展

毛细管电泳技术的研究现状与进展 摘要:毛细管电泳是近年发展最快的分离分析技术之一。它具有高灵敏度、高分辨率、高速度等优点.广泛应用于各个领域。随着毛细管电泳技术的不断发展,逐渐出现了7种电泳分离模式 [关毽词] 毛细管电泳;毛细管区带电泳;毛细管凝胶电泳;现状;进展; 毛细管电泳的原理(1) 毛细管电泳是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法.毛细管电泳所用的石英毛细管柱,在pH>3的情况下,其内表面带负电,与缓冲液接触时形成双电层,在高压电场作用下形成双电层一侧的缓冲液由于带正电而向负极方向移动,从而形成电渗流.同时在缓冲溶中,带电粒子在电场作用下,以各自不同速度向其所带电荷极性相反方向移动,形成电泳.目前,毛细管电泳分离模式主要如下: 1.毛细管区带电泳(CZE) 2.毛细管凝胶电泳(CGE) 3.细管胶柬电动色谱(mECC) 4.细管等电聚焦(CIEF) 5.细管等速电泳(CITP) 6.亲和毛细管电泳 7.毛细管电色谱 上述七种分离模式相瓦渗透,各有利弊,用途不一,目前较为常用的主要为CZE和CGE。 1.毛细管区带电泳(CZE) 将待分析的溶液引入毛细管进样的一端,施加直流电压后,各组分按各自的电泳流和电渗流的矢量和流向毛细管出口端,按阳离子、中性粒子和阴离子及其电荷大小的顺序通过检测器.中性组分彼此不能分离,出峰时间称为迁移时间,相当于高效液相色谱中的保留时间.为了降低电渗流和吸附现象,可将毛细管内壁涂层. CZE是毛细管电泳中最基本的模式,目前.在所有基于毛细管电泳的研究中有60%系运用此模式。适于CZE分析模式的研究对象包括金属离子、无机阴离子、小分子有机酸和有机碱、肽类以及蛋白质。应用CZE模式的前提是分析对象必须或能够带有一定的电荷,这样才能使分析物质在电场力的作用下泳动.已有人总结了运用毛细管电泳进行各种离子分析的分离机制和优化策略(2) 2.毛细管凝胶电泳(CGE) 分离分析是在聚丙烯酰胺或者琼脂糖凝胶填充的毛细管内进行的,样品的分离是基于填充凝胶孔隙所产生的分子筛作用。此分析模式主要用于分离蛋白质、寡聚核苷酸和DNA片断。这些生物大分子多聚物有其固定的荷质比,难以运用CZE和MEKC将其分离。从分离的高效性和分析时间大幅减少的角度来说,CGE毫无疑问将成为一种替代传统的平板凝胶电泳和SDS —PAGE技术的新方法,但同时也面临一些有待解决的问题,例如,凝胶断裂、凝胶降解作用、进样末端的堵塞和毛细管使用寿命缩短等. 非凝胶筛分毛管电泳可以弥补以上缺陷。在非凝胶筛分系统的分离缓冲溶液中,加入水溶性的线形聚合物(如:甲基纤维素、葡聚糖和聚乙烯乙二醇)。这些聚合物溶液在每次进样分析开始前更换,同一支毛细管可以反复使用几百次而仍然保持良好的重现性。有文章详细阐述了在聚合物溶液中基于分析物分子量大小的分离机制(3)。在s.F Y.Lj等人发表文章中(4)”,运用CGE成功地分离了肌红蛋白分子,整

相关文档
最新文档