功能关系及应用

功能关系及应用
功能关系及应用

功能关系及应用

[高考要求]

和能源环保问题

本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹力功与弹性势能、合力功与机械能,摩擦阻力做功、内能与机械能。都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、功能关系是历年高考力学部分的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《考纲》对本部分考点要求都为Ⅱ类,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常与牛顿运动定律、曲线运动、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。

一、重要地位:

3、对守恒思想理解不够深刻

在高中物理学习过程中,既要学习到普遍适用的守恒定律——能量守恒定律,又要学习到条件限制下的守恒定律——机械能守恒定律。学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。

4、对功和能混淆不清

在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量

图5-2 转化的量度。

二、突破策略:

(5)功是能量转化的量度,由此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解。

例1:如图5-2所示,质量为m 的小物体相对静止在楔形物体的倾角

为θ的光滑斜面上,楔形物体在水平推力F 作用下向左移动了距离s ,

在此过程中,楔形物体对小物体做的功等于( ).

A .0

B .mgscosθ

C .Fs

D .mgstanθ

C .21mv2max+Fs-21

mv02 D .F ·20max v v +·t

【审题】审题中要注意到,此过程中发动机始终以额定功率工作,这样牵引力大小是变化的,求牵引力的功就不能用公式cos W Fl α=,而要另想他法。

【解析】解法一:(平均力法)

铁锤每次做功都用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,F=f=kx,可用平均阻力来代替.如图5-3所示,第一次击入深度为x1,平均

阻力1F =21kx1,做功为W1=1F x1=21kx12.

图5-3

第二次击入深度为x1到x2,平均阻力2F =21

k (x2+x1),位移为x2-x1,做功为W2=2F (x2-x1)= 21

k (x22-x12).

两次做功相等:W1=W2.

解后有:x2=2x1=1.41 cm,

Δx=x2-x1=0.41 cm.

解法二:(图象法)因为阻力F=kx,以F 为纵坐标,F 方向上的位移x 为横坐标,

作出F-x 图象(如图5-4所示),曲线上面积的值等于F 对铁钉做的功。

由于两次做功相等,故有:

S1=S2(面积),即:

21 kx12=21

k (x2+x1)(x2-x1),

所以Δ

x=x2-x1=0.41 cm[m] 例4:一列火车由机车牵引沿水平轨道行使,经过时间t ,其速度由0增大到v 。已知列车总质量为M ,机车功率P 保持不变,列车所受阻力f 为恒力。求:这段时间内列车通过的路程。

图5-4

【审题】以列车为研究对象,水平方向受牵引力F 和阻力f ,但要注意机车功率保持不变,就说明牵引力大小是变化的,而在中学阶段用功的定义式求功要求F 是恒力。

【解析】以列车为研究对象,列车水平方向受牵引力和阻力,设列车通过路程为s 。根据动能定理:

2

12F f W W Mv -=

【总结】解决该类问题,要注意研究对象的选取,可以选择t 时间内通过

风力发电机的空气为研究对象,也可以选择单位时间内通过风力发电机的

空气为研究对象,还可以选择单位长度的空气为研究对象。

例6:如图5-6所示,斜面倾角为θ,滑块质量为m ,滑块与斜面的动摩

擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿

斜面的分力大于滑动摩擦力,且每次与P 碰撞前后的速度大小保持不变,

斜面足够长.求滑块从开始运动到最后停止滑行的总路程

s.

图5-6

以上各式均为标量式,后两个表达式研究的是变化量,无需选择零势能面,有些问题利用它们解决显得非常方便,但一定要分清哪种能量增加,哪种能量减少,或哪个物体机械能增加,哪个物体机械能减少。

而对于能量守恒定律可从以下两个角度理解:

(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少

量和增加量一定相等。

(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少

量和增加量一定相等。

7:如图5-7所示,一根长为l 的轻绳,一端固定在O 点,另一端拴一个质量为m 的小球.用外力把小球提到图示位置,使绳伸直,并在过O 点的水平面上方,与水平面成30°角.从静止释放小球,求

小球通过O 点正下方时绳的拉力大小。

则有:21mvB/2+mgl(1-cos60°)= 21

mvC2 在C 点由牛顿第二定律得

O

图5-7

T-mg=m l v C

2

联立以上方程可解得: T=27

mg

【总结】在分析该题时一定要注意绳在绷紧瞬间,有机械能损失,也就是说整个过程机械能并不守恒,不能由全过程机械能守恒定律解决该问题,但是在该瞬间之前和之后的两个过程机械能都是守恒的,可分别由机械能守恒定律求解。

【总结】该题的关键之处在于,对每个小球来讲机械能并不守恒,但对两小球组成的系统来讲机械能是守恒的。

例9:如图5-10所示,皮带的速度为3m/s ,两圆心距离s=4.5m ,现将

m=1kg 的小物体轻放在左轮正上方的皮带上,物体与皮带间的动摩擦因

数为μ=0.15,电动机带动皮带将物体从左轮正上方运送到右轮正上方

时,电动机消耗的电能是多少?

图5-10

3、理解功能关系,牢记“功是能量转化的量度”

能是物体做功的本领,功是能量转化的量度;能属于物体,功属于系统;功是过程量,能是状态量。做功的过程,是不同形式能量转化的过程:可以是不同形式的能量在一个物体转化,也可以是不同形式的能量在不同物体间转化。力学中,功和能量转化的关系主要有以下几种:

(1).重力对物体做功,物体的重力势能一定变化,重力势能的变化只跟重力做的功有关:G P W E =-?,另外弹簧弹力对物体做功与弹簧弹性势能的变化也有类似关系:F P W E =-?。

(2).合外力对物体做的功等于物体动能的变化量:K W E =?合——动能定理。

(3).除系统内的重力和弹簧弹力外,其他力做的总功等于系统机械能的变化量:W E

=?其他力——功能原理。

11:如图5-12所示,质量为m 的小铁块A 以水平速度v0冲上质量为M 、长为l 、置于光滑水平面C 上的木板B ,正好不从木板上掉下,已知A 、B 间的动摩擦因数为μ,此时木板对地位移为s ,求这一过程中:

(1)木板增加的动能;

(2)小铁块减少的动能;

(3)系统机械能的减少量;

(4)系统产生的热量。

【审题】在此过程中摩擦力做功的情况是:A 和B 所受摩擦力分别为F1、F2,且F1=F2=μmg ,A 在F1的作用下匀减速,B

在F2的作用下匀加速;当A 滑动到B 的右端时,A 、B 达到一样的速度v ,就正好不掉下。

图5-12

【总结】通过本题可以看出摩擦力做功可从以下两个方面理解:

(1)相互作用的一对静摩擦力,如果一个力做正功,另一个力一定做负功,并且量值相等,即一对静摩擦力做功不会产生热量。

(2)相互作用的一对滑动摩擦力做功的代数和一定为负值,即一对滑动摩擦力做功的结果

总是使系统的机械能减少,减少的机械能转化为内能:Q F s

=?

滑相,其中

F

滑必须是滑动

两球之间的有粘性,当力F作用了2s时,两球发生最后一次碰撞,且不再分开,取g=10m/s2。求:

(1)最后一次碰撞后,小球的加速度;

(2)最后一次碰撞完成时,小球的速度;

(3)整个碰撞过程中,系统损失的机械能。

高中物理功能关系知识点和习题总结

高中物理功能关系 专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题. 应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场带电粒子运动或电磁感应问题. 1.常见的几种力做功的特点 (1)重力、弹簧弹力、静电力做功与路径无关.

(2)摩擦力做功的特点 ①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功. ②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有 机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为能.转化为能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积. ③摩擦生热是指滑动摩擦生热,静摩擦不会生热. 2.几个重要的功能关系 (1)重力的功等于重力势能的变化,即W G=-ΔE p. (2)弹力的功等于弹性势能的变化,即W弹=-ΔE p. (3)合力的功等于动能的变化,即W=ΔE k. (4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE. (5)一对滑动摩擦力做的功等于系统中能的变化,即Q=F f·l相对. 1.动能定理的应用 (1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、 速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用. (2)应用动能定理解题的基本思路 ①选取研究对象,明确它的运动过程. ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和. ③明确物体在运动过程始、末状态的动能E k1和E k2.

功能关系的理解和应用

第 1 页 共 1 页 功能关系的理解和应用 在应用功能关系解决具体问题的过程中: (1)若只涉及动能的变化用动能定理. (2)只涉及重力势能的变化,用重力做功与重力势能变化的关系分析. (3)只涉及机械能变化,用除重力和弹簧的弹力之外的力做功与机械能变化的关系分析. (4)只涉及电势能的变化,用电场力做功与电势能变化的关系分析. 例1 (多选)如图1所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环( ) 图1 A .下滑过程中,加速度一直减小 B .下滑过程中,克服摩擦力做的功为14 m v 2 C .在C 处,弹簧的弹性势能为14 m v 2-mgh D .上滑经过B 的速度大于下滑经过B 的速度 经过B 处的速度最大,到达C 处的速度为零. 答案 BD 解析 由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先 减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12 m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14 m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 的过程有12m v B 2+ΔE p ′+W f ′=mgh ′,B 到A 的过程有12 m v B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确.

高中物理常见功能关系

高中物理常见功能关系 功是能量转化的量度。有多少功就有多少能量参与转化。高中阶段常见的做功引起能量转化的基本类型如下: 1、合外力的功等于物体动能的变化量; 这是动能定理的基本类容,表达式为 W=Ek2-Ek1=ΔEk; 2、重力的功等于物体重力势能的减少量; 注意,是重力势能的减少量,不是变化量。变化量是指增量,所以减少量是变化量的相反数。这个用关系式表达为WG=Ep1-Ep2=-ΔEp; 3、重力以外的力做功等于物体机械能的变化量;即 W=E2-E1=ΔE; 4、互为作用力与反作用力的一对滑动摩擦力做功等于系统机械能的减少量; 设两个物体之间存在着大小为f的滑动摩擦力,则对物体1,摩擦力做功为Wf1=fx1,对物体2,摩擦力做功为 Wf2=-fx2,则Wf1+Wf2=f(x1-x2)=fx相,这个x相是指相对路程。fx相等于系统机械能的减少量。 5、弹簧弹力做功等于弹性势能的减少量; 这个与第二点“重力做功等于重力势能的减少量”类似。表达式也是W=Ep1-Ep2=-ΔEp 6、电场力做功等于电势能减少量;

若在电场中带电体从A点移动到B点,则 WAB=EpA-EpB=-ΔEp 7、分子力做功等于分子势能减少量; 8、安培力做多少功就有多少电能转化为其他形式能;克服安培力做多少功就有多少其他形式能转化为电能; 推导如下:W安=-BILx=-I*BLv*t=-EIt=-W电 以上是高中阶段常见功能关系的一点总结。看起来纷繁复杂,其实可以总结为一个表达式:即W=以上是高中阶段常见功能关系的一点总结。看起来纷繁复杂,其实可以总结为一个表达式:即W=ΔE,也就是:力做了多少功,就有多少能量参与转化。所以说:功是能量转化的量度。

高中物理功能关系专题

高中物理功能关系专题 XXXX教育学科教师辅导讲义讲义编号: 学员编号: 年级:高三课时数: 学员姓名: 辅导科目:高中物理学科教师: 学科组长签名及日期家长签名及日期 课题功能关系 授课时间备课时间 1( 功,功率的定义 教学目的 2( 汽车启动问题 3( 动能定理初步 类型1 功和功率的计算 (一)功的相关问题 1. 恒力F做功: WFs,cos, 两种理解: scos, (1)力F与在力F的方向上通过的位移的乘积。 (2)在位移s方向上的力与位移s的乘积。 Fcos, 注:力的作用点和位移要画成共点的,然后来找箭头和箭头之间的夹角 2. 变力F做功的求解方法 FF,12,?cos (1)若变力F是位移s的线性函数,则。 F,WFs,,2 WPT,? (2)变力F的功率恒定。 (3)利用动能定理及功能关系等方法求解。 (4)分段来看是恒力的,分段求功然后加起来。 典型的常见题型:篮球

3. 合外力的功W 合 WFs,cos, (1),在位移s上F恒定。合合合 WWWW,,,,… (2)要注意各功的正负。 12n合 4. 正、负功的物理意义 正功表示该力作为动力对物体做功,把其他物体的能量(或者其他形式的能量)给物体 负功表示该力作为阻力对物体做功,把物体的能量给了其他物体(或者变成其他形式的能量) 5. 摩擦力做功的特点 (1)摩擦力既可以做正功,也可以做负功。 (2)相互摩擦的系统内: 一对静摩擦力的功的代数和总为零,静摩擦力起着传递机械能的作用,而没有机械能转化为其他形式的能。 一对滑动摩擦力的功的代数和与路径有关,其值为负。等于摩擦力与相对位移的乘积。即WFsEQ,,,,。所以摩擦力可能有两个作用:一是物体间的机械能的转移;二是机滑相对损内能 械能转化为内能。 6.重力做功的特点 如右图(d)所示,质量为m的物体经三条不同的路径,从高度是h的位置运动到高度是h的位12置。重力做功有什么特点呢, 小结:重力做的功只跟它的起点和终点位置的高度差有关,而跟物体运动的路径无关

高考物理总复习:功能关系的理解和应用

高考物理总复习:功能关系的理解和应用 1.如图1所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点.将小球拉至A 点,弹簧恰好无形变,由静止释放小球,当小球运动到O 点正下方与A 点的竖直高度差为h 的B 点时,速度大小为v .已知重力加速度为g ,下列说法正确的是( ) 图1 A .小球运动到 B 点时的动能等于mgh B .小球由A 点到B 点重力势能减少12 m v 2 C .小球由A 点到B 点克服弹力做功为mgh D .小球到达B 点时弹簧的弹性势能为mgh -12 m v 2 答案 D 解析 小球由A 点到B 点的过程中,小球和弹簧组成的系统机械能守恒,弹簧由原长到发生伸长的形变,小球动能增加量小于重力势能减少量,A 项错误;小球重力势能减少量等于小球动能增加量与弹簧弹性势能增加量之和,B 项错误;弹簧弹性势能增加量等于小球重力势能减少量与动能增加量之差,D 项正确;弹簧弹性势能增加量等于小球克服弹力所做的功,C 项错误. 2.(多选)如图2所示,质量为m 的物体(可视为质点)以某一速度由底端冲上倾角为30°的固 定斜面,上升的最大高度为h ,其加速度大小为34 g .在这个过程中,物体( ) 图2 A .重力势能增加了mgh B .动能减少了mgh C .动能减少了3mgh 2

D .机械能损失了3mgh 2 答案 AC 解析 物体重力势能的增加量等于克服重力做的功,选项A 正确;合力做的功等于物体动 能的变化,则可知动能减少量为ΔE k =ma h sin 30°=32 mgh ,选项B 错误,选项C 正确;机械能的损失量等于克服摩擦力做的功,因为mg sin 30°+F f =ma ,a =34g ,所以F f =14 mg ,故克服摩擦力做的功W f =F f h sin 30°=14mg h sin 30°=12 mgh ,选项D 错误. 3.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图3中位置无初速度释放,在小球下摆到最低点的过程中,下列说法正确的是( ) 图3 A .绳对球的拉力不做功 B .球克服绳拉力做的功等于球减少的机械能 C .绳对车做的功等于球减少的重力势能 D .球减少的重力势能等于球增加的动能 答案 B 解析 小球下摆的过程中,小车的机械能增加,小球的机械能减少,球克服绳拉力做的功等于减少的机械能,选项A 错误,选项B 正确;绳对车做的功等于球减少的机械能,选项C 错误;球减少的重力势能等于球增加的动能和小车增加的机械能之和,选项D 错误. 4. (2015·福建理综·21)如图4,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点.一质量为m 的滑块在小车上从A 点由静止开始沿轨道滑下,重力加速度为g . 图4 (1)若固定小车,求滑块运动过程中对小车的最大压力; (2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车.已

高中物理专题练习《功能关系》

一个人站在船头,按图中A. B. 两种情况用同样大小的力拉绳,设船的质量一样,水的阻力不计,从静止开始在相同的t时间内(t时间内,A. 图中小船未碰岸,B. 图中两船未相遇),两种情况人所做的功分别为W a和W b,在t时刻人拉绳做功的瞬时功率分别为P a和P b,则有( ) A. W a>W b, P a>P b B. W a=W b, P a=P b C. W a<W b, P a<P b D. W a<W b, P a>P b 答案:C 来源: 题型:单选题,难度:理解 如图所示,轻弹簧一端系一个质量为m的小球,另一端固定于O点,弹簧的劲度系数为k,将小球拉到与O点等高处,弹簧恰为原长时,将小球由静止释放,达到最低点时,弹簧的长度为l,对于小球的速度v和弹簧的伸长量△l有( ). A .△l=mg/k B. △l=3mg/k C. υ= D. υ< 答案:D 来源: 题型:单选题,难度:理解 一个小球在竖直环内至少做n次圆周运动,当它第(n-2)次经过环的最低点时速度为7 m / s,第(n-1)次经过环的最低点时速度为5 m / s,则第n次经过环的最低点时的速度V一定 A.v>1 m / s B.v < 1 m / s C.v = 1 m / s D.v = 3 m / s。 答案:A 来源: 题型:单选题,难度:应用 一根质量为M的链条一半放在光滑水平桌面上,另一半挂在桌边,如图(甲)所示。将链条由静止释放,当链条刚离开桌面时,速度为v1.然后在链条两端各系一个质量为m的小球,把链条一半和一个小球放在光滑水平桌面上,另一半和另一个小球挂在桌边,如图(乙)所示。又将系有小球的链条由静止释放,当链条和小球刚离开桌面时速度v2.下列判断中正确的是 () A.若M=2m,则v1=v2 B.若M>2m,则v1<v2 C.若M<2m,则v1<v2 D.不论M与m大小关系如何,均有v1>v2

功能关系及应用

功能关系及应用 [高考要求] 重要考点 要求 命题热点 功和功率 Ⅱ 1.重力、摩擦力、电场力和洛伦兹力的做功特点和求解 2.与功、功率相关的分析和计算。 3.动能定理的综合应用。 4.应用动能定理、功能关系解决动力学问题。 其中动能定理和功能关系的应用是考查的重点,考查的特点是密切联系生活、生产实际,联系现代科学技术的问题和能源环保问题 动能和动能定理 Ⅱ 重力做功与重力势能 Ⅱ 电场力做功与电势能 Ⅱ 功能关系 Ⅱ 电功率、焦耳定律 Ⅰ 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹力功与弹性势能、合力功与机械能,摩擦阻力做功、内能与机械能。都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、功能关系是历年高考力学部分的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《考纲》对本部分考点要求都为Ⅱ类, 功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常与牛顿运动定律、曲线运动、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。 一、重要地位: 3、对守恒思想理解不够深刻 在高中物理学习过程中,既要学习到普遍适用的守恒定律——能量守恒定律,又要学习到条件限制下的守恒定律——机械能守恒定律。学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。 4、对功和能混淆不清 在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量

高中物理必修二功能关系试题

高中物理必修二功能关 系试题 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中物理必修二功能关系试题 1、两个物体的质量之比为1:4,速度大小之比为4:1,则这两个物体的动能之比是( ) A 、 1:4 B 、 4:1 C 、2:1 D 、1:1 2、质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法中正确的是 ( ) A 、物体机械能增加2J B 、拉力对物体做功12J C 、合外力对物体做功2J D 、物体克服重力做功10J 3.光滑的水平面上固定着一个螺旋形光滑水平轨道,俯视如图所示。一个小球以一定速度沿轨道切线方向进入轨道,以下关于小球运动的说法中正确的是 ( ) A .轨道对小球做正功,小球的线速度不断增大 B .轨道对小球做正功,小球的角速度不断增大 C .轨道对小球不做功,小球的角速度不断增大 D .轨道对小球不做功,小球的线速度不断增大 4、质量为m 的物体以速度v 从地面竖直上抛,当它抛到离地面h 高处时,它的动能和势能 正好相等,这个高度是( ) A 、g v 2 B 、g v 22 C 、g v 42 D 、g v 2 2 5、一物体由H 高处自由落下,当物体的动能等于势能时,物体运动的时间为( ) A 、g H 2 B 、g H C 、g 2H D 、4H g 6、质量为m 的物体从地面上方H 高处无初速释放,落在地面后出现一个深度为h 的坑,如图所示,在此过程中:( )

A 、重力对物体做功为mgH B 、物体的重力势能减少了mg (H +h ) C 、所有外力对物体做的总功为零 D 、地面对物体的平均阻力为mg (H +h )/ h 7、如图所示,一物体以一定的速度沿水平面由A 点滑到B 点,摩擦力做功W 1;若该物体从A′沿两斜面滑到B′,不考虑物体在最高点离开斜面情况,摩擦力做的总功为W 2,已知物体与各接触面的动摩擦因数均相同,则:( ) A .W 1=W 2 B .W 1>W 2 C .W 1<W 2 D .不能确定W 1、W 2大小关系 8、一物体在竖直弹簧的上方h 米处下落,然后又被弹簧弹回,则物体动能最大时是:( ) A 、物体刚接触弹簧时 B 、物体将弹簧压缩至最短时 C 、物体重力与弹力相等时 D 、弹簧等于原长时 9、如图所示,一小球自A 点由静止自由下落,到B 点时与弹簧接触,到C 点 时弹簧被压缩到最短。若不计弹簧质量和空气阻力,在小球由A →B →C 的过程中,若仅以小球为系统,且取地面为参考面,则:( ) A 、小球从A → B 的过程中机械能守恒;小球从B → C 的过程中只有重力和弹力做功,所以机械能也守恒 B 、小球在B 点时动能最大 C 、小球减少的机械能,等于弹簧弹性势能的增量 D 、小球到达C 点时动能为零,重力势能为零,弹簧的弹性势能最大 10.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下 列关于能量的叙述中正确的应是( ) A.重力势能和动能之和总保持不变 A B C

高考物理一轮复习 第六章 微专题37 力学中几个功能关系的理解和应用

力学中几个功能关系的理解和应用 1.考点及要求:(1)动能定理(Ⅱ);(2)机械能守恒定律(Ⅱ);(3)功能关系(Ⅱ).2.方法与技巧:选用功能关系解决问题时的注意事项:(1)若考虑合力做功或只涉及动能的变化,可用动能定理;(2)重力做功仅量度重力势能的变化,用能量守恒知识解题时两者不可重复表达;(3)静摩擦力做功不能产生热量. 1.(单物体运动中的功能关系)一个排球在A点被竖直抛出时动能为20 J,上升到最大高度后,又回到A点,动能变为12 J,设排球在运动中受到的阻力大小恒定,则( ) A.上升到最高点过程重力势能增加了20 J B.上升到最高点过程机械能减少了8 J C.从最高点回到A点过程克服阻力做功4 J D.从最高点回到A点过程重力势能减少了12 J 2.(含弹簧的多物体运动中的功能关系)如图1所示,轻质弹簧的一端固定在粗糙斜面的挡板O点,另一端固定一个小物块.小物块从P1位置(此位置弹簧伸长量为零)由静止开始运动,运动到最低点P2位置,然后在弹力作用下上升运动到最高点P3位置(图中未标出).在这两个过程中,下列判断正确的是( ) 图1 A.下滑和上滑过程弹簧和小物块组成的系统机械能守恒 B.下滑过程小物块速度最大值位置比上滑过程速度最大值位置高 C.下滑过程弹簧和小物块组成的系统机械能减小量比上滑过程小 D.下滑过程克服弹簧弹力和摩擦力做功总值比上滑过程弹簧弹力做功和克服摩擦力做功总值小 3. (多选)如图2所示,轻弹簧的上端悬挂在天花板上,下端挂一质量为m的小球,小球处于静止状态.现在小球上加一竖直向上的恒力F使小球向上运动,小球运动的最高点与最低点之间的距离为H,则此过程中(g为重力加速度,弹簧始终在弹性限度内)( ) 图2 A.小球的重力势能增加mgH B.小球的动能增加(F-mg)H C.小球的机械能增加FH D.小球的机械能不守恒

(新)高中物理二轮复习功能关系专题

一、动能定理 动能定理的推导 物体只在一个恒力作用下,做直线运动 w =FS =m a ×a V V 22 122- 即 21222121mv mv w -= 推广: 物体在多个力的作用下、物体在做曲线运动、物体在变力的作用下 结论: 合力所做的功等于动能的增量 ,合力做正功动能增加,合力做负功动能减小 合力做功的求法: 1、受力分析求合力,合力乘以在合力方向的位移(合力是恒力,位移相对地的位移) 2、合力做的功等于各力做功的代数和 二.应用动能定理解题的步骤 (1)确定研究对象和研究过程。 (2)对研究对象受力分析,判断各力做功情况。 (3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负) (4)写出物体的初、末动能。按照动能定理列式求解。 【例】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h/10停止,则 (1)钢珠在沙坑中受到的平均阻力是重力的多少倍? (2)若让钢珠进入沙坑h/8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻 力大小不随深度改变。 三、高中物理接触到的几种常用的功能关系 1、 重力做功等于重力势能的减小量 2、 弹力做功等于弹性势能的减小量 3、 电场力做功等于电势能的减小量 4、 合外力做功等于动能的变化量(动能定理) 5、 除重力以外其它力做功等于机械能的变化量 6、 摩擦力乘以相对位移代表有多少机械能转化为内能用于发热 7、 电磁感应中克服安培力做功量度多少其他形式能转化为电能用于发热 8、能量守恒思路

1.(2013·长春模拟)19世纪初,科学家在研究功能关系的过程中,具备了能量转化和守恒的思想,对生活中有关机械能转化的问题有了清晰的认识,下列有关机械能的说法正确的是( ) A .仅有重力对物体做功,物体的机械能一定守恒 B .仅有弹力对物体做功,物体的机械能一定守恒 C .摩擦力对物体做的功一定等于物体机械能的变化量 D .合外力对物体做的功一定等于物体机械能的变化量 2.(2013·东北四市联考)在高度为h 、倾角为30°的粗糙固定的斜面上,有一质量为m 、与一轻弹簧拴接的物块恰好静止于斜面底端。物块与斜面的动摩擦因数为33,且最大静摩擦力等于滑动摩擦力。现用一平行于斜面的力F 拉动弹簧的A 点,使m 缓慢上行到斜面顶端。此过程中( ) A .F 对该系统做功为2mgh B .F 对该系统做功大于2mgh C .F 对该系统做的功等于物块克服重力做功与克服摩擦力做功之和 D .F 对该系统做的功等于物块的重力势能与弹簧的弹性势能增加量之和 3.(2013·山东泰安一模)如图所示,在竖直平面内有一个半径为R ,粗细不计的圆管轨道。半径OA 水平、OB 竖直,一个质量为m 的小球自A 正上方P 点由静止开始自由下落,小球恰能沿管道到达最高点B ,已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功12 mgR 4.(2013吉林摸底)如图所示,足够长的传送带以恒定速率顺时针运行。将一个物体轻轻 放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送 带相对静止,匀速运动到达传送带顶端。下列说法中正确的是( ) A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加 C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加 D .物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 5.如图所示长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对板A 静止的过程中,下述说法中正确是( ) A .物体 B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量 C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和 D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量

高考二轮复习功能关系的理解与应用(答案附后面)

第5讲功能关系的理解与应用 1.如图1,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定() A.小于拉力所做的功 B.等于拉力所做的功 C.等于克服摩擦力所做的功 D.大于克服摩擦力所做的功 2.(多选)地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v随时间t的变化关系如图2所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻

力和空气阻力.对于第①次和第②次提升过程,( ) A .矿车上升所用的时间之比为4∶5 B .电机的最大牵引力之比为2∶1 C .电机输出的最大功率之比为2∶1 D .电机所做的功之比为4∶5 3.如图3,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( ) A .2mgR B .4mgR C .5mgR D .6mgR 4.如图4所示,一质量为m 、长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距1 3l .重力加速度大小 为g . 在此过程中,外力做的功为( ) A.1 9mgl B.16mgl C.1 3 mgl D.12 mgl 5.(多选)如图5所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π 2.在小球从M 点运动到N 点的 过程中( ) A .弹力对小球先做正功后做负功 B .有两个时刻小球的加速度等于重力加速度 C .弹簧长度最短时,弹力对小球做功的功率为零 D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差 6.如图6,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态,直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=1 4 ,重力加速度大小

功能关系

5.4功能原理机械能守恒定律 5.4.1质点系的动能定理 现在,我们把几个有相互作用的质点所组成的系统作为研究对象,进一步探讨功与能之间所遵循的规律。首先,把动能定理的关系式推广到由几个质点组成的系统。这时,我们用E k和E k0分别表示系统内所有质点在终态和初态的总动能,W表示作用在各质点上所有的力所做的功的总和,则有 W=E k-E k0 值得注意的是,所有的力所做的功的代数和,不是合力的功。因为由几个质点组成的系统,不同于一个质点,各力作用点的位移不一定相同。作用力又可区分为外力和内力,外力是指系统外其它物体对系统内各质点的作用力,内力是指系统内各质点之间的相互作用力。虽然内力的合力为零,但内力的功一般不为零,因为各力作用点的位移不一定相同。因此,对于系统来说,上式中的W应等于外力所做的功与内力所做的功之和,所以,上式可改写为 W外+W内=E k-E k0 (5.17) 这就是质点系的动能定理,它在惯性参考系中成立。 5.4.2功能原理 我们知道,系统的内力又可分为保守内力和非保守内力。因此,内力的功W (5.17)式可写为 内应等于保守内力的功与非保守内力的功之和。所以

W外力+W保守内力+W非保守内力 =E k-E k0 由于保守内力所做的功可用系统势能的减少来表示,即W保守内力=E p0-E p,所以,上式可改写为 W外力+W非保守内力 =(E k+E p)-(E k0+E p0) 系统的动能和势能之和叫做系统的机械能E,即E=E k+E p,则上式又可写为 W外力+W非保守内力=E-E0 (5.18) 上式说明:系统从初态变化到终态时,它的机械能的增量等于外力的功和非保守内力的功的总和,这称为系统的功能原理。因为功能原理是在质点系的动能定理中引入势能而得出的,所以它和质点系动能定理一样也是在惯性参考系中才成立。 值得注意的是,质点系的动能定理和功能原理都给出系统的能量的改变和功的关系。前者给出的是动能的改变和功的关系,应当把所有的力的功都计算在内;后者给出的则是机械能的改变和功的关系,由于机械能中的势能的改变已经反映了保守内力的功,因而只需计算保守内力之外的其它力的功。 例5.3如图5.9(a)所示,一质量m=0.4kg的木块在水平桌面上运动,以 v0=3.0m/s的速率碰上一轻弹簧,弹簧的另一端是固定的。已知弹簧的劲度系数k=80N/m,木块碰上弹簧后使弹簧的最大压缩量为x m=0.2m,设弹簧质量不计,求木块与水平桌面间的滑动摩擦系数μk有多大。

高三物理“功能关系及其应用”专题

功能关系及其应用 功和能是物理学中两个很重要的物理量,从功和能的角度来分析和解决物理问题往往显得非常简捷.学习物理必须加深对功能关系的理解,要善于从功和能这条主线来分析和理解物理现象. 1.功和能的关系 (1)能量的转化必须通过做功才能实现. 做功的过程是能量转化的过程,某种力做功往往与某一具体的能量变化相联系,例如:重力做功→重力势能和动能相互转化;弹簧弹力做功→弹性势能和动能相互转化;滑动摩擦力做功→机械能转化为内能;电场力做功→电势能与其它形式能相互转化;安培力做功→电能与机械能相互转化等. (2)功是能量转化的量度. 即某种力做了多少功,一定伴随多少相应能量发生了转化.例如做功与机械能转化中有以下三条最基本的关系: ①重力做功与重力势能变化的关系:重力做功等于重力势能变化的负值,即p G E W ?-=. ②动能定理:合力对物体所做的功等于物体动能的变化,即K E W ?=合. ③除重力(或弹簧弹力)以外的力所做的功等于物体机械能的变化,即E W ?=/ . 2.功能关系的应用 例1.某人把原来静止于地面上的质量为2kg 的物体向上提起1m ,并使物体获得1m/s 的速度,取g =10m/s 2,则这个过程中 A .人对物体做功21J B .合外力对物体做功1J C .物体的重力势能增加20J D .物体的机械能增加21J 分析:把物体向上提起的过程中有两个力对物体做功,人对物体做正功,重力对物体做负功.物体的动能增加了1J ,重力势能增加了20J ,即机械能增加了21J.由功能关系知:人对物体做的功等于物体机械能的变化,所以人对物体做功21J.由动能定理知:合力对物体所做的功等于物体动能的变化,所以合外力对物体做功1J ,故选项A 、B 、C 、D 均正确. 例2.一木块静止放在光滑水平面上,一颗子弹沿水平方向射入木块,若子弹进入木块的深度为s 1,与此同时木块沿水平面移动了s 2,设子弹在木块中受到的阻力大小不变,则在子弹进入木块的过程中 A .子弹损失的动能与木块获得的动能之比为(s 1+s 2):s 2 B .子弹损失的动能与系统获得的内能之比为(s 1+s 2):s 1 C .木块获得的动能与系统获得的内能之比为s 2:s 1 D .木块获得的动能与系统获得的内能之比为s 1:s 2 分析:设子弹的质量为m ,射入木块时的速度为v 0,木块的质量为M .在子弹进入木块的过程中受到的摩擦力为F ,子弹和木块相对静止时的共同速度为v . 子弹进入木块的过程中,对子弹由动能定理得: 202212 121)(mv mv s s F -=+- ① 即子弹损失的动能等于它克服摩擦力所做的功. 由动能定理可知,木块获得的动能等于子弹作用在木块上的摩擦力对木块所做的功,即

功能关系在力学中的应用

功能关系在力学中的应用 一、单项选择题 1. (2013·安徽·17)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为 ( ) A .GMm ? ????1R 2-1R 1 B .GMm ? ????1R 1-1R 2 C.GMm 2? ????1R 2-1R 1 D.GMm 2? ?? ??1R 1-1R 2 2. 如图1所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固 定斜面,其运动的加速度大小为34 g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中 ( ) 图1 A .物体的重力势能增加了34 mgh B .物体的重力势能增加了mgh C .物体的机械能损失了14 mgh D .物体的动能减少了mgh 3. 用电梯将货物从六楼送到一楼的过程中,货物的v -t 图象如图2所示.下列说法正确 的是 ( ) 图2 A .前2 s 内货物处于超重状态 B .最后1 s 内货物只受重力作用 C .货物在10 s 内的平均速度是1.7 m/s D .货物在2 s ~9 s 内机械能守恒

4. 质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图3所示,其中 OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为F f ,以下说法正确的是 ( ) 图3 A .0~t 1时间内,汽车牵引力的数值为m v 1t 1 B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+F f )v 2 C .t 1~t 2时间内,汽车的平均速率小于 v 1+v 22 D .汽车运动的最大速率v 2=( mv 1F f t 1 +1)v 1 二、多项选择题 5. (2013·江苏·9)如图4所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹 簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m ,AB =a ,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W .撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.重力加速度为g .则上述过程中 ( ) 图4 A .物块在A 点时,弹簧的弹性势能等于W -12 μmga B .物块在B 点时,弹簧的弹性势能小于W -32 μmga C .经O 点时,物块的动能小于W -μmga D .物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能 6. 一物体静止在水平地面上,在竖直向上的拉力F 的作用下开始向上运动,如图5甲所示.在 物体运动过程中,空气阻力不计,其机械能E 与位移x 的关系图象如图乙所示,其中曲线上点A 处的切线的斜率最大.则 ( )

高中物理功能关系总结

专题 功、动能和势能和动能定理 功: (单位:J ) 力学: ①W = Fs cos θ (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 动能: E K =m 2p mv 212 2= 重力势能E p = mgh (凡是势能与零势能面的选择有关) ③动能定理:外力对物体所做的总功等于物体动能的变化(增量) 公式: W 合= W 合=W 1+ W 2+…+W n = ?E k = E k2 一E k1 = 1212 2212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功) ⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶即为物体所受合外力的功。 ④功是能量转化的量度(最易忽视)主要形式有: “功是能量转化的量度”这一基本概念含义理解。 ⑴重力的功------量度------重力势能的变化 物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。 与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关. 除重力和弹簧弹力做功外,其它力做功改变机械能,这就是机械能定理。 只有重力做功时系统的机械能守恒。 功能关系:功是能量转化的量度。有两层含义: (1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度 强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。 两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。 练习: 一、单项选择题 1.关于功和能的下列说法正确的是 ( ) A .功就是能 B .做功的过程就是能量转化的过程 C .功有正功、负功,所以功是矢量 D .功是能量的量度 2.一个运动物体它的速度是v 时,其动能为E 。那么当这个物体的速度增加到3v 时,其动能应该是 ( ) A .E B . 3E

功能关系 考点解读(附详细解析)

都取绝对值),则: ,下列说法中正确的是(AC ) 的质点从顶点A由静止开始 ,转折点能量损耗不计,由该物体分别沿着AC、 ? 的物块冲上一置于光滑水平面上且足够长的木板上.物块质量为m,木板质量 11 的子弹以初速度v0水平射入初始静止的木块,并最

μmgL(3)μmgd=1 2mv0 2-1 2(M+m)v 2 10 kg的木板,在F=50 N的水平拉力作用下,以的速度沿水平地面向右匀速运动.现将一个质量为m=3 kg的小铁块(可视为质点)无初速度地放在 又将第二个同样的小铁块无初速度地放在木板最右端,以后木板每 就在其右端无初速度地放上一个同样的小铁块.(g取10 m/s2)求: 木板与地面间的动摩擦因数; 刚放第三个铁块时木板的速度; 停止放后续铁块)到木板停下的过程,木板运动的距离.设邮件放到皮带上与皮带发生相对滑动过程中受到的滑动摩擦力为F,则F=μmg①滑块向左运动过程中,运动方向受到皮带的阻力,到达最左端,对地速度为零,由动能定理可,其后在皮带摩擦力的作用下,摩擦力为动力,使滑块加速,假设加速至v1,则有 ,说明滑块返回传送带右端的速率能够达到v,A选项正确;此过程中 则行李与传送带间由于摩擦而产生的总热量Q=nμmgΔ

点的过程中因与斜面摩擦而产生的热量. 前,做匀加速运动的位移x

内物体位移的大小; 物体与传送带间的动摩擦因数; 内物体机械能增量及因与传送带摩擦产生的热量Q. (3)90 J126 J 内物体位移等于v-t图线与t轴所围面积.其中前4 s,位移为零(观察图象+4 ×2 m+4×2 m=14 m. 内,物体向下减速a=μg cosθ-g sinθ0=v0-at ×2×0.6 2×0.8 =0.875. 1212 f·(s带-s物)=f(vt- v 2t)=μmg ,故A错误. θ-sinθ). 故B正确. v1,则E p= 1 2mv 2 1 ,得v1=3 m/s v1

功能关系

功能关系 一摩擦力做功问题 1. 静摩擦力不做功吗? 用水平外力推桌子但未推动,此时桌子所受摩擦力为静摩擦力。由于桌子相对地面位移为零,所以静摩擦力对桌子不做功。那么是不是静摩擦力都不做功呢?我们找一个物体受静摩擦力作用,也发生位移的情况看看:如传送带上的工件相对传送带静止并随传送带一起匀速上升,静摩擦力就对工件做正功。 2. 静摩擦力可以做负功吗? 当然可以,我们只要分析上例中传送带受到的静摩擦力及它的位移,就不难看出,传送带受到的静摩擦力对它做了负功。还有,若工件随传送带一起匀速下降,静摩擦力对工件也做负功。 3. 是不是物体受到静摩擦力,又发生了位移(相对大地),静摩擦力就一定做功呢? 不一定,由功的定义可知:如果力的位移的方向垂直,力就不做功。我们能不能举出这样的例子呢?当然能:我们用手握住杯子(杯子保持竖直),在水平方向上移动(或者用手捏着一本书,水平移动),静摩擦力竖直向上,与物体的重力平衡,与位移垂直,没有做功。 综上所述:静摩擦力可以做正功,也可以做负功,还可以不做功。 4. 滑动摩擦力总是可以做正功吗? 箱子在地面上滑行,摩擦力阻碍物体运动,做负功。滑动摩擦力能做正功吗?如图所示,传送带在动力驱使下匀速运动,当煤从漏斗落到传送带的瞬间,煤块的水平速度为零,煤块相对传送带向后滑动,因而受到向前的滑动摩擦力作用。以地面为参照,煤块所受滑动摩擦力方向与位移方向相同,所以滑动摩擦力对煤块做正功,煤块的速度和动能不断增大。直到煤块速度与传送带相等时,滑动摩擦力变为零。

5. 滑动摩擦力可以不做功吗? 滑动摩擦力也可以不做功,如木块在固定的桌面上滑动时,桌面受到的滑动摩擦力对桌子并不做功。 6. 相互作用的两个静摩擦力,如果其中一个力做了正功,另一个力一定做等大的负功吗? 是的,一对静摩擦力作用的物体间无相对滑动,故位移始终相等,而二力大小相等,方向相反,因而做功之和为零。从能量转化的角度来说,在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。 7. 两个相互作用的滑动摩擦力做功的情况又如何呢? 首先,可以都做负功。其次,如第5问的例子中,可以一个滑动摩擦力做负功,而另一个力不做功。第三,如第4问的例子中,如果一个滑动摩擦力做正功,则另一个力一定做负功,而且两个功的代数和一定为负值。因为物体间存在滑动摩擦力时,由于物体间存在相对运动,位移大小不同,所以一对滑动摩擦力必做负功。滑动摩擦力做功的过程中,能量的变化有两种情况:一是相互摩擦的物体之间有部分机械能的转移;二是有一部分机械能转化成了内能。所以,两个相互作用的滑动摩擦力做功之和一定为负值。 8. 相互作用的两个滑动摩擦力做的功如何计算呢? 如图所示,木板B 长为L ,静止在光滑水平面上,一个小物体A 以速度v 0滑上B 的左端,当A 滑到B 的右端时恰好相对B 静止,此时物体B 运动了S 的位移,可以判断B 对A 的摩擦力做功为:W f S L 1=-+();A 对B 的摩擦力做功:W fS 2=,所以这一对摩擦力对系统做功总和为:W fL =-。从能量的角度说,这就是转化为内能的部分。 综上可知:①相互摩擦的系统内,一对静摩擦力所做的总功等于零。 ②相互摩擦的系统内,一对滑动摩擦力所做的功总是负值,其绝对值等于滑动摩擦力与相对位移的乘积,即恰等于系统损失的机械能。

高中物理中的功能关系

高中物理中的功能关系 功能关系是贯穿高中部物理学的一条主线,能量也是每年高考的必考内容。功能关系同样也是高中物理中的难点,其根本的原因在于能的多样性和复杂性,梳理整合各种功能关系对于物理的教和学都有至关重要的意义。 首先,要正确的理清功和能的概念。功是一个过程量,所描述的是力在物体沿力的方向发生位移的过程中的积累效应,也可以说是力的空间积累效应。能是状态量,可以以多种不同的形式存在。按照物质的不同运动形式分类,能量可分为机械能、化学能、热能、电能、辐射能、核能。这些不同形式的能量之间可以通过物理过程或化学反应而相互转化。 其次,明确做功的过程就是能量转化的过程。做了多少功可以用转化了多少能量来度量;反过来,某个过程转化了多少能量,可以用该过程做了多少功来度量。二者既是两个完全不同的概念,但又有着紧密联系不可分割。下面具体分析各种功能关系: 一、各种形式的能与功的对应关系 1.重力做功与重力势能变化的关系 W G=mg(h1-h2)=mgh1-mgh2 =-(mgh2-mgh1)= -⊿Ep 重力做的功等于重力势能的减量,重力做正功,重力势能减小;

重力做负功重力势能增加;增加或减少的量等于重力做功的多少。同样在有关天体运动中,万有引力做的功等于等于引力势能的减量。 2.弹簧的弹力做功与弹性势能变化的关系 W弹=-⊿Ep 弹簧的弹力做的功等于弹性势能的减量,弹簧弹力做正功弹性势能减少;弹力做负功,弹性势能增加;增减的多少等于弹力做功的数值。 3.电场力做功与电势能变化的关系 W电=qU AB=q(φA-φB)=qφA -qφB =Ep A-Ep B=-(Ep B - Ep A)=-⊿Ep 电场力做的功等于弹性势能的减量,电场力做正功,电势能减小;电场力做负功电势能增加;增加或减少的量等于电场力做功的多少。 4.分子力做功与分子势能的变化关系 W分=-⊿Ep 分子力做的功等于分子势能的减量,分子力做正功,分子势能减小;分子力做负功分子势能增加;增加或减少的量等于分子力做功的多少。 5.合力做功与动能变化的关系

相关文档
最新文档