中考动点问题专题(教师讲义带答案)

中考动点问题专题(教师讲义带答案)
中考动点问题专题(教师讲义带答案)

中考动点型问题专题

一、中考专题诠释

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.

“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲

解决动点问题的关键是“动中求静”.

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲

考点一:建立动点问题的函数解析式(或函数图像)

函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.

例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()

A.B.C.D.

思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.

解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:

(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);

(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).

综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),

这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.

故选B.

点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.

对应训练

1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()

A.B.C.D.

1.C

考点二:动态几何型题目

点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.

例2 (2015?河北)如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE=EF=FB=5,DE=12动点P 从点A 出发,沿折线AD-DC-CB 以每秒1个单位长的速度运动到点B 停止.设运动时间为t 秒,y=S △EPF ,则y 与t 的函数图象大致是( )

A .

B .

C .

D .

思路分析:分三段考虑,①点P 在AD 上运动,②点P 在DC 上运动,③点P 在BC 上运动,分别求出y 与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=

2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,

①点P 在AD 上运动:

过点P 作PM ⊥AB 于点M ,则PM=APsin ∠A=

1213

t , 此时y=

12EF×PM=3013

t ,为一次函数; ②点P 在DC 上运动,y=1

2

EF×DE=30;

③点P 在BC 上运动,过点P 作PN ⊥AB 于点N ,则PN=BPsin ∠B=1213(AD+CD+BC-t )=12(31)13

t -, 则y=

12EF×PN=30(31)

13

t -,为一次函数. 综上可得选项A 的图象符合. 故选A .

点评:本题考查了动点问题的函数图象,解答本题的关键是分段讨论y 与t 的函数关系式,当然在考试过程中,建议同学们直接判断是一次函数还是二次函数,不需要按部就班的解出解析式. 对应训练 2.(2015?北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )

A.B.

C.D.

2.A

(二)线动问题

例3 (2015?荆门)如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()

A.B.

C.D.

思路分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC段时,分别观察出面积变化的情况,然后结合选项即可得出答案.

解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;

②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;

③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;

结合选项可得,A选项的图象符合.

故选A.

点评:本题考查了动点问题的函数图象,类似此类问题,有时候并不需要真正解出函数解析式,只要我们能判断面积增大的快慢就能选出答案.

对应训练

3.(2015?永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()

A.B.

C.D.

3.A

(三)面动问题

例4 (2015?牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()

A.B.C.D.

思路分析:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.

解:根据题意,设小正方形运动的速度为V,分三个阶段;

①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,

②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,

③小正方形穿出大正方形,S=Vt×1,

分析选项可得,A符合;

故选A.

点评:解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.

对应训练

4.(2015?衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()

A.B.C.D.

4.A

考点三:双动点问题

动态问题是近几年来中考数学的热点题型.这类试题信息量大,其中以灵活多变而著称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理信息的能力要求更高高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动. 例5 (2015?攀枝花)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直

线l 经过A ,D 两点,且sin ∠DAB=

2

2

.动点P 在线段AB 上从点A 出发以每秒2个单位的速度向点B 运动,同时动点Q 从点B 出发以每秒5个单位的速度沿B→C→D 的方向向点D 运动,过点P 作PM 垂直于x 轴,与折线A→D→C 相交于点M ,当P ,Q 两点中有一点到达终点时,另一点也随之停止运动.设点P ,Q 运动的时间为t 秒(t >0),△MPQ 的面积为S .

(1)点A 的坐标为 ,直线l 的解析式为 ;

(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围; (3)试求(2)中当t 为何值时,S 的值最大,并求出S 的最大值;

(4)随着P ,Q 两点的运动,当点M 在线段DC 上运动时,设PM 的延长线与直线l 相交于点N ,试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.

思路分析:(1)利用梯形性质确定点D 的坐标,利用sin ∠DAB=

2

2

特殊三角函数值,得到△AOD 为等腰直角三角形,从而得到点A 的坐标;由点A 、点D 的坐标,利用待定系数法求出直线l 的解析式; (2)解答本问,需要弄清动点的运动过程: ①当0<t≤1时,如答图1所示; ②当1<t≤2时,如答图2所示; ③当2<t <

16

7

时,如答图3所示. (3)本问考查二次函数与一次函数在指定区间上的极值,根据(2)中求出的S 表达式与取值范围,逐一讨论计算,最终确定S 的最大值;

(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解. 解:(1)∵C (7,4),AB ∥CD , ∴D (0,4). ∵sin ∠DAB=

2

2

, ∴∠DAB=45°, ∴OA=OD=4, ∴A (-4,0).

设直线l 的解析式为:y=kx+b ,则有

4

-40b k b =??

+=?

, 解得:k=1,b=4, ∴y=x+4.

∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.

(2)在点P 、Q 运动的过程中: ①当0<t≤1时,如答图1所示:

过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.

过点Q作QE⊥x轴于点E,则BE=BQ?cos∠CBF=5t?3

5

=3t.

∴PE=PB-BE=(14-2t)-3t=14-5t,

S=1

2

PM?PE=

1

2

×2t×(14-5t)=-5t2+14t;

②当1<t≤2时,如答图2所示:

过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,

S=1

2

PM?PE=

1

2

×2t×(16-7t)=-7t2+16t;

③当点M与点Q相遇时,DM+CQ=CD=7,

即(2t-4)+(5t-5)=7,解得t=16

7

当2<t<16

7

时,如答图3所示:

MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,

S=1

2

PM?MQ=

1

2

×4×(16-7t)=-14t+32.

(3)①当0<t≤1时,S=-5t2+14t=-5(t-7

5

)2+

49

5

∵a=-5<0,抛物线开口向下,对称轴为直线t=7

5

∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;

②当1<t≤2时,S=-7t2+16t=-7(t-8

7

)2+

64

7

∵a=-7<0,抛物线开口向下,对称轴为直线t=8

7

∴当t=8

7

时,S有最大值,最大值为

64

7

③当2<t<16

7

时,S=-14t+32

∵k=-14<0,

∴S随t的增大而减小.又∵当t=2时,S=4;

当t=16

7

时,S=0,

∴0<S<4.

综上所述,当t=8

7

时,S有最大值,最大值为

64

7

(4)△QMN为等腰三角形,有两种情形:

①如答图4所示,点M在线段CD上,

MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,

由MN=MQ,得16-7t=2t-4,解得t=20

9

②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,

此时△QMN为等腰三角形,t=12

5

故当t=20

9

或t=

12

5

时,△QMN为等腰三角形.

点评:本题是典型的运动型综合题,难度较大,解题关键是对动点运动过程有清晰的理解.第(3)问中,考查了指定区间上的函数极值,增加了试题的难度;另外,分类讨论的思想贯穿(2)-(4)问始终,同学们需要认真理解并熟练掌握.

对应训练

5.(2015年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=.

(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数解析式;

(2)如果∠BAC的度数为α,∠DAE的度数为β,当α,β满足怎样的关系式时,(1)中y与x之间的函数解析式还成

立?试说明理由.

解:(1)在△ABC中,∵AB=AC,∠BAC=30°,

A

∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.

∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,

∴△ADB ∽△EAC, ∴AC BD CE AB =,

11x y =, ∴x

y 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=2

90α

-?,且函数关系式成立,

∴2

90α

-?=αβ-, 整理得=-

2

α

β?90. 当=-

2

α

β?90时,函数解析式x

y 1

=

成立. 四、中考真题演练 一、选择题 1.(2015?新疆)如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( ) A .2 B .2.5或3.5 C .3.5或4.5 D .2或3.5或4.5

1.D 2.(2015?安徽)图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( ) A .当x=3时,EC <EM B .当y=9时,EC >EM

C .当x 增大时,EC?CF 的值增大

D .当y 增大时,BE?DF 的值不变

2.D 3.(2015?盘锦)如图,将边长为4的正方形ABCD 的一边BC 与直角边分别是2和4的Rt △GEF 的一边GF 重合.正方形ABCD 以每秒1个单位长度的速度沿GE 向右匀速运动,当点A 和点E 重合时正方形停止运动.设正方形的运动时间为t 秒,正方形ABCD 与Rt △GEF 重叠部分面积为s ,则s 关于t 的函数图象为( )

C

B

P D A Q

A .

B .

C .

D .

3.B 4.(2015?龙岩)如图,在平面直角坐标系xOy 中,A (0,2),B (0,6),动点C 在直线y=x 上.若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是( ) A .2 B .3 C .4 D .5

4.B

6.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动。如果P、Q同时出发,用t 秒表示移动的时间(0≤ t ≤6),那么:

(1)当t 为何值时,三角形QAP 为等腰三角形?

(2)求四边形QAPC 的面积,提出一个与计算结果有关的结论;

(3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?

分析:(1)当三角形QAP 为等腰三角形时,由于∠A 为直角,只能是AQ=AP ,建立等量关系,t t -=62,即

2=t 时,三角形QAP 为等腰三角形;

(2)四边形QAPC 的面积=ABCD 的面积—三角形QDC 的面积—三角形PBC 的面积

=6

)212(21

1221612?--??-?x x =36,即当P 、Q 运动时,四边形QAPC 的面积不变。

(3)显然有两种情况:△PAQ ∽△ABC ,△QAP ∽△ABC ,

由相似关系得61262=-x

x 或126

62=

-x x ,解之得3=x 或2.1=x 7.(2015年南安市)如图所示,在直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩

形以每秒2个单位长度沿x 轴正方向作匀速运动.同时点P 从A 点出发以每秒1个单位长度沿A -B -C -D 的路线作匀

速运动.当P 点运动到D 点时停止运动,矩形ABCD 也随之停止运动. ⑴求P 点从A 点运动到D 点所需的时间; ⑵设P 点运动时间为t (秒).

当t =5时,求出点P 的坐标;

若⊿OAP 的面积为s ,试求出s 与t 之间的函数关系式(并写出相应的自变量t 的取值范围). 解:(1)P 点从A 点运动到D 点所需的时间=(3+5+3)÷1=11(秒). (2)当t =5时,P 点从A 点运动到BC 上,此时OA=10,AB+BP=5,∴BP=2. 过点P 作PE⊥AD 于点E ,则PE=AB=3,AE=BP=2. ∴OE=OA+AE=10+2=12.∴点P 的坐标为(12,3). 分三种情况:

.当0<t≤3时,点P 在AB 上运动,此时OA=2t,AP=t ,∴s=×2t×t= t 2

.

.当3<t≤8时,点P 在BC 上运动,此时OA=2t ,∴s=×2t×3=3 t.

.当8<t <11时,点P 在CD 上运动,此时OA=2t,AB+BC+CP= t ,

∴DP=(AB+BC+CD)-( AB+BC+CP)=11- t.∴s=×2t×(11- t)=- t 2

+11 t.

综上所述,s 与t 之间的函数关系式是:当0<t≤3时,s= t 2

;当3<t≤8时,s=3 t ;当8<t <11时,s=- t 2

+11 t .

8.(2014济南)如图,在梯形ABCD 中,354245AD BC AD DC AB B ====?∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.

(2)当MN AB ∥时,求t 的值.

(3)试探究:t 为何值时,MNC △为等腰三角形.

解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形

∴3KH AD ==.

……………………1分

在Rt ABK △中,sin 4542

AK AB =?==g

. cos 4542

BK AB =?==g g

·························································· 2分 在Rt CDH △

中,由勾股定理得,3HC ==

∴43310BC BK KH HC =++=++=……………3分

(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥

∴3BG AD ==

∴1037GC =-=……………4分

由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥

∴NMC DGC =∠∠ 又C C =∠∠

∴MNC GDC △∽△

CN CM

CD CG =……………5分 即10257

t t -= 解得,50

17

t =……………6分

(3)分三种情况讨论:

①当NC MC =时,如图③,即102t t =- ∴10

3

t =

……………7分

②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:

由等腰三角形三线合一性质得()11

102522

EC MC t t =

=-=- 在Rt CEN △中,5cos EC t

c NC t -== 又在Rt DHC △中,3

cos 5

CH c CD =

= ∴53

5

t t -= 解得25

8

t = ······················································································· 8分

解法二:

(图①) A

D

C

B K

H

(图②)

A D

C

B

G M

N

A

D

C

B M

N

(图③) (图④)

A

D C

B

M N

H E

∵90C C DHC NEC =∠=∠=?∠∠, ∴NEC DHC △∽△

NC EC DC HC =

即553t t

-= ∴258

t =……………8分

③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.11

22

FC NC t == 解法一:(方法同②中解法一)

1

3

2cos 1025t

FC C MC t ===

-

解得6017t = 解法二:

∵90C C MFC DHC =∠=∠=?∠∠, ∴MFC DHC △∽△

∴FC MC HC DC = 即1102235t

t -=

∴6017t = 综上所述,当103

t =

、258t =或60

17t =时,MNC △为等腰三角形 9分

9.(2015年锦州市)如图,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(4,0),∠AOC=60°,垂直于x

轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC 的两边分别交于点M 、

N(点M 在点N 的上方). 1.求A 、B 两点的坐标;

2.设△OMN 的面积为S ,直线l 运动时间为t 秒(0≤t≤6),试求S 与t 的函数表达式;

3.在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少?

1.分析:由菱形的性质、三角函数易求A 、B 两点的坐标. 解:∵四边形OABC 为菱形,点C 的坐标为(4,0),

∴OA=AB=BC=CO=4.如图①,过点A 作AD⊥OC 于D.∵∠AOC=60°,∴OD=2,AD=.

∴A(2, ),B (6, ).

2.分析:直线l 在运动过程中,随时间t 的变化,△MON 的形状也不断变化,因此,首先要把所有情况画出相应的图形,每一种图形都要相应写出自变量的取值范围。这是解决动点题关键之一. 直线l 从y 轴出发,沿x 轴正方向运动与菱形OABC 的两边相交有三种情况:

(图⑤)

A

D

C

B

H N M

F

①0≤t≤2时,直线l与OA、OC两边相交(如图①).

②2<t≤4时,直线l与AB、OC两边相交(如图②).

③4<t≤6时,直线l与AB、BC两边相交(如图③).

略解:①∵MN⊥OC,∴ON=t. ∴MN=ONtan60°=.∴S=ON·MN=t2.

②S=ON·MN=t·2=t.

③方法一:设直线l与x轴交于点H.∵MN=2-(t-4)=6-t,

∴S=MN·OH=(6-t)t=-t2+3t.

方法二:设直线l与x轴交于点H.∵S=S△OMH-S△ONH,∴S=t·2-t·(t-4)=

- t2+3t.

方法三:设直线l与x轴交于点H.∵S=,

=4×2=8,=·2·(t-2)= t-2,

=·4·(t-4)=2t-8,=(6-t)(6-t)=18-6t+t2, ∴S=8-(t-2)-(2t-8)-(18-6t+t2)=-t2+3t.

3.求最大面积的时候,求出每一种情况的最大面积值,然后再综合每种情况,求出最大值.

略解:由2知,当0≤t≤2时,=×22=2;

当2<t≤4时,=4;

当4<t≤6时,配方得S=-(t-3)2+,

∴当t=3时,函数S=-t2+3t的最大值是.

但t=3不在4<t≤6内,∴在4<t≤6内,函数S=-t2+3t的最大值不是.

而当t>3时,函数S=-t2+3t随t的增大而减小,∴当4<t≤6时,S<4. 综上所述,当t=4秒时,=4.

10.(2014年福建晋州)如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm

的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.

1.当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;

2.当点P运动2秒时,另一动点Q也从A出发沿A→B的路线运动,且在AB上以每秒1cm的速度匀速运动,(当P、Q中的某一点到达终点,则两点都停止运动.)过Q作直线QN,使QN∥PM,设点Q运动的时间为t秒(0≤t≤8),直线PM与QN截平行四边形ABCD所得图形的面积为S(cm2).

(1)求S关于t的函数关系式;

(2)求S的最大值.

1.分析:此题为点动题,因此,1)搞清动点所走的路线及速度,这样就能求出相应线段的长;2)分析在运动中点的几种特殊位置.

由题意知,点P为动点,所走的路线为:A→B→C速度为1cm/s。而t=2s,故可求出AP的值,进而求出△APE的面积.

略解:由AP=2 ,∠A=60°得AE=1,EP= . 因此.

2.分析:两点同时运动,点P在前,点Q在后,速度相等,因此两点距出发点A的距离相差总是2cm.P在AB边上运动后,又到BC边上运动.因此PM、QN截平行四边形ABCD所得图形不同.故分两种情况:

(1)①当P、Q都在AB上运动时,PM、QN截平行四边形ABCD所得的图形永远为直角梯形.此时0≤t≤6.

②当P在BC上运动,而Q在AB边上运动时,画出相应图形,所成图形为六边形DFQBPG.不规则图形面积用割补法.此时6<t≤8.

⑴略解:①当P、Q同时在AB边上运动时,0≤t≤6.

AQ=t,AP=t+2, AF=t,QF=t,AG=(t+2), 由三角函数PG=(t+2),

FG=AG-AF=(t+2)-t=1.S =·(QF+PG)·FG=[t+(t+2)]·1=t+.

②当6<t≤8时,

S=S平行四边形ABCD-S△AQF-S△GCP.

易求S平行四边形ABCD=16,S△AQF=AF·QF=t2.

而S△CGP=PC·PG,PC=4-BP=4-(t+2-8)=10-t.由比例式可得∴PG=

(10-t).∴S△CGP=PC·PG=(10-t)·(10-t)=(10-t)2.

∴S=16-t2-(10-t)2=(6<t≤8

⑵分析:求面积的最大值时,应用函数的增减性求.若题中分多种情况,那么每一种情况都要分别求出最大值,然后综合起来得出一个结论.此题分两种情况,那么就分别求出0≤t≤6和6<t≤8时的最大值. 0≤t≤6时,是一次函数,应用一次函数的性质,由于一次项系数是正数,面积S随t的增大而增大.当 6<t≤8时,是二次函数,应用配方法或公式法求最值.

略解:由于所以t=6时,S最大=;

由于S =(6<t≤8,所以t=8时,S 最大=6.

综上所述, 当t=8时,S 最大=6.

11. (2015年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .

(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.

解:(1)过点A 作AH ⊥BC,垂足为H.

∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=2

1

BC=2. ∴OC=4-x . ∵AH OC S AOC ?=

?2

1

, ∴4+-=x y (40<

在Rt △AOH 中,OA=1+x ,OH=x -2, ∴2

2

2

)2(2)1(x x -+=+. 解得6

7=x . 此时,△AOC 的面积y =6

17

674=-. ②当⊙O 与⊙A 内切时,

在Rt △AOH 中,OA=1-x ,OH=2-x , ∴2

2

2

)2(2)1(-+=-x x . 解得2

7=x . 此时,△AOC 的面积y =2

1274=-

. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为

617或2

1. 1

2. (2015福建福州)如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、

BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:

(1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;

(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? 分析:由t =2求出BP 与BQ 的长度,从而可得△BPQ 的形状; 作QE ⊥BP 于点E,将PB,QE 用t 表示,由BPQ S ?=

2

1×BP×QE 可得 S 与t 的函数关系式;先证得四边形EPRQ 为平行四边形,得PR=QE, 再由△APR ∽△PRQ ,对应边成比例列方程,从而t 值可求.

解:(1)△BPQ 是等边三角形, 当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4, 即BQ=BP.又因为∠B=600,所以△BPQ 是等边三角形.

(2)过Q 作QE ⊥AB,垂足为E,由QB=2t ,得QE=2t·sin600=3t,

由AP=t,得PB=6-t,所以BPQ S ?=

21×BP×QE=2

1

(6-t)×3t=-23t 2+33t ;

(3)因为QR ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600,

所以△QRC 是等边三角形,这时BQ=2t,所以QR=RC=QC=6-2t.

A

B

C

O 图8

H

因为BE=BQ·cos600=

2

1

×2t=t,AP=t,所以EP=AB-AP-BE=6-t-t=6-2t, 所以EP=QR,又EP ∥QR,所以四边形EPRQ 是平行四边形,所以PR=EQ=3t,

由△APR ∽△PRQ,得到

RQ PR PR AP =,即t

t

t t 2633-=,解得t=56, 所以当t=

5

6

时, △AP R ∽△PRQ. 点评: 本题是双动点问题.动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动. 13. (2015广州) 在中,AC =5,BC =12,∠ACB =90°,P 是AB 边上的动点(与点A 、B 不重合),Q 是BC 边上的动点(与点B 、C 不重合),当PQ 与AC 不平行时,△CPQ 可能为直角三角形吗?若有可能,请求出线段CQ 的长的取值范围;若不可能,请说明理由。

分析:不论P 、Q 如何运动,∠PCQ 都小于∠ACB 即小于90°,又因为PQ 与AC 不平行,所以∠PQC 不等于90°,所以只有∠CPQ 为直角,△CPQ 才可能是直角三角形,而要判断△CPQ 是否为直角三角形,只需构造以CQ 为直径的圆,根据直径所对的圆周角为直角,若AB 边上的动点P 在圆上,∠CPQ 就为直角,否则∠CPQ 就不可能为直角。 以CQ 为直径做半圆D 。

①当半圆D 与AB 相切时,设切点为M ,连结DM ,则DM ⊥AB ,且AC =AM =5 所以 设,则 在中,

,即

解得:,所以

即当且点P 运动到切点M 的位置时,△CPQ 为直角三角形。

②当时,半圆D 与直线AB 有两个交点,当点P 运动到这两个交点的位置时,△CPQ 为直角三角形。 ③当时,半圆D 与直线AB 相离,即点P 在半圆D 之外,0<∠CPQ <90°,此时,△CPQ 不可能为直

角三角形。 所以,当

时,△CPQ 可能为直角三角形。

14. (2012广州)如图5,△ABC 的外部有一动点P (在直线BC 上方),分别连结PB 、PC ,试确定∠BPC 与∠BAC 的大小关系。

分析:∠BPC 与∠BAC 之间没有联系,要确定∠BPC 与∠BAC 的大小关系,必须找恰当的载体,作为它们之间的桥梁,这道桥梁就是圆,通过构造△ABC 的外接圆,问题就会迎刃而解。 (1)当点P 在△ABC 外接圆外时,

如图5,连结BD,根据外角大于任何一个与它不相邻的内角,∠BPC<∠BDC

又因为∠BDC=∠BAC,

所以∠BPC<∠BAC;

(2)当点P在△ABC外接圆上时,如图6,根据同弧所对的圆周角相等,

∠BPC=∠BAC;

(3)当点P在△ABC外接圆内时,如图7,延长BP交△ABC外接圆于点D,连结CD,则∠BPC>∠BDC,

又∠BDC=∠BAC,故∠BPC>∠BAC。

综上,知当点P在△ABC外接圆外时,

∠BPC<∠BAC;

当点P在△ABC外接圆上时,

∠BPC=∠BAC;

当点P在△ABC外接圆内时,

∠BPC>∠BAC。

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

中考专题复习动点问题教学设计

中考专题复习《动点问题》教学设计 【学情分析】动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论【教学目标】知识与技能:1、利用特殊三角形的性质和定理解决动点问题;2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动);3、结合图形和题目,得出已知或能间接求出的数据。过程与方法:1、利用分类讨论的方法分析并解决问题;2、数形结合、方程思想的运用。情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。【教学重点】根据动点中的移动距离,找出等量列方程。【教学难点】1、两点同时运动时的距离变化;2、运动题型中的分类讨论【教学方法】教师引导、自主思考【教学过程】一、动点问题的近况:1、动态几何图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以

及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。2、三年中考概况;近年来运动问题是以三角形或四边形为背景,用运动的观点来探究几何图形变化规律的问题.这类题的特点是:图形中的某些元素(如点、线段、角等)或整个图形按某种规律运动,图形的各个元素在运动变化过程中相互依存,相互制约.3、解题策略和方法:“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。解决动点问题的关键是“动中求静”.动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段

八年级二次根式(教师讲义带答案)资料讲解

八年级二次根式(教师讲义带答案)

第五章二次根式 【知识网络】 知识点一:二次根式的概念 形如()的式子叫做二次根式。 注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。 知识点二:取值范围 1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以 要使二次根式有意义,只要使被开方数大于或等于零即可。 2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。 知识点三:二次根式()的非负性 ()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是 0,所以非负数( )的算术平方根是非负数,即 0( ),这个性质也就是非负数的算术 平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则 a=0,b=0;若 ,则a=0,b=0;若 ,则a=0,b=0。 知识点四:二次根式()的性质 () 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。 注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过 来应用:若 ,则 ,如: , . 知识点五:二次根式的性质 文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。 注: 1、化简 时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即 ;若a 是负数,则等于a 的相反数-a,即 ; 2、中的a 的取值范围可以是任意实数,即不论a 取何值, 一定有意义; 3、化简 时,先将它化成 ,再根据绝对值的意义来进行化简。 知识点六: 与 的异同点 1、不同点: 与 表示的意义是不同的, 表示一个正数a 的算术平方根的平方,而表 示一个实数a 的平方的算术平方根;在 中 ,而 中a 可以是正实数,0,负实数。但 与 都是非负数,即, 。因而它的运算的结果是有差别的, ,而 2、相同点:当被开方数都是非负数,即 时, = ; 时, 无意义,而 . 知识点七:二次根式的运算 1.二次根式的乘除运算 (1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2)注意知道每一步运算的算理; (3)乘法公式的推广: 123123123(0000)n n n a a a a a a a a a a a a =????≥≥≥≥L L L L L L ,,,,

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

八年级二次根式(教师讲义带答案)

第五章二次根式 【知识网络】 知识点一:二次根式的概念 形如()的式子叫做二次根式。 注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。 知识点二:取值围 1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意 义,只要使被开方数大于或等于零即可。 2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。 知识点三:二次根式()的非负性 ()表示a的算术平方根,也就是说,()是一个非负数,即0()。 注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。 知识点四:二次根式()的性质 ()

文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。 注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 知识点五:二次根式的性质 文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。 注: 1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即;若a 是负数,则等 于a 的相反数-a,即; 2、中的a 的取值围可以是任意实数,即不论a 取何值,一定有意义; 3、化简时,先将它化成,再根据绝对值的意义来进行化简。 知识点六:与的异同点 1、不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根; 在中,而中a 可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的, ,而 2、相同点:当被开方数都是非负数,即时,=;时,无意义,而. 知识点七:二次根式的运算 1.二次根式的乘除运算 (1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2)注意知道每一步运算的算理; (3)乘法公式的推广: 123123(0000)n n n a a a a a a a a a ?=????≥≥≥≥,,,, 2.二次根式的加减运算 先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质; 3.二次根式的混合运算 (1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的; (2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 要点诠释: 怎样快速准确地进行二次根式的混合运算. 1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的; 2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用; 3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. (1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如+进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算, 4 3 +=+=+ (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用. 如: 2 2 1+-= -=,利用了平方差公式. 所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化. 4.分母有理化

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

中考动点问题专题 教师讲义带答案

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半

径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B 符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D.

中考数学动点问题点动专题训练

中考数学运动问题点动专题训练 1、已知:如图,Rt△ABC中,∠C=90°,AC=6,BC=12.点P从点A出发沿AC向点C 以每秒1个单位长度的速度移动,点Q从点C出发沿CB向点B以每秒1个单位长度的速度移动,点P、Q同时出发,设移动的时间为t秒(t>0). ⑴设△PCQ的面积为y, 求y关于t的函数关系式; ⑵设点C关于直线PQ的对称点为D,问:t为何值时四边形PCQD是正方形? ⑶当得到正方形PCQD后,点P不再移动,但正方形PCQD继续沿CB边向B点以每秒 1个单位长度的速度移动,当点Q与点B重合时,停止移动.设运动中的正方形为MNQD,正方形MNQD与Rt△ABC重合部分的面积为S,求: ①当3≤t≤6时,S关于t的函数关系式; ②当6<t≤9时,S关于t的函数关系式; ③当9<t≤12时,S关于t的函数关系式. 2、如图,在矩形ABCD中,AB=3cm,BC=4cm。设P、Q分别为BD、BC上的动点,在 点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P、Q移动的时间为t(0<t≤4)。 (1)当t为何值时,PQ⊥BC? (2)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,当t为何值时,S有最大值?最大值是多少? (3)是否存在某一时刻,使PQ平分△BDC的面积. (4)△PBQ能否成为等腰三角形?若能,求t的值;若不能,说明理由。

3、如图,在梯形ABCD 中,3545AD BC AD DC AB B ====?∥,,,.动M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长. (2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形. 4、已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥? (2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求 出此时t 的值;若不存在,说明理由; (4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一 时刻t ,使四边形PQP C '为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. 5、在△ABC 中,,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。过点P 作PE ∥BC 交AD 于点E ,连结EQ 。设动点运动时间为x 秒。 (1)用含x 的代数式表示AE 、DE 的长度; (2)当点Q 在BD (不包括点B 、D )上移动时,设△EDQ 的面积为2()y cm ,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)当x 为何值时,△EDQ 为直角三角形。 C 图①

最新数学中考专题复习——《动点问题》教案

中考专题复习——动点问题 【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。 情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。

一年级数学暑期讲义教师版,带答案

目录 第1讲数的点数与比较 (3) 第2讲分分类,找朋友 (15) 第3讲位置关系——上、下、前、后、左、右 (23) 第4讲 10以内数的认识与加减 (30) 第5讲重量的比较 (44) 第6讲立体图形 (53) 第7讲暑假闯关 (53)

儿童诗sh ī 小xi ǎo 鸟ni ǎo 音y īn 符f ú 小xi ǎo 鸟ni ǎo , 小xi ǎo 鸟ni ǎo , 你n ǐ 们m én 为w èi 什sh én 么me 不b ù 坐zu ò 在z ài 高ɡāo 高ɡāo 的de 树sh ù 梢sh āo ? 小xi ǎo 鸟ni ǎo , 小xi ǎo 鸟ni ǎo , 你n ǐ 们m én 为w èi 什sh én 么me 在z ài 电di àn 线xi àn 上sh àn ɡ 来l ái 回hu í 跳ti ào 跃yu è ? 明m ín ɡ 白b ái 了le , 明m ín ɡ 白b ái 了le , 你n ǐ 们m én 错cu ò 把b ǎ 电di àn 线xi àn 当d ān ɡ 成ch én ɡ 五w ǔ 线xi àn 谱p ǔ 了le 。 小xi ǎo 鸟ni ǎo 音y īn 符f ú , 呵h ē , 音y īn 符f ú 小xi ǎo 鸟ni ǎo 多du ō 么me 美m ěi 丽l ì 的de 曲q ǔ 调di ào …… 第一讲 数的点数与比较 1. 单个物品点数;

2.多个物品点数; 3.画图法点数; 4.比多少——一一对应法。 一. 单个物品点数 标记法 小手眼睛配合好; 千万记得按顺序; 拿起小笔做标记; 数数真是太容易。 例题: 数一数、填一填。 西瓜()个 2 梨子()个 3 苹果()个 4 香蕉()个 6 同步练习 1.先数一数,再写数。 ()个 5 ()个7 2.数一数,有几个就圈几。 3.两堆蘑菇应该装进哪个小袋子呢?

八年级数学直角三角形教师讲义带答案资料

直角三角形 一、直角三角形的性质 重点:直角三角形的性质定理与其推论: ①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半; (2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°. 难点: 1.性质定理的证明方法. 2.性质定理与其推论在解题中的应用. 二、直角三角形全等的判断 重点:掌握直角三角形全等的判定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等() 难点: 创建全等条件与三角形中各定理联系解综合问题。 三、角平分线的性质定理 1.角平分线的性质定理:角平分线上的点到这个角的两 边的距离相等. 定理的数学表示:如图4, ∵是∠的平分线,F是上一点,且⊥于点C,⊥于点D,∴=. 定理的作用:①证明两条线段相等;②用于几何作图问题;图4

2.关于三角形三条角平分线的定理: 三角形三条角平分线相交于一点,并且这一点到三边的距离相等. 定理的数学表示:如图6,如果、、分别是△的内角∠、 ∠、∠的平分线,那么: ①、、相交于一点I; ②若、、分别垂直于、、于点D、E、F,则==. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系: 三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心). 3.关于线段的垂直平分线和角平分线的作图: (1)会作已知线段的垂直平分线;(2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形. 四、勾股定理的证明与应用 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后 来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边

历年中考数学动点问题题型方法归纳

x A O Q P B y 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。

图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) y M C D 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

七年级数学相交线与平行线(教师讲义带答案)之欧阳语创编

第4章相交线与平行线 时间:2021.03.01 创作:欧阳语 一、知识结构图 余角 余角补角 补角 角两线相交对顶角 同位角 相交线与平行线 三线八角内错角 同旁内角 平行线的判定 平行线 平行线的性质 尺规作图 二、基本知识提炼整理 (一)余角与补角 1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。 2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。 3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。

4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。 5、余角和补角的性质用数学语言可表示为: (1)0000 1290(180),1390(180), ∠+∠=∠+∠=则23 ∠=∠(同角的余角或补角相等)。 (2)0000 ∠+∠=∠+∠=且14, 1290(180),3490(180), ∠=∠则23 ∠=∠(等角的余角(或补角)相等)。 6、余角和补角的性质是证明两角相等的一个重要方法。(二)对顶角 1、两条直线相交成四个角,其中不相邻的两个角是对顶角。 2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 3、对顶角的性质:对顶角相等。 4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。 5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。 (三)同位角、内错角、同旁内角 1、两条直线被第三条直线所截,形成了8个角。 2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。 3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。 4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。 5、这三种角只与位置有关,与大小无关,通常情况下,它

中考数学动点问题(含答案)

中考数学之 动点问题 一、选择题: 1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) 9 4x y O P D A 、10 B 、16 C 、18 D 、20 二、填空题: 1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。 三、解答题: 1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x , EF 的长为y . ⑴求PM 的长(用x 表示); ⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图). Q P O B E D C A

图 13 图 14 图 12 A H B C D A H B C D H M Q P D C B A 2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全 程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80 <x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米. ⑴求y 1与x 的函数关系,并在图2中画出y 1的图象; ⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长; ⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F . ①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值.

2018中考专题复习——动点问题

动点问题(讲义) 一、知识点睛 动点问题操作规程: 1. 研究______________. 2. 分析运动过程,分段,定范围. 根据起点、终点,确定_____________. 根据状态转折点确定_______________;常见状态转折点有拐点、碰撞点等. 3. 分析_____________、表达、建等式. 画出符合题意的图形,表达线段长,根据_____________建等式求解,结合范围验证结果. 二、精讲精练 1. 如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P ,Q 同时从点A 出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿 A → B → C → D 的方向运动,当点Q 运动到点D 时,P ,Q 两点同时停止运动.设P ,Q 运动x 秒时,△APQ 与△ABC 重叠部分的面积为y 平方厘米,解答下列问题: (1)点P ,Q 从出发到相遇所用时间是____________秒; (2)在点P ,Q 运动的过程中,当△APQ 是等边三角形时,x 的值为__________________; (3)求y 与x 之间的函数关系式. 2. 如图,已知△ABC 中,AB =AC =10厘米,BC =8厘米,点D 为AB 的中点. A B C D

(1)点P在线段BC上以3厘米/秒的速度由点B向点C运动,同时点Q在线段CA上由点C向点A 运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等? (2)若点Q以②中的运动速度从点C提前4秒出发,点P以原来的运动速度从点B出发,都沿△ABC 的三边逆时针运动,当点Q首次回到点C时停止运动.设△CQP的面积为S,点Q运动的时间为t,求S与t之间的函数关系式,并写出t的取值范围.(这里规定:线段是面积为0的三角形) 3.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发,沿CA以每秒1个单位长度的速 度向点A匀速运动,到达点A后立刻以原速度沿AC返回;点Q从点A出发,沿AB以每秒1个单位长度的速度向点B匀速运动.伴随着P,Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交

中考动点问题专项训练(含详细解析)

中考动点问题专项训练(含详细解析) 一、解答题 1. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是;同时, 点从点出发沿方向,在射线上匀速运动,速度是,过点作交于点,连接,,交于点.设运动时间为,解答下列问题: (1)当为何值时,四边形是平行四边形; (2)设的面积为,求与之间的函数关系式; (3)是否存在某一时刻,使得的面积为矩形面积的; (4)是否存在某一时刻,使得点在线段的垂直平分线上. 2. 已知:如图,在中,,,,点从点出发,沿向点匀速运动,速 度为;过点作,交于点,同时,点从点出发,沿向点匀速运动,速度为;当一个点停止运动时,另一个点也停止运动,连接.设运动时间为,解答下列问题: (1)当为何值时,四边形为平行四边形? (2)设四边形的面积为,试确定与的函数关系式; ?若存在,请说明理由,若存在,求出的(3)在运动过程中,是否存在某一时刻,使 四边形 值,并求出此时的距离. 3. 已知:和矩形如图①摆放(点与点重合),点,,在同一条直线上, ,,.如图②,从图①的位置出发,沿方向匀速运动,速度为; 与交于点.同时,点从点出发,沿方向匀速运动,速度为.过作,垂足为,交于,连接,,当点停止运动时,也停止运动.设运动时间为,解答下列问题: (1)当为何值时,? (2)设五边形的面积为,求与之间的函数关系式;

?若存在,求出的值;若不存在,请(3)在运动过程中,是否存在某一时刻,使 五边形矩形 说明理由; (4)在运动过程中,是否存在某一时刻,使点在的垂直平分线上?若存在,求出的值;若不存在,请说明理由. 4. 如图,在中,,,点从点出发,在线段上以每秒的速度向点 匀速运动.与此同时,点从点出发,在线段上以每秒的速度向点匀速运动.过点作,交于点,连接,.当点到达中点时,点与同时停止运动.设运动时间为秒(). (1)当为何值时,. (2)设的面积为,求出与之间的函数关系式. (3)是否存在某一时刻,使?若存在,求出的值;若不存在,说明理由. 5. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是,过点 作交于点,同时,点从点出发沿方向,在射线上匀速运动,速度是,连接,,与交于点,设运动时间为. (1)当为何值时,四边形是平行四边形; (2)设的面积为,求与之间的函数关系式; (3)是否存在某一时刻,使得的面积为矩形面积的; (4)是否存在某一时刻,使得点在线段的垂直平分线上. 6. 已知:如图①,在中,,,,点由出发沿方向向点匀速运动, 速度为;点由出发沿方向向点匀速运动,速度为;连接.若设运动的时间为(),解答下列问题: (1)当为何值时,? (2)设的面积为,求与之间的函数关系式;

相关文档
最新文档