高三专题复习不等式恒成立问题

高三专题复习不等式恒成立问题
高三专题复习不等式恒成立问题

高三数学 第一讲 不等式恒成立问题

在近些年的数学高考题及高考模拟题中经常出现不等式恒成立问题,此类问题一般综合性强,既含参数又含变量,往往与函数、数列、方程、几何等有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点.高考往往通过此类问题考查学生分析问题、解决问题、综合驾驭知识的能力。

此类问题常见解法:

一、构造函数法

在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.

例1 已知不等式对任意的都成立,求的取值范围.

例2:在R 上定义运算?:x ?y =x(1-y) 若不等式(x -a)?(x +a)<1对任意实数x 成立,则 ( )

(A)-1

a -<< 例3:若不等式x 2-2mx+2m+1>0对满足0≤x ≤1的所有实数x 都成立,求m 的取值范围。

二、分离参数法

在题目中分离出参数,化成a>f(x) (af max (x) (a

例4.(2012?杭州一模)不等式x 2﹣3>ax ﹣a 对一切3≤x ≤4恒成立,则实数a 的取值范围是 .

例5:设a 0为常数,数列{a n }的通项公式为a n =

51[3n +(-1)n-1·2n ]+(-1)n ·2n ·a 0(n ∈N * )若对任意n ≥1,n ∈N *,不等式a n >a n-1恒成立,求a 0的取值范围。

例6.(2012?安徽模拟)若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 . 例7.(2011?深圳二模)如果对于任意的正实数x ,不等式恒成立,则a 的取值范围是 .

例8.(2013?闵行区一模)已知不等式|x ﹣a|>x ﹣1对任意x ∈[0,2]恒成立,则实数a 的取值范围是 .

三、数型结合法

例9:如果对任意实数x ,不等式kx 1x ≥+恒成立,则实数k 的取值范围是

例10:已知a>0且a ≠1,当x ∈(-1,1)时,不等式x 2-a x <2

1恒成立,则a 的取值范围 例11、 已知函数若不等式恒成立,则实数的取值范围是 .

例12、(2009?上海)当时,不等式sin πx ≥kx 恒成立.则实数k 的取值范围是 .

例13、若不等式log a x >sin2x (a >0,a ≠1)对任意

都成立,则a 的取值范 B C D 四、利用函数的最值(或值域)求解

(1)m x f ≥)(对任意x 都成立m x f ≥?min )(;

(2)m x f ≤)(对任意x 都成立max )(x f m ≥?。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。

例14、在?ABC 中,已知2|)(|,2cos )24(

sin sin 4)(2<-++=m B f B B B B f 且π恒成立,求实数m 的范围。

例15、(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。

(2)求使不等式)2,0(4,cos sin π

π∈-

->x x x a 恒成立的实数a 的范围。

1

例16、(2009?崇明县二模)已知函数,(x>0),其中a,b∈R.

(1)讨论函数f(x)的单调性(不必证明);

(2)当时,不等式f(x)≤10在上恒成立,求b的取值范围.

五、利用函数单调性求解

例17、设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式恒成立,则实数t的取值范围是.

例18、已知函数f(x)=x3+2x,x∈R,若不等式f(mcosθ)+f(m﹣sinθ)≥0,当

时恒成立,则实数m的取值范围是.

例19、已知定义域为R的函数是奇函数.(1)求a的值;

(2)若对任意的t∈R,不等式f(mt2+1)+f(1﹣mt)<0恒成立,求实数m的取值范围.

六、实战演练

一.填空题

1.(2012?北京怀柔区二模)当x∈(1,2)时,不等式(x﹣1)2<log a x恒成立,则实数a 的取值范围是.

2..已知:不等式x2﹣log m x<0.在上恒成立,则实数m的取值范围是.

3.不等式4x+a?2x+1≥0对一切x∈R恒成立,则a的取值范围是.

4.(2006?上海)三个同学对问题“关于x的不等式x2+25+|x3﹣5x2|≥ax在[1,12]上恒成立,求实数a的取值范围”提出各自的解题思路.

甲说:“只须不等式左边的最小值不小于右边的最大值”.

乙说:“把不等式变形为左边含变量x的函数,右边仅含常数,求函数的最值”.

丙说:“把不等式两边看成关于x的函数,作出函数图象”.

参考上述解题思路,你认为他们所讨论的问题的正确结论,即a的取值范围是.

5.f(x)是偶函数,且f(x)在(0,+∞)上是增函数,若x∈[,1]时,不等式

f(ax+1)≤f(x﹣2)恒成立,则实数a的取值范围是.

二.解答题

6.(2012?信阳模拟)已知对于任意非零实数m,不等式|2m﹣1|+|1﹣m|≥|m|(|x﹣1|﹣|2x+3|)恒成立,求实数x的取值范围.

7.(2013?静安区一模)已知a,b,c分别为△ABC三个内角A、B、C所对的边长,a,b,c成等比数列.

(1)求B的取值范围;(2)若x=B,关于x的不等式cos2x﹣4sin()sin()+m>0恒成立,求实数m的取值范围.

8.已知函数

(1)当a=1时,求函数f(x)在(﹣∞,0)上的值域;

(2)若函数f(x)在[0,+∞)上不等式|f(x)|≤3恒成立,求实数a的取值范围.

9.(2010?闸北区二模)设x∈R,.

(1)请在所给的平面直角坐标系中画出函数f(x)的大致图象;

(2)若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,求实数k的取值范围.

10.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=2,任取a、b∈[﹣1,1],a+b≠0,都有>0成立,(1)判断f(x)的单调性,并说明理由;

(3)若f(x)≤2m2﹣2am+3对所有的m∈[0,3]恒成(2)解不等式f(x)<

立,求a的范围.

11.(2008?浦东新区二模)已知等差数列{x n},S n是{x n}的前n项和,且x3=5,S5+x5=34.(1)求{x n}的通项公式;

(2)设,T n是{a n}的前n项和,方程S n+T n=2008是否有解?说明理由;(3)是否存在正数λ,对任意的正整数n,不等式λx n﹣4S n +8n<228恒成立?若存在,求出λ的取值范围;若不存在,说明理由.

12.(2009?虹口区一模)已知:向量,,

.(1)当时,求函数f(x)的最大值和最小值;

(2)若对任意的,不等式f2(x)﹣mf(x)﹣2m+5>0恒成立,求实数m 的取值范围.

13.(2013?闵行区二模)已知函数.

(1)当a=1时,指出f(x)的单调递减区间和奇偶性(不需说明理由);

(2)当a=1时,求函数y=f(2x)的零点;

(3)若对任何x∈[0,1]不等式f(x)<0恒成立,求实数a的取值范围.

14.函数f(x)(x∈R+)满足下列条件:①f(a)=1(a>1)②f(x m)=mf(x).

(1)求证:f(xy)=f(x)+f(y);(2)证明:f(x)在(0,+∞)上单调递增;

(3)若不等式f(x)+f(3﹣x)≤2恒成立,求实数a的取值范围.

15.(2012?虹口区二模)已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间上有最大值4,最小值1,设函数.

(1)求a、b的值及函数f(x)的解析式;

(2)若不等式f(2x)﹣k?2x≥0在时恒成立,求实数k的取值范围.

16.(2011?浦东新区模拟)定义:,若已知函数

(a>0且a≠1)满足f(1)=.

(1)解不等式:f(x)≤2;

(2)若f(2t)+mf(t)+4≥0对于任意正实数t恒成立,求实数m的取值范围.

17.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0又f(1)=﹣2.

(1)判断f(x)的奇偶性;

(2)求证:f(x)是R上的减函数;

(3)求f(x)在区间[﹣3,3]上的值域;

(4)若?x∈R,不等式f(ax2)﹣2f(x)<f(x)+4恒成立,求a的取值范围.

18.(2012?徐汇区一模)对定义在区间D上的函数f(x),若存在闭区间[a,b]?D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x?[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.

(1)求证:函数f(x)=|x﹣1|+|x﹣3|是R上的“U型”函数;

(2)设f(x)是(1)中的“U型”函数,若不等式|t﹣1|+|t﹣2|≤f(x)对一切的x∈R恒成立,求实数t的取值范围;

(3)若函数g(x)=mx+是区间[﹣2,+∞)上的“U型”函数,求实数m和n的值.

不等式恒成立问题

不等式恒成立问题 一、 教学目标 1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用 2、 能力目标;培养学生分析问题解决问题的能力 3、 情感目标;优化学生的思维品质 二、 教学重难点 1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用 2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩 固练习----学生变式探究---学生总结 四、 教学过程 1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。引入课题 2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式 a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成) 由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x 又因为x ∈[-1,1],所以 a<1. 解法二;分类讨论、解不等式

(x-2)[x-(2-a)]>0 当a=0时不等式恒成立 当a<0 时x>2-a 或x<2 不等式恒成立 当a>0时x>2 或x<2-a 所以2-a>1 即a<1 所以a<1时不等式恒成立 解法三;构造函数求最值 设f(x)=x2+(a-4)x+4-2a 当(4-a)/2∈[-1,1],即a∈[2,6]时 -a2<0 不成立,舍弃; 当a>6时,f(-1)=1-a+4+4-2a>0 a<3 不成立,舍弃; 当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1 综上得:a<1 解法四;构造方程用判别式韦达定理根的分布 设x2+(a-4)x+4-2a=0 方程无实根或有两实根两根小于-1或两根大于1 △=(a-4)2-4(4-2a)=a2≥0 所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1 解法五;数形结合(用动画来演示 a(x-2)>-x2+4x-4 设y=a(x-2) 和y=-x2+4x-4 分别作两函数的图象

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

高考数学中的恒成立问题与存在性问题

“恒成立问题”的解法 常用方法:①函数性质法;②主参换位法;③分离参数法;④数形结合法。 一、函数性质法 1.一次函数型:给定一次函数()(0)f x ax b a =+≠,若()y f x =在[m,n]内恒有()0f x >,则根据函数 的图象(直线)可得上述结论等价于???>>0)(0)(n f m f ;同理,若在[m,n]内恒有()0f x <,则有? ??<<0)(0 )(n f m f . 例1.对满足2p ≤的所有实数p ,求使不等式2 12x px px x ++>+恒成立的x 的取值范围。 略解:不等式即为2(1)210x p x x -+-+>,设2 ()(1)21f p x p x x =-+-+,则()f p 在[2,2]-上恒大于 0,故有:???>>-)2(0)2(f f ,即??? ??>->+-0 10342 2x x x 3111x x x x ><-?或或13x x ?<->或. 2.二次函数: ①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >???(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。 例2. 已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少 有一个为正数,则实数m 的取值范围是( )

A .(0,2) B .(0,8) C .(2,8) D .(-∞,0) 选B 。 例3.设2 ()22f x x ax =-+,当[1,)x ∈-+∞时,都有()f x a ≥恒成立,求a 的取值范围。 解:设2 ()()22F x f x a x ax a =-=-+-, (1)当4(1)(2)0a a ?=-+≤时,即21a -≤≤时,对一切[1,)x ∈-+∞,()0F x ≥恒成立; (2)当4(1)(2)0a a ?=-+>时,由图可得以下充要条件: 0(1)021,2 f a ???>?-≥??-?-≤-?即(1)(2)0 30 1,a a a a -+>?? +≥??≤-?32a ?-≤<-;综合得a 的取值范围为[-3,1]。 例4.关于x 的方程9(4)340x x a +++=恒有解,求a 的范围。 解法:设3x t =,则0t >.则原方程有解即方程2 (4)40t a t +++=有正根。 1212 (4)040 x x a x x ?≥?? ∴+=-+>??=>?2(4)1604a a ?+-≥??<-?8a ?≤-. 3.其它函数: ()0f x >恒成立?min ()0f x >(若()f x 的最小值不存在,则()0f x >恒成立?()f x 的下界≥0) ; ()0f x <恒成立?max ()0f x <(若()f x 的最大值不存在,则()0f x <恒成立?()f x 的上界≤0). 例5.设函数3 21()(1)4243 f x x a x ax a = -+++,其中常数1a >, (1)讨论()f x 的单调性; (2)若当0x ≥时,()0f x >恒成立,求a 的取值范围。 解:(2)由(I )知,当0≥x 时,)(x f 在a x 2=或0=x 处取得最小值。 a a a a a a a f 2424)2)(1()2(3 1)2(23+?++-=a a a 24434 23++-=;a f 24)0(= -1 o x y

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题基本类型及常用解法 类型1:设f(x)=ax+b f(x) >0在x ∈[]n m ,上恒成立? ???0 )(0)( n f m f f(x) <0在x ∈[]n m ,上恒成立??? ?0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。 例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(2 1)12-+a x 恒成立的x 的取值范围。 类型2:设f(x)=ax 2+bx+c (a ≠0) f(x) >0在x ∈R 上恒成立?a >0 且△<0; f(x) <0在x ∈R 上恒成立?a <0 且△<0. 说明:①.只适用于一元二次不等式 ②.若未指明二次项系数不等于0,注意分类讨论. 例3.不等式3 642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。

类型3:设f(x)=ax 2+bx+c (a ≠0) (1) 当a >0时 ① f(x) >0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立?? ??0)(0)( n f m f . (2) 当a <0时 ① f(x) >0在x ∈[]n m ,上恒成立? ? ? ?0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . 说明:只适用于一元二次不等式. 类型4:a >f(x) 恒成立对x ∈D 恒成立?a >f(x)m ax , a <f(x)对x ∈D 恒成立? a <f(x)m in . 说明:①. f(x) 可以是任意函数 ②.这种思路是:首先是---分离变量,其次用---极端值原理。把问题转化为求函数的最值,若f(x)不存 在最值,可求出f(x)的范围,问题同样可以解出。 例4.(2000.上海)已知f(x)=x a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

高考不等式专题的三大考点

不等式专题的几个常考点 考点一 用均值不等式求最值的类型及方法 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b +≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值:

高考数学不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例2、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当 ??? ??∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒 成立,求实数m 的取值范围. 例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围。 2、主参换位法 例5、若不等式a 10x -<对 []1,2x ∈恒成立,求实数a 的取值范围 例6、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围 例7、已知函数323()(1)132a f x x x a x = -+++,其中a 为实数.若不等式 2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围. 3、分离参数法 (1) 将参数与变量分离,即化为 ()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 . 例9、已知函数321()33f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a , 且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.

不等式恒成立问题

不等式中恒成立问题的解法 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00 a ; 2)0)(+-+-x m x m 的解集是R ,求m 的范围。 解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。 (1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需???<---=?>-0 )1(8)1(0 12 m m m ,所以,)9,1[∈m 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 例2、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a - <-即:4a >时,()()min 2730f x f a =-=-≥ 7 3 a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ?? =-=--≥ ??? 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤ (3) 当22 a -> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又 4a <-74a ∴-≤<- 综上所得:72a -≤≤

高考数学压轴专题2020-2021备战高考《不等式》分类汇编

【高中数学】高考数学《不等式》解析(1) 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有

()0f x ≥,则 (1) '(0) f f 的最小值为( ) A .2 B . 52 C .3 D . 32 【答案】A 【解析】 ()2 2 00{,440 a f x ac b b a c >≥∴∴≥?=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++, ()( )11111120f a c f b b +∴=+≥+≥=+=' 当且仅当() () 120f a c f ='时,不等式取等号,故 的最小值为 3.在下列函数中,最小值是2的函数是( ) A .()1 f x x x =+ B .1cos 0cos 2y x x x π?? =+ << ??? C .( )2f x =D .()4 2x x f x e e =+ - 【答案】D 【解析】 【分析】 根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1 f x x x =+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π?? =+<< ??? ,故()cos 0,1x ∈,2y >,B 错误; C. ( )2f x = = ,故( )3 f x ≥ ,C 错误; D. ( )4222x x f x e e =+-≥=,当4x x e e =,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】 本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.

高考数学中的恒成立问题与存在性问题

高考数学中的恒成立问题与存在性问题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

“恒成立问题”的解法 常用方法:①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。 一、函数性质法 1.一次函数型:给定一次函数()(0)f x ax b a =+≠,若()y f x =在[m,n]内恒有()0f x >,则根 据函数的图象(直线)可得上述结论等价于??? >0)(m f ;同理,若在[m,n]内恒有 ()f x 例1.对满足2p ≤的所有实数p ,求使不等式212x px px x ++>+恒成立的x 的取值范围。 略解:不等式即为2(1)210x p x x -+-+>,设2()(1)21f p x p x x =-+-+,则()f p 在[2,2]-上 恒大于0,故有:???>>-)2(0)2(f f ,即?????>->+-0 103422x x x 3111x x x x ><-?或或13x x ?<->或. 2.二次函数: ①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00 a >???(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。

例2.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的 值至少有一个为正数,则实数m 的取值范围是( ) A .(0,2) B .(0,8) C .(2,8) D .(-∞,0) 选B 。 例3.设2()22f x x ax =-+,当[1,)x ∈-+∞时,都有()f x a ≥恒成立,求a 的取值范围。 解:设2()()22F x f x a x ax a =-=-+-, (1)当4(1)(2)0a a ?=-+≤时,即21a -≤≤时,对一切[1,)x ∈-+∞,()0F x ≥恒成立; (2)当4(1)(2)0a a ?=-+>时,由图可得以下充要条件: 0(1)021,2 f a ???>?-≥??-?-≤-? 即(1)(2)0301,a a a a -+>??+≥??≤-? 32a ?-≤<-; 综合得a 例4.关于x 的方程9(4)340x x a +++=恒有解,求a 的范围。 解法:设3x t =,则0t >.则原方程有解即方程2(4)40t a t +++=有正根。 1212 0(4)040x x a x x ?≥??∴+=-+>??=>?2(4)1604a a ?+-≥??<-?8a ?≤-. 3.其它函数: ()0f x >恒成立?min ()0f x >(若()f x 的最小值不存在,则()0f x >恒成立?()f x 的下界≥0); ()0f x <恒成立?max ()0f x <(若()f x 的最大值不存在,则()0f x <恒成立?()f x 的上界≤0).

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

高中数学专题练习-存在与恒成立问题

高中数学专题练习-存在与恒成立问题 [题型分析·高考展望]“存在”与“恒成立”两个表示范围的词语在题目中出现是近年高考的一大热点,其本质是“特称”与“全称”量词的一个延伸,弄清其含义,适当进行转化来加以解决.此类题目主要出现在函数与导数结合的解答题中,难度高,需要有较强的分析能力和运算能力.训练时应注意破题方法的研究. 常考题型精析 题型一恒成立问题 例1(·浙江)已知函数f(x)=x3+3|x-a|(a>0),若f(x)在[-1,1]上的最小值记为g(a). (1)求g(a); (2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.

点评恒成立问题一般与不等式有关,解决此类问题需要构造函数利用函数单调性求函数最值,从而说明函数值恒大于或恒小于某一确定的值. 变式训练1(·山东)设函数f(x)=ln(x+1)+a(x2-x),其中a∈R. (1)讨论函数f(x)极值点的个数,并说明理由; (2)若?x>0,f(x)≥0成立,求a的取值范围.

题型二存在性问题 例2(·辽宁)已知函数f(x)=(cos x-x)(π+2x)-8 3(sin x+1),g(x)=3(x-π)cos x-4(1+sin x)·ln(3-2x π). 证明:(1)存在唯一x0∈(0,π 2),使f(x0)=0; (2)存在唯一x1∈(π 2,π),使g(x1)=0,且对(1)中的x0,有x0+x1<π. 点评“存在”是特称量词,即“有的”意思,证明这类问题的思路是想法找到一个“x0”使问题成立即可,必要时需要对问题进行转化.若证“存在且唯一”则需说明除“x0”外其余不能使命题成立,或利用函数单调性证明此类问题. 变式训练2(·浙江)设函数f(x)=x2+ax+b(a,b∈R). (1)当b=a2 4+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式; (2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.

不等式恒成立问题的大全

不等式恒成立问题 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00a ; 2)0)(+-+a x a x 对R x ∈恒成立,即有 04)1(22<--=?a a 解得3 11>-x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ????-≤--≥-≥?1220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-。 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 1.已知两个函数2()816f x x x k =+-, 32()254g x x x x =++,其中k 为实数. O x y x -1

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

新高考数学《不等式》练习题 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足 15150a S +=,则实数d 的取值范围是( )

A .[; B .(,-∞ C .) +∞ D .(,)-∞?+∞ 【答案】D 【解析】 【分析】 由等差数列的前n 项和公式转化条件得1 1322 a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】 Q 数列{}n a 为等差数列, ∴15154 55102 a d d S a ?=+ =+,∴()151********a S a a d +++==, 由10a ≠可得 1 1322 a d a =--, 当10a > 时,1111332222a a d a a ??=--=-+≤-= ??? 1a 时等号成立; 当10a < 时,1 1322a d a =--≥= 1a =立; ∴实数d 的取值范围为(,)-∞?+∞. 故选:D. 【点睛】 本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题. 3.已知关于x 的不等式()()2 22240m x m x -+-+>得解集为R ,则实数m 的取值范 围是( ) A .()2,6 B .()(),26,-∞+∞U C .(](),26,-∞?+∞ D .[)2,6 【答案】D 【解析】 【分析】 分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数 m 的取值范围. 【详解】

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值围。 例2、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试数a 的取值围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当 ??? ??∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒 成立,数m 的取值围. 例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值围。 2、主参换位法

例5、若不等式a 10x -<对 []1,2x ∈恒成立,数a 的取值围 例6、若对于任意 1a ≤,不等式2(4)420x a x a +-+->恒成立,数x 的取值围 例7、已知函数323()(1)132a f x x x a x = -+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,数x 的取值围. 3、分离参数法 (1) 将参数与变量分离,即化为 ()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值围是 . 例9、已知函数321()33f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a , 且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值围. 4、数形结合 例10 、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值围是________ 例11、当x ∈(1,2)时,不等式2(1)x -

相关文档
最新文档