常微分方程课后习题部分答案

常微分方程课后习题部分答案
常微分方程课后习题部分答案

18. 设),(y x f 及y

f ??连续,试证方程0),(=-dx y x f dy 为线性方程的充要条件是它有仅依赖于x 的积分因子.

证:必要性 若该方程为线性方程,则有)()(x Q y x P dx dy

+= ,

此方程有积分因子?=-dx x P e x )()(μ,)(x μ只与x 有关 .

充分性 若该方程有只与x 有关的积分因子)(x μ .

则0),()()(=-dx y x f x dy x μμ为恰当方程 , 从而dx x d y y x f x )()),()((μμ=?-? ,)()

(x x y f μμ'-=?? ,

)()()()()

()()()

(x Q y x P x Q y x x x Q dy x x f +=+'-=+'-=?μμμμ . 其中)()

()(x x x P μμ'-= .于是方程可化为0))()((=+-dx x Q y x P dy

即方程为一阶线性方程.

20.设函数f(u),g(u)连续、可微且f(u)≠g(u),\,试证方程yf(xy)dx+xg(xy)dy=0 有积分因子u=(xy[f(xy)-g(xy)])1-

证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u 得:

uyf(xy)dx+uxg(xy)dy=0 则y uyf

??=uf+uy y f

??+yf y u

??=)(g f xy f -+)(g f xy y

f y -??-yf 222)()(

g f y x y

g

xy

y f xy g f x -??+??+- =2)(g f xy y f gy y g yf -??-??=2)(g f x y xy

xy f g y xy xy g f -??

??-???? =2)(g f xy

f

g xy g

f -??-?? 而x ux

g ??=ug+ux x g ??+xg x u ??=)(g f xy g -+)(g f xy x g x -??- xg 222)()(g f y x x

g

xy

x f xy g f y -??-??+-

=2)

(g f xy x xy xy f xg x xy xy g xf

-????-????=2)(g f xy f g xy g f -??-?? 故y

uyf ??=x uxg ??,所以u 是方程得一个积分因子 21.假设方程(2.43)中得函数M (x,y )N(x,y)满足关系x

N y M ??-??= Nf(x)-Mg(y),其中f(x),g(y)分别为x 和y 得连续函数,试证方程(2.43)

有积分因子u=exp(?dx x f )(+?dy y g )()

证明:M(x,y)dx+N(x,y)dy=0 即证x

uN y uM ??=??)()(?u y M ??+M y u ??=u x N ??+N x u ??? u(y M ??-x N ??)=N x u ??- M y u ???u(y M ??-x

N ??)=Ne ??+dy y g dx x f )()(f(x) -M e ??+dy y g dx x f )()(g(y)?u(

y M ??-x N ??)=e ??+dy y g dx x f )()((Nf(x)-Mg(y)) 由已知条件上式恒成立,故原命题得证。

22、求出伯努利方程的积分因子. 解:已知伯努利方程为:()();,o y y x Q y x P dx

dy n ≠+= 两边同乘以n y -,令n y z -=,

()()()(),11x Q n z x P n dx

dz -+-=线性方程有积分因子: ()()()()dx x P n dx x P n e e ?=?=---11μ,故原方程的积分因子为:

()()()()dx x P n dx x P n e e ?=?=---11μ,证毕!

23、设()y x ,μ是方程()()0,,=+dy y x N dx y x M 的积分因子,从而求得可微函数()y x U ,,

使得().Ndy Mdx dU +=μ试证)y x ,~μ

也是方程()()0,,=+dy y x N dx y x M 的积分因子的充要条件是()(),,~U y x μ?μ

=其中()t ?是t 的可微函数。 证明:若()u μ?μ=~,则()()()()()()()()()N u M u y

M y u M u y M y M u y M μ?μ?μμ?μ?μμ?μ'+??=??'+??=??=??~

又()()()()()()()()()()y

M M u N u y M M u N u x N x N u x N ??='+??='+??=??=??μμ?μ?μμ?μ?μμ?μ~~ 即μ

~为()()0,,=+dy y x N dx y x M 的一个积分因子。 24、设()()y x y x ,,,21μμ是方程()()0,,=+dy y x N dx y x M 的两个积分因子,且≠21μμ常数,求证c =21μμ(任意常数)是方程()()0,,=+dy y x N dx y x M 的通解。 证明:因为21,μμ是方程()()0,,=+dy y x N dx y x M 的积分因子

所以o Ndy Mdx i i =+μμ ()2,1=i 为恰当方程

即 ???

?

????-??=??-??x N y M y M x N i i

i μμμ,2,1=i 下面只需证2

1

μμ的全微分沿方程恒为零

事实上:

2121221222112222

2

212122

2

2211

1

221=??

????

???? ????-??-???? ????-??=?

?

?

??????? ????-??-???? ????-??=???

? ????-??-????

????-??=???

?

??

??+??-???? ????+??=??

?? ??x N y M x N y M N dx y M x N y M x N N dx dx y N M dx x dx y N M dx x dy y dx x dy y dx x d μμμμμμμμμμμμμμμμμμμμμμμμμμμμ 即当c ≠21

μμ时,c =2

1μμ是方程的解。证毕!

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

3.1 常微分方程 课后答案

习题3.1 1 求方程dx dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ? 20020012 1)()(x xdx dx y x y x x x ==++=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x +=+=++=???? dx x x x y x x ])20 121([)(252003+++=?? = 118524400 1160120121x x x x +++ 2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ? 则 20020012 1)()(x xdx dx y x y x x x ==-+=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x -=-=-+=???? dx x x x y x x ])20 121([)(252003--+=?? =118524400 1160120121x x x x -+- 3 题 求初值问题: ?????=-=0 )1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计; 解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4 1 则解的存在区间为0x x -=)1(--x =1+x ≤4 1 令 )(0X ψ=0 ; )(1x ψ=y 0+?-x x x 0)0(2dx=31x 3+31;

)(2x ψ =y 0+])3131([2132?-+-x x x dx=31x 3-9x -184x -637x +4211 又 y y x f ??),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32 2 )12(*h L M +=2411 4 题 讨论方程:31 23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解; 解:因为y y x f ??),(=3221-y 在y 0≠上存在且连续; 而312 3y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23 又 因为y(0)=0 所以:y =x 2 3 另外 y=0也是方程的解; 故 方程的解为:y =?????≥00023 x x x 或 y=0; 6题 证明格朗瓦耳不等式: 设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,

常微分方程试题(卷)

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程第三版答案

常微分方程第三版答案 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

习题 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2 y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31 x x + y y 21+dy=31 x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c.

高频课后习题答案(部分)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\第一章 1.1 何谓通信系统?通信系统由哪几部分组成? 答:用电信号(或光信号)传输信息的系统称为通信系统。它由输入变换器、发送设备、传输信道、接收设备、输出变换器等组成。 1.2 无线电通信为什么要采用调制技术?常用的模拟调制方式有哪些? 答:采用调制技术可使低频基带信号装载在高频载波上,从而缩短天线尺寸,易于天线辐射,而且不同的发射台其载波频率不同,在接收端便于选择接收。此外,采用调制可进行频分多路通信,实现信道的复用,提高信道利用率;还可以提高系统性能指标,提高抗干扰能力。 常用的模拟调制方式有振幅调制(AM )、频率调制(FM )和相位调制(PM )。 1.3 已知频率为3kHz 、1000kHz 、100MHz 的电磁波,试分别求出其波长并指出所在波段名称。 解:根据λ=c /f (其中c =3×108m/s )分别得出100km (为超长波)、300m (为中波)和 3m (为超短波)。 1.4 画出无线广播调幅发射机组成框图,并用波形说明其发射过程。 答:参见图1.3.1。 第二章 二、选择题 1.LC 串联回路谐振时阻抗最 ,且为纯电阻,失谐时阻抗变 ,当f o f 回路呈 。 A .容性 B .感性 C .大 D .小 2.LC 组成的并联谐振回路谐振时,阻抗为 ,谐振时电压为 ;电纳为 ,回路总导纳为 。 A .最大值 B .最小值 C .零 D .不能确定 3.把谐振频率为o f 的LC 并联谐振回路串联在电路中,它 的信号通过。 A .允许频率为o f B .阻止频率为o f C .使频率低于o f D .使频率高于o f 4.在自测题1图所示电路中,1ω和2ω分别为其串联谐振频率和并联谐振频率。它们之间的大小关系为 。 A .1ω等于2ω B .1ω大于2ω C .1ω小于2ω D .无法判断 5.强耦合时,耦合回路η越大,谐振曲线在谐振频率处的凹陷程度 。 A .越大 B .越小 C .不出现 6.石英晶体振荡器,工作在 时的等效阻抗最小。 A .串联谐振频率s f B .并联谐振频率p f C .s f 与p f 之间 D .工作频率 自测题1图

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分习题解答

《常微分方程》习题解答东北师范大学微分方程教研室(第二版) 高等教育出版社

习题 1 求下列可分离变量微分方程的通解: (1) xdx ydy = 解:积分,得 12 22 121c x y += 即 c y x =-22 (2) y y dx dy ln = 解: 1, 0==y y 为特解,当1, 0≠≠y y 时, dx y y dy =ln , 积分,得0ln ,ln ln 11≠=±=+=c ce e e y c x y x x c ,即x ce e y = (3) y x e dx dy -= 解: 变形得 dx e dy e x y =积分,得c e e x y =- (4) 0cot tan =-xdy ydx 解:变形得 x y dx dy cot tan = ,0=y 为特解,当0≠y 时,dx x x dy y y cos sin sin cos =. 积分,得11cos sin ln ,cos ln sin ln c x y c x y =+-=, 即0,cos sin 1 ≠=±=c c e x y c 2.求下列方程满足给定初值条件的解: (1) 1)0(),1(=-=y y y dx dy 解: 1, 0==y y 为特解,当1, 0≠≠y y 时,dx dy y y =--)1 11( , 积分,得 0,1 ,1 ln 11≠=±=-+=-c ce e e y y c x y y x x c 将1)0(=y 代入,得 0=c ,即1=y 为所求的解。 (2) 1)0(,02)1(2 2 ==+'-y xy y x 解: 0,1 222 =--=y x xy dx dy 为特解,当0≠y 时, dx x x y dy 1 222--=, 积分,得 c x y +--=- 1ln 1 2

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程课后答案

习题 1 求方程dx dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ? 20020012 1)()(x xdx dx y x y x x x ==++=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x +=+=++=???? dx x x x y x x ])20 121([)(252003+++=?? = 118524400 1160120121x x x x +++ 2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ? 则 20020012 1)()(x xdx dx y x y x x x ==-+=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x -=-=-+=???? dx x x x y x x ])20 121([)(252003--+=?? =118524400 1160120121x x x x -+- 3 题 求初值问题: ?????=-=0 )1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计; 解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4 1 则解的存在区间为0x x -=)1(--x =1+x ≤4 1 令 )(0X ψ=0 ; )(1x ψ=y 0+?-x x x 0)0(2dx=31x 3+31;

)(2x ψ =y 0+])3131([2132?-+-x x x dx=31x 3-9x -184x -637x +4211 又 y y x f ??),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32 2 )12(*h L M +=2411 4 题 讨论方程:31 23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解; 解:因为y y x f ??),(=3221-y 在y 0≠上存在且连续; 而312 3y 在y 0φσ≥上连续 由 3123y dx dy =有:y =(x+c )23 又 因为y(0)=0 所以:y =x 2 3 另外 y=0也是方程的解; 故 方程的解为:y =?????≥00023πx x x 或 y=0; 6题 证明格朗瓦耳不等式: 设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,

高频电子线路课后习题答案第五版张肃文.doc

高频电子第五版 (pF)).(L C H)(.QR 则L Ω取R Δf f Q (kHz)Δf MHz 解:f ..159101********* 1 15910 143210 1001010010 101012101099010121136 26206 03 6 70036700 =????= = =???= ===??===?-?==--ωμω 时,产生并联谐振。C L 或ωC L )当(时,产生串联谐振。C L 或ωC L )当(时,产生并联谐振。C L 或ωC L )当解:(2 2021 1012 2021 1012 202 11011 1 31 1 21 1123== ====-ωωω R R C L R )LC ωL(j ωR )LC ωLR(j ωC L R C j ωR L j ωR )C j ωL)(R j ω(R 证明:Z =+=-+-++=++++ +=-21121 11133220020020000 )()()()()())()()()()) 318010 404501053514321 121535100160512405354501605151431223202222μH .C C L 故采用后一个不合理舍去pF -得C C C 由pF 得C C C 由解:=?+????='+==+=?+=+=?+--ω。 L C C ’

()()() () mV V Q V V mA .R V I μH ..C L ..R C 解:Q -Sm Com Lom -om om --212101212205 10111210 100105114321 12125 10100105114321 153303 1226020012 6000 =??====?===????== =??????== -ωω ()()()()() ()Ωj ..j .C j R Z Ω.....Q L Q L R pF C pF .L C C C C .V V Q μH .C 解:L X X X X X X X S C 796747102001014321 7471747100 1025310143210521025310143220010010 2531014321 11001 010 25310 1001014321 16312 606 666000626200122620-=????-=-==????-????=-==→=????==+?=== =????==------ωωωωω()() ()。21k Ω0.5R ,R ,故0.5Q Q ,则f 22f 因2Δ3 20105105552310023 100 101501052220105010514321 173000.70.76 60036700012 620电阻所以应并上 ='='??='=??-??=== ??===?????==--.f Δf Q ξΔf f Q μH ..C ω解:L . ∑ ===-g Q C ωΔf f C πf C πΔf 证明:..070007022483 ()()()()()()()()MHz ...Q f Δf .....L ωR Q k Ω..R C C C C R R R k Ω..C L Q R MHz ....LC πf pF .C C C C C C C 解:C L .L P i P i 4812 281064122281080106411432108858855202020209201092010 20201080100641103181080143212131820 2020202020593607 06 63 02 02 110212 6 12 12 60102102 =?===??????===???? ??++=???? ??++==?+??===????== =++++=++++=--∑∑----

常微分方程(第三版)课后答案

常微分方程 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为:

x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 2 2 2 2 322 32)1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+?+=+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0 ln 0 )ln (ln :931:8. cos ln sin ln 0 7ln sgn arcsin ln sgn arcsin 1 sgn 11,)1(,,,6ln )1ln(2 11 11,11,,,0 )()(:5332 2 22 2 22 2 22 2 c dx dy dx dy x y cy u d u u dx x x y u dx x y dy x y ydx dy y x x c dy y y y y dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dx dy x c x arctgu dx x du u u u dx du x u dx du x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e e x y u u x y x u u x y x y y x x x +===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++ =++-++=++===+-==-++-+-- 两边积分解:变量分离:。 代回原变量得:则有:令解:方程可变为:解:变量分离,得 两边积分得:解:变量分离,得::也是方程的解。 另外,代回原来变量,得两边积分得:分离变量得:则原方程化为: 解:令:。两边积分得:变量分离,得:则令解:

高频课后习题答案(部分)(可编辑修改word版)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\第一章 1.1 何谓通信系统?通信系统由哪几部分组成? 答:用电信号(或光信号)传输信息的系统称为通信系统。它由输入变换器、发送设备、传输信道、接收设备、输出变换器等组成。 1.2 无线电通信为什么要采用调制技术?常用的模拟调制方式有哪些? 答:采用调制技术可使低频基带信号装载在高频载波上,从而缩短天线尺寸,易于天线辐射,而且不同的发射台其载波频率不同,在接收端便于选择接收。此外,采用调制可进行频分多路通信,实现信道的复用,提高信道利用率;还可以提高系统性能指标,提高抗干扰能力。 常用的模拟调制方式有振幅调制(AM )、频率调制(FM )和相位调制(PM )。 1.3 已知频率为 3kHz 、1000kHz 、100MHz 的电磁波,试分别求出其波长并指出所在波段名称。 解:根据λ=c /f (其中 c =3×108 m/s )分别得出 100km (为超长波)、300m (为中波)和 3m (为超短波)。 1.4 画出无线广播调幅发射机组成框图,并用波形说明其发射过程。答:参见图 1.3.1。 第二章 二、选择题 1. LC 串联回路谐振时阻抗最 ,且为纯电阻,失谐时阻抗变 ,当 f < f o 回路呈 ,当 f > f o 回路呈 。 A. 容性 B .感性 C .大 D .小 2. LC 组成的并联谐振回路谐振时,阻抗为 ,谐振时电压为 ;电纳 为 ,回路总导纳为 。 A. 最大值 B .最小值 C .零 D .不能确定 3. 把谐振频率为 f o 的 LC 并联谐振回路串联在电路中,它 的信号通过。 A. 允许频率为 f o B. 阻止频率为 f o C. 使频率低于 f o D. 使频率高于 f o 4. 在自测题 1 图所示电路中, ω1 和ω2 分别为其串联谐振频率和并联谐振频率。它们 之间的大小关系为 。 A. ω1 等于ω2 B . ω1 大于ω2 C . ω1 小于ω2 D .无法判断 自测题 1 图 5. 强耦合时,耦合回路 η 越大,谐振曲线在谐振频率处的凹陷程度 。 A. 越大 B .越小 C . 不 出 现 6.石英晶体振荡器,工作在 时的等效阻抗最小。 A. 串联谐振频率 f s B. 并联谐振频率 f p C. f s 与 f p 之间 D .工作频率

常微分方程第三版课后习题答案#(精选.)

习题1.2 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2 另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+3 1 x x + y y 21+dy=3 1 x x +dx 两边积分:x(1+x 2 )(1+y 2 )=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0

解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

常微分方程第三版的课后答案

常微分方程 2.1 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为: x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 22 2 2 3 22 3 2 )1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+ ? + =+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0 ln 0 )ln (ln :931:8. cos ln sin ln 0 7ln sgn arcsin ln sgn arcsin 1 sgn 11,)1(,,,6ln )1ln(2 11 11,11,,,0 )()(:5332 2 22 2 22 2 22 2 c dx dy dx dy x y cy u d u u dx x x y u dx x y dy x y ydx dy y x x c dy y y y y dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dx dy x c x arctgu dx x du u u u dx du x u dx du x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e e x y u u x y x u u x y x y y x x x +===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++ =++-++=++===+-==-++-+-- 两边积分解:变量分离:。 代回原变量得:则有:令解:方程可变为:解:变量分离,得 两边积分得:解:变量分离,得::也是方程的解。 另外,代回原来变量,得两边积分得:分离变量得:则原方程化为: 解:令:。两边积分得:变量分离,得:则令解:

常微分方程习题

第一章习题 1-1求下列两个微分方程的公共解。 (1)422x x y y -+=' (2)2422y y x x x y --++=' 解 两方程的公共解满足条件 4224222x x y y y x x x -+=--++, 即 022224=-+-y x y x , 0))(122(22=-++y x y x , 所以2 x y =或2212 x y +-=。 代入检验可知2 212 x y +-=不符合,所以两方程的公共解为2x y =。 评注:此题是求解方程满足一定条件的解,即求两个微分方程的公共解。在求解时由于令其导数相等,很容易产生增解,因而要对所求结果回代原方程进行检验,舍去增解。 1-2 求微分方程02 =-'+'y y x y 的直线积分曲线。 解 设直线积分曲线为b ax y +=,则a y =',代入原方程得 02≡--+b ax xa a , 即0)()(2 ≡-+-b a a a x , 所以 ???=-=-0 02b a a a , 可得0==b a 或1==b a 。 因而所求直线积分曲线为0=y 或1+=x y 。 评注:此题是求解方程的部分解,采用的是待定系数法。待定系数法是求解常微分方程常用的方法之一,有待定常数法和待定函数法。本题首先设出满足题设条件的含有待定常数

的解,然后代入原方程来确定待定常数,解决此类问题的关键在于正确地设出解的形式。 1-3 微分方程32224xy y y x =-',证明其积分曲线是关于坐标原点成中心对称的曲线。 证 设)(x y ?=满足微分方程,只须证明)(x y --=?也满足方程即可。 作变换x t -=,则证明)(t y ?-=满足方程即可,代入方程两端,并利用)(x y ?=满足此方程,得 左=)())((42222t dx dt t t ??-', )()1)((42222t t t ??--'= )()(4222t t t ??-'=)(3t t ?==右 故)(t y ?-=也满足方程32224xy y y x =-'。 评注:为了验证)(x y --=?也满足方程,利用积分曲线的性质,进行变量代换x t -=,将)(x y --=?变换成)(t y ?-=后,问题就很容易解决了。 1-4 物体在空气中的冷却速度与物体和空气的温差成正比,如果物体在20分钟内由100℃冷却至60℃,那么,在多长时间内,这个物体由100℃冷却至30℃?假设空气的温度为20℃ 解 设物体在空气中时刻t 的温度为)(t T T =,则依牛顿冷却定理得 )20(--=T k dt dT , 其中k 是比例常数。 两边积分,得通解为kt Ce T -+=20。 由于初始条件为:,100)0(=T 故得80=C ,所以kt e T -+=8020。 将60,20==T t 代入上式后即得:202ln = k , 即 20202ln )2 1(80208020t t e T ?+=+=-。 故当30=T 时,有20)2 1(802030t ?+=,从中解出60=t (分钟),因此,在一小时内,可使物体由100℃冷却至30℃。

相关文档
最新文档