2008A题数码相机定位

2008A题数码相机定位
2008A题数码相机定位

数码相机定位

一.问题重述

数码相机定位在交通监管等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。

参照系统标定的方法建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的光学中心,x-y平面平行于像平面;对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标;设计一种方法检验建立的模型,并对方法的精度和稳定性进行讨论;建立用此靶标给出两部固定相机相对位置的数学模型和方法。

二.符号说明

1)ij r-------------------------------------------对应两点的距离

(i =1,2,3;j =1,2,3,4)2)u,v------------------------------------------------待定系数

3)i x,i y, i z,'i x,'i y,'i z--------------对应点的x,y,z坐标

(i=1,2,3)

4)

t,2t,3t------------------------------------------关系系数

1

5)R------------------------------------光学中心到像平面的距离

6)r ---------------------------------------两部相机之间的距离

三.模型假设

1.两部相机的型号相同即像距相等。

2.假设像平面在光学中心的正后方,即建立的二维坐标系原点在原三维坐标系的z轴上。

3.靶标可以认为是一个平面,并且是硬性物体,其上任意两点的距离不发生变化。

四.模型的建立及求解

问题一:

给出相机成像的原理参照图如下图(1):

图(1)

对于第一个问题,我们需要建立一个模型来确定靶标上任意圆的圆心在像平面上的像坐标。系统标定的实际做法是在物平面上画若干个圆,由于物平面和像平面有存在着夹角,所以他们的像一般会变形,所以在像平面中我们难以确定一个不规则的图形的几何中心,并且几何中心所对应的实物并不一定是圆的圆心。

1、靶标和像的关系

我们知道,任意两个圆都存在公切线,当相机成像之后公切线仍然存在,并且这些切线也是相片上那些不规则图形的公切线。根据这个原理,我们在物平面

上画3个圆

O,2O,3O分别取他们之间的三条外公切线组成一个三角形ABC。

1

(如图2)。在像平面中我们也能通过软件给3个圆的成像做出3条公切线,这3条线组成的三角形就是ABC的像'''

A B C。(如图3)

图(2)

图(3)

2、在像平面建立二维坐标

我们采取直接在像平面上建立二维坐标的方式。首先,我们默认像平面为

一个有限的长方形,其分辨率1024×768可以当作平面的划分,并且用来标记坐标,我们把平面看成1024×768个小方格。把坐标原点设在长方形的中心,这样x ,y 坐标的范围就分别在(-512,512),(-384,384)。

3、确定像坐标与靶坐标上点的坐标之间的关系

我们知道,三个不共线的点可以确定一个平面。在图2中我们设'A ,'B ,

'C 在像平面上的坐标为'

'

'

11(,)A x y ,'

'

'

22(,)B x y ,'

'

'

33(,)

C x y 。

由于x-y 平面平行于像平面,建立的二维坐标系原点在原三维坐标系的z 轴上。

故我们可以知道',','A B C 在三维坐标系上的坐标''''111(,,)A x y z ,

'

'

'

'

222(,,)B x y z ,'

'

'

'

333(,,)C x y z 。

其中'''123z z z R ===,R 为像距(即三维坐标中心到二维平面的距离) 另外,在物平面上 设111(,,)A x y z ,222(,,)B x y z ,333(,,)C x y z 根据成像的原理,在三维坐标系中',','AOA BOB COC 则有关系:

'''i i i i i i

i

i i x t x y t y z t z ?=?=??=? (i =1,2,3) (1.1)

所以,,A B C 的坐标表示为'''111111(,,)A t x t y t z ,'''222222(,,)B t x t y t z ,

'

'

'

333333(,,)C t x t y t z 。

4、计算1t ,2t ,3t 的值

对于靶坐标,任何两点之间的距离都可以通过测量得出,设测得值 |A B |=12r |B C |=23r |A C |=13r

则有

)()()2222

121212122222

232323232222

1

3131313()()()()()()x x y y z z r x x y y z z r x x y y z z r ?-+-+-=?

?-+-+-=??-+-+-=?? (1.2) 此方程只有1t ,2t ,3t 三个未知数,所以能求得解。

5、靶标上任意圆圆心对应在像平面上的像坐标

根据以上得到的数据,给出靶标上任意圆的圆心D ,我们可以测量D 与

,,A B C

之间的距离来确定D 的坐标

设D 的坐标为D (,,)x y z ,D 到,,A B C 之间的距离分别为

||AD =14r ,||BD =24r ,||CD =34r

则有()()()2222

11114

2222

222242222

33334()()()()()()x x y y z z r x x y y z z r x x y y z z r ?-+-+-=?

?-+-+-=??-+-+-=??

(1.3)

此方程也只有,,x y z 三个未知数,所以能求得D 点坐标D (,,)x y z 。

'D 为D

在像平面上对应的点

根据的'D O D 共线关系可得'D 点的坐标为'D (,,)x y z t t t

而'D 在像平面上,故/z t R =,所以/t z R =

所以'D 的坐标就确定了'D

,,)x y R R R z z (

(其中x ,y ,z 是与i x ,i y ,i z 有关的常数,i =1,2,3)

问题二:

我们来解决实际问题。我们用AutoCAD 打开题目给出的照片文件,然后我们把相片上的不规则图形按椭圆拟合在通过CAD 上的捕捉切点的功能分别找到3条公切线,并设这3条公切线的交点为'M ,'N ,'Q ,如图(4):

图(4)

通过CAD 上的坐标定位,找到'M ,'N ,'Q 在CAD 上的坐标,再通过一定的转换把他们的坐标转换到像平面上(即以像素为单位)。

'M ,'N ,'Q 在像平面上的坐标为'M (-226.11, 238.802)

'N (223.1317, 201.5533) 'Q (-277.2719, -202.0605)

另外在物平面上,我们找到,,M N Q 间的长度关系,如下图(5):

图 (5)

|MN |= 140.9706 (mm ) =532.8689(像素) |MQ |= 140.9706 (mm ) =532.8689(像素) |NQ |= 199.3625 (mm ) =753.5904(像素)

根据我们上面建立的模型,把以上数据带入方程(1.2)可以算得

123

1.18431.17850.9919t t t =-??

=-??=-? (其余数据舍去,算法理由在附录1中给出[2]) 算出,,M N Q 在三维坐标系上坐标

M

(267.8 ,-282.8,-1867.6) N (-263.0,-237.5,-1858.5) Q

(275.0, 200.4,-1564.2)

由于距离的测量是存在误差的,这样用距离公式进行计算,很有可能会找不到目标点,所以我们下面采用向量的方法解决此问题。

又根据几何向量知识得到:

对于任意一点H 都有: M H u M N v M Q =+

则 (1)O H u v O M u O N vO Q

=--++

根据上面公式我们可以求得O A ,OB ,O C ,O D ,OE

所对应的u ,v 值如下

表:

,,M N Q 的坐标均已求出,故我们可以得到,,,,A B C D E 在三维坐标系中的坐

标如下表:

(单位:像素)

经过MATLAB 编程可得到其像',',',','A B C D E 的坐标为(程序见附录2)[2]:

所以圆心像点',',',','A B C D E 在像平面上的二维坐标分别为

问题三:

由于空间中一点我们是以点所在的像素小方格得到他的坐标,这样得到点的坐标就会产生误差,且和相机分辨率有关了,假如图像识别精度达到1个像素

级,那么对于空间一物点,设其在像平面上的第i 行,第j 列的像素中。只要该点在该像素内,则该点坐标即已经确定

这样得到误差有:

1([])

1([])ex x x ey y y =--??

=--?

(3.1) 其中[],[]x y 分别为对,x y 求整

以'M (-226.11, 238.802),'N (223.1317, 201.5533),'Q (-277.2719, -202.0605)为例,M 在像平面上坐标为(267.8 ,-282.8)则得到坐标与实际

坐标之间的误差由(3.1)式得:

0.110.198

0.8683

0.44670.27190.0605

exm eym exn eyn exq eyq =??

=?=??

=?=??

=? (3.2)

理想坐标与实际物理坐标关系为:

x x E x y y E y

=+=+

,

从而得到',',

M N Q的理想坐标分别为(-226.22,238.614),(222.2634,201.1066), (-277.5438,-202.1210)在根据问题2提出的模型可得到新的',',',','

A B C D E在像平面上的坐标为

与原来的',',',','

A B C D E的坐标比较得

表示所求坐标与理想坐标之间的相对误差)

(其中d x

x

问题四:

其模型可看成是由两个单照相机成像组合而成,其示意图如图(6)所示:

图(6)

图(6)中1L ,2L 为(,,)P x y z 经过两光学中心的光线。确定了他们两之间的距离r 也就固定了两部相机的相对位置.两相机的像距都是12,,R C C 分别为左右相机的像平面,1P ,2P 为物平面上坐标点(,,)P x y z 在两个像平面上的像。空间点P 与像点111222(,),(,)P x y P x y 对应关系是一个三维到二维平面的变换。又1,,P O P 三个点共线得关系:

1x =

R Z X

(4.1)

1y =

R Z

Y

(4.2)

由小孔成像和三角关系得到: 2x = -X R Z R - (4.3)

2y =-

YR Z R - (4.4)

由(4.1),(4.2),(4.3),(4.4)得:

X =Z R 1x (4.5) Y

=

Z R

1y (4.6) Z

=21

rR R x x -- (4.7)

由像平面可以得到1x ,2x ,1y 的具体值,又由模型1得到Z 的值,即 2x , 1x ,

,R Z

已知,

由式(4.7)得:

r

=

21()()

R Z x x R

-- (4.8)

即可计算出r 的值。

备注:

五.模型的优缺点

优点:本模型通过找到公切线交点不会由于角度问题而在图像中丢失的特性巧妙的解决了图像变形问题;利用MATLAB 处理了大量的公式计算,以及繁琐的坐标运算;第二问中采取向量的方法避免了求坐标时可能产生无解的错误。

缺点:本模型假设中把图像中不规则图形近似为椭圆会使数据产生一定误差,在此问题上如能得到解决数据将会进一步精确。具体做法可以采用某种图像处理工具直接找到不规则圆滑图形的切线。

摘要

本文对相机定位的系统标定这一步骤进行了分析,利用空间坐标变换、向量计算、曲线拟合和误差分析的数学方法处理问题。

问题一:为了解决物平面与像平面可能存在夹角这个问题,建立三维的空间坐标系。在物平面中,首先选出三个圆,作出每两个圆的公切线,组成三角形。使三个圆切于三角形内部。三角形的三个顶点就是物平面中三个定点。在像平面中,找到与之对应的圆的像,同样方法得到对应的三个定点的像。

通过相机成像的原理找到定点与像之间的关系,再通过物平面可以确定的距离关系建立方程组,这个方程组可以解决物与像之间的关系系数i t 。然后利用这些系数再加上空间距离关系,计算出物平面上任意一点在像平面上的空间坐标。

最后利用坐标转换,得到该点在像平面上对应像的二维坐标。

问题二:给出靶标和其像,利用问题一建立的模型,结合空间向量的知识得到解决的方案,来确定给出的五个圆的圆心在其对应的像平面的像坐标。

问题三:由于图像识别精度,实际得到的坐标是有误差的,我们可以得到靶标上点的像的另外一组坐标值,再按问题二的方法就可得到靶标上圆的圆心的像的另外一组像坐标,与原来的圆心形成的像坐标进行相对误差分析,从而检验问题一中建立的模型的准确性。

问题四:其模型可看成是由两个单个照相机成像组合而成,根据成像原理进行分析,最后可得到两个相机的相对位置r的值。

关键词:坐标变换相对位置双目定位曲线拟合

参考文献:

[1] 贾云得,机器视觉[M].北京:北京科学出版社,2000:1-85.

[2] 郑阿奇,MATLAB实用教程.北京:电子工业出版社,2007.8.

附录:

附录1( MATLAB程序):

>> A1=[-226.11,238.802,1577];

>> B1=[223.1317,201.5533,1577];

>> C1=[-277.2719,-202.0605,1577];

>> t=[0.6854,0.3146,0];

>> h1=[-1.1843, -1.1785,-0.9919];

>> h2=[-1.0348,- 1.1623, -1.1794];

>> a=[-1.1843, -1.0348];

>> b=[-1.1785, - 1.1623];

>> c=[-0.9919, -1.1794];

>> A=a'*A1;

>> B=b'*B1;

>> C=c'*C1;

>> H1=[A(1,:);B(1,:);C(1,:)];

>> H2=[A(2,:);B(2,:);C(2,:)];

>> a1=t*H1;

>> a2=t*H2;

>> g=[-84.9284,228.2597,1577];

>> o1=a1./g;

o1 =

-1.1870 -1.1766 -1.1825

>> o2=a2./g

o2 =

-0.9276 -1.0649 -1.0749

%有两组

t,2t,3t的解可能符合要求,通过这两组的值来找到靶标上的点和其对

1

应的像点的坐标,用坐标对应相比来确定是否与原点共线。(-1.1870,-1.1766,-1.1825)三个比例几乎相等,即选择(

t,2t,3t)=(-1.1843, -1.1785,-0.9919)

1

附录2( MATLAB程序):

>> a=[0.0851 0.2979 0.7945 0.7945 0.0851

0.0851 0.0851 0.0851 0.7945 0.7945

0.8298 0.6170 0.1204 -0.5890 0.1204];

>> M=[267.8 ,-282.8,-1867.6];

>> N=[-263.0,-237.5,-1858.5];

>> Q=[275.0,200.4,-1564.2];

>> b=[N;Q;M];

>> x=a'*b;

>> t=x';

>> t1=t(3,:);

>> t2=1577./t1;

>> t3=[t2;t2;t2];

>> L=t.*t3

L =

1.0e+003 *

-0.1912 -0.0946 0.1318 0.1443 -0.2215

0.2037 0.1957 0.1768 -0.1335 -0.1018

1.5770 1.5770 1.5770 1.5770 1.5770

%通过靶标上圆的圆心A,B,C,D,E求其对应的像的坐标'A,'B,'C,'

D,'E。

全球卫星导航定位技术的原理及应用论文概要.doc

浅析全球卫星导航定位技术原理及应用 一、前言 导航定位的需求,可以说不是历来就有的,在人类早期物质生产活动中以牧猎为主,日出而作,日落而息。当时人们离不开森林和水草,或是随着水草的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年前苏联发射了人类第一颗人造地球卫星,人类跟踪无线电信号中发现了卫星无线电信号的多普勒频移现象,这预示着一种全新的天空定位技术的可行性,由此,人类进入了卫星定位和导航的时代。 二、简介 1:全球卫星导航定位系统(global navigation and positioning satellite system采用极轨道星座和无源定位方式为美国提供全球覆盖的导航及定位系统。简称GPS。其轨道高度约为2×104 km,在6条轨道上运行有24颗卫星,每12 h绕地球一周,能保证地球上任何地点的用户都能至少同时看到4颗卫星。它属于非静止卫星定位系统。移动用户利用导航定位接收机来接收4颗(或4颗以上卫星的导航定位信号,并测量不同信号的到达时间,求出移动用户的三维空间坐标,自动给出经度和纬度显示,从而实现用户的自主定位。也可通过无线传输手段将用户定位信息传送到调度中心,实现对移动用户的调度控制。 GPS向用户广播的导航信号为双频,分别为1 575.42MHz 和1 226.60MHz。采用多种直接序列扩频码的码分多址和伪码测距技术。直接序列扩频码主要有P码

数码相机定位方法探究(史奎举)

数码相机定位方法探究 曲建跃 吴修振 沈宁 指导教员:司守奎 孙玺菁 (海军航空工程学院,烟台,264001) 摘要:数码相机定位在交通监管等方面有广泛的应用,例如可以用数码相机摄制物体的相片确定物体表面某些特征点的位置。双目定位是最常用的定位方法,即对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。双目定位的关键是系统标定,即精确地确定两部相机的相对位置。要确定两部相机的相对位置,首先应确定一个相机的像坐标系和靶标坐标系之间的转换关系,确定其内外部参数,即对一个相机进行标定。在前三问中,本文从空间平面的几何关系入手,先对靶平面坐标进行旋转,平移和投影,然后借助于相机的小孔成像原理,得到了物与像的二维坐标关系模型,再通过抓取特征点对的坐标,用最小二乘法拟合,求得物 与像二维坐标关系:????????+??????????? ??=??????7349.296064.5907971.00231.00907.07709 .0i i i i Y X y x ,进而求得靶标上五个圆的圆心的像的物理坐标为)9751.495346.50(, ?,)2821.494094.27(,?,)6651.475536.26(,,)0449.324853.17(??,,)7349.296064.59(??, ,其对应的像素坐标为)9724.3200944.195(,,)3925.4087137.197(, ,)3726.6128259.203(,,)0880.5781279.505(,(此处采用矩阵坐标表示,原点选取图像左上角的顶点)。然后通过具体点坐标对所建立的模型进行了检验,用模型求得的像坐标与实际像坐标的距离的均值作为精确度,其距离的均方差作为稳定性,得到模型的精确度为6659.1=?,稳定性5804.0=P 。第四问中,通过求得的相机的内外部参数,得到像坐标系与靶标坐标系之间的转换关系,然后通过求解方程组,得到两个相机坐标系间的坐标转换矩阵H ,从而完成了系统标定。本文特色是使用的方法简单,快捷,可操作性强,并且具有很高的精度和稳定性。 关键字:双目相机标定,几何坐标变换,小孔成像,坐标抓捕,最小二乘拟合

数码单反相机基本知识

数码单反相机基本知识 1DSLR详解 1.组装完整的DSLR摄影系统 DSLR (Didital Single Lens Reflex)数码单反相机的组装操作包括相机背带、 相机电池、安装及拆卸镜头、插入及取出内存卡、拍摄姿势。 掌握手持相机背带绕法;相机电池电量耗尽时不要强行开机继续使用;安装镜头时要对准卡口;按正确方向插入内存卡槽;正确的拍摄姿势有助于拍摄稳定性,相机与两脚呈三角形的位置关系;并且身体的重心在两脚之间。 2.DSLR构造原理 相机成像原理为小孔成像原理及透镜原理,镜头用来汇聚光线避免形成光斑,光圈则相当于调整小孔的大小。 摄影时,DSLR的工作过程就是小孔成像原理加上镜头透镜组、光圈、快门、相机内部反光镜、五棱镜、感光元件、数字处理电路和内存卡等组合来完成的。具体流程为:拍摄对象发出的光线经过镜头透镜组进入相机,然后经过由多片金属片组成的光圈,进入到相机内部的反光板,经过五棱镜调整,将原本方向相反的图像变为与拍摄对象完全一样的成像效果,在通过相机快门调整光线的曝光时间,最后成像的光源进入到感光元件感光,产生的电子信号经过数字信号处理电路后最终形成我们看到的数码照片,并存储与存储卡上。 3.相机画幅 胶片相机时代,135画幅实际上指35mm画幅,1指一次性,底片尺寸为36(35)×24mm。而数码单反时代,感光元件CCD/CMOS尺寸大约等于135画 幅的DSLR,被称为全画幅相机。 APS-H画幅是满画幅,尺寸为30.3mm×16.6mm,长宽比为16:9;APS-C 画幅是在满画幅的左右两头各挡去一端,尺寸为24.9mm×16.6mm,长宽比为3:2;APS-P画幅是在满画幅的上下两头各挡去一条,尺寸为30.3mm×10.1mm,

GPS定位原理论文20122334940

摘要 GPS是随着现代科学技术的迅速发展而建立起来的新一代精密卫星导航定位系统,具有定位精度高、观测时间短、观测站间无需通视、能提供全球统一的地心坐标等特点。本文概述了GPS定位系统的发展,介绍了GPS定位系统的组成、工作原理及GPS在汽车导航和交通运输、军事和医学上的应用等 关键词:GPS定位系统 GPS接收机 GPS定位原理

1 GPS概述 1.1 GPS概念 GPS是英文GlobalPositioningSystem(全球定位系统)的简称, GPS是随着现代航天及无线电通讯科学技术的发展建立起来的一个高精度、全天候和全球性的无线电导航定位、定时的多功能系统。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。通过硬件和软件做成GPS定位终端用于车辆定位的时候,称为车载GPS。 1.2 GPS系统的组成 GPS系统包括以下三大部分:(1)GPS卫星(空间部分);(2)地面支撑系统(地面监控部分);(3)GPS接收机(用户部分)。 GPS系统利用无线电传输特性来定位。和过去地面无线导航系统所不同的是,它由卫星来发射定时信号、卫星位置和健康状况信息,故具有发射信号能覆盖全球和定位精度高的优点。系统中所有卫星构成GPS系统的空间部分。卫星由地面站(地面监控部分)监测和控制,它监测卫星健康状况和空中定位精度。定时向卫星发送控制指令、轨道参数和时间改正数据。 用户装有GPS接收机,用来接收卫星发来的信号。GPS接收机中装有专用芯片,用来根据卫星信号计算出定位数据。用户并不需要给卫星发射任何信号,卫星也不必理会用户的存在,故系统中用户数量没有限制。具有GPS接收机的用户就构成系统的用户部分。

数学建模:数码相机定位

高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位 摘要 柯达于1975年开发世界第一部数码相机。由此,数码照相机便家喻户晓起来。数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。 标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。 关键词:针孔成像,坐标变换,图像处理,相机镜头畸变,双目定位 。

导航定位技术与光学的联系

南京理工大学 课程论文 课程名称:导航定位技术概论 论文题目:导航定位技术与光学的联系姓名:王彬 学号: 1111100228 成绩:

导航定位技术与光学的联系 姓名:王彬学号:1111100228 专业:光信息科学与技术 引言:本文主旨是探讨导航定位系统与光信息科学与技术专业之后间的联系。对现代科技中的光学和导航技术作了详细的介绍。讨论现代光学技术与导航系统的共通之处。举例介绍了光在导航定位系统中应用的实例,如激光陀螺,光纤陀螺和激光跟踪导航。并对未来可能的发展做了展望。 光学作为一门诞生340余年的古老科学 经历了漫长的发展过程 从经典光学到近代光学 再到现代光学 它的发展也表征着人类社会的文明进程。展望21世纪 随着以光信息为代表的信息化社会的发展 人类将迈进光子时代 光子学的发展和光子技术的广泛应用将对人类生活产生巨大影响。光学是研究光的产生和传播、光的本性、光与物质相互作用的科学。光学作为一门诞生340 余年的古老科学, 经历了漫长的发展过程, 它的发展也表征着人类社会的文明进程。20 世纪以前的光学, 以经典光学为标志, 为光学的发展奠定了良好的基础; 20 世纪的光学, 以近代光学为标志取得了重要进展, 推动了激光、全息、光纤、光记录、光存储、光显示等技术的出现, 走过辉煌的百年历程; 展望21 世纪的现代光学, 将迈进光子时代, 光子学已 不是物理学的学术上的突破, 它的理论及其光子技术正在或已经成为现代应用技术的主角, 光子学的发展和光子技术的广泛应用将对人类生活产生巨大影响。 定位与导航技术是涉及自动控制,计算机,微电子学,光学,力学,以及数学等多学科的高技术,是实现飞行器特别是航天飞行任务的关键技术,也是武器精确制导的核心技术。导航定位技术被应用于人类生活中的各处各地,时时刻刻。他为我们的的生活提供了巨大的便利,深深地融入我们的生活。他包涵天文导航,地文导航,惯性导航,无线电导航,卫星导航和其他等等。目前应用最广,技术最完善最先进的是卫星导航。有美国的GPS导航系统,俄罗斯的GLONASS系统,欧洲的GALILEO系统和中国的北斗导航系统。其中最具代表性的是美国的GPS。 最初的GPS计划在联合计划局的领导下诞生了,该方案将24颗卫星放置在互成120度的三个轨道上。每个轨道上有8颗卫星,地球上任何一点均能观测到6至9颗卫星。这样 粗码精度可达100m,精码精度为10m。由于预算压缩,GPS计划不得不减少卫星发射数量 改为将18颗卫星分布在

数码相机定位(优秀论文)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2008高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用):评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位 摘要 本文对双目定位的具体模型和方法进行了研究,分别给出了针孔成像模型、椭圆拟合模型等并对其进行研究。这种方法可以较好的解决由于像坐标存在误差,而引起靶标坐标能否精确计算的问题。我们用此模型,比较准确的还原出靶标上的点。给定靶标上的点,我们可以对应的求出像面上的点,即得到了一个像面上的点与靶标上的点的一一对应的较准确的关系。 我们首先要确定出像面上椭圆的中心坐标,因此我们采用了几何方法,建立合理的坐标,根据椭圆最高点和最低点的连线、最左与最右点的连线必交与椭圆中心的原理,创造性的利用了Photoshop软件直接将所给的图形以像素为单位进行坐标化处理,再读出各个点的坐标,这样椭圆中心即可确定下来,靶标上圆的圆心在该相机像平面的像坐标也就确定了。 由于本文采用的是一个优化模型,求出的是其近似解,与实际的原坐标位置有一定的偏移,所以我们需检验其精度,采用两种方法检验:1、通过靶标面和像平面中存在的几何关系建立一定的方程,从而去验证上述模型的精度;2、如果直接用图像中图形边界做切线,精度将会变得非常低,会造成很大的误差,所以在本模型中,先要利用所给图像中图形的边界(在1中提取)拟合出椭圆的方程。通过MATLAB、最小二乘法等计算出像平面椭圆圆心的坐标,结果与实际进行比较,进而检验模型的精度和稳定性。 对于由两部相机摄的像确定两部相机的相对位置及方向,我们通过建立方程并求解,从而得到两部相机之间的位置关系。该方法可以较好的处理误差所引起的方程不相容问题。 关键词:针孔成像模型几何模型椭圆拟合Photoshop

数码相机培训基本知识及常见问题

数码相机培训基本知识及常见问题 本文由昆明二手电脑网https://www.360docs.net/doc/c612783909.html,编辑 1、数码相机,英文全称:Digital Still Camera (DSC),简称:Digital Camera (DC),是数码照相机的简称,又名:数字式相机。数码相机,是一种利用电子传感器把光学影像转换成电子数据的照相机。按用途分为:单反相机,卡片相机,长焦相机和家用相机等。 优点: 1、拍照之后可以立即看到图片,从而提供了对不满意的作品立刻重拍的可能性,减少了遗憾的发生。 2、只需为那些想冲洗的照片付费,其它不需要的照片可以删除。 3、色彩还原和色彩范围不再依赖胶卷的质量。 4、感光度也不再因胶卷而固定,光电转换芯片能提供多种感光度选择。 缺点: 1、由于通过成像元件和影像处理芯片的转换,成像质量相比光学相机缺乏层次感。 2、由于各个厂家的影像处理芯片技术的不同,成像照片表现的颜色与实际物体有不同的区别。 3、由于中国缺乏核心技术,后期使用维修成本较高。 3、卡片相机:卡片相机在业界内没有明确的概念,仅指那些小巧的外形、相对较轻的机身以及超薄时尚的设计是衡量此类数码相机的主要标准。主要特点:卡片数码相机可以不算累赘地被随身携带 2、单反相机:单反数码相机就是指单镜头反光数码相机,即digital数码、single单独、lens镜头、reflex反光的英文缩写dslr。此类相机一般体积较大,比较重。 单反就是指单镜头反光,即SLR(Single Lens Reflex),这是当今最流行的取景系统,大多数35mm照相机都采用这种取景器。在这种系统中,反光镜和棱镜的独到设计使得摄影者可以从取景器中直接观察到通过镜头的影像。因此,可以准确地看见胶片即将“看见”的相同影像。 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过lcd屏或者电子取景器(evf)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或者CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 另外,单反数码相机还有一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 还有就是现在单反数码相机都定位于数码相机中的高端产品,因此在关系数码相机摄影质量的感光元件(CCD或者CMOS)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于普通数码相机。 可以很简单的说,单反数码相机并不是适合任何用户,首先具有必要的专业知识是一方面,其次要用好单反数码相机必须搭配不同型号的镜头,这很可能使镜头的花费高于购买数码相

卫星导航技术论文

论卫星导航定位技术的原理及应用 导航技术是涉及自动控制、计算机、微电子学、光学、力学以及数学等多学科的高技术,是实现飞行器特别是航天器飞行任务的关键技术,也是武器精确制导的核心技术,这对于提高航空器、航天器以及武器装备的机动性、反应速度和远程精确打击能力具有重要意义,在海、陆、空、天等现代高技术武器及武器平台中得到广泛的应用。按照定位导航的方式可分成:卫星定位导航、自主式导航、组合导航以及无源导航。而此文着重介绍的是卫星定位导航这一技术。 在人类早期物质生产活动中,人类的活动范围内总存在森林、草原,人们总是随着自然环境的兴衰而漂泊不定,根本不需要什么明确的定位。但是,随设社会的发展,到了农业时代,在人们开发农田,兴修水利等相应活动中就逐渐产生了测绘定位的需求,可以说在这时,导航定位就在慢慢酝酿之中。等到了工业时代,人类的活动遍及全球,而一些工程比如航海、航空、洲际交通工程,通信工程,矿产资源勘探工程,地球生态及环境变迁的研究,就需要精确地定位。这些需求促使导航定位技术的发展,并把这项技术带到一个前所未有的发展时期,它的手段也从光学机械过渡到光电子精密机械仪器的时代。社会是不断发展的,科技是不断进步的,20世纪末,出现了电子计算器技术、半导体技术、激光技术、航天科学技术,它们的出现,把人类带到了电子信息时代和航天探索时代。当1957年世界上第一颗人造地球卫星发射后,人类便发现卫星可以作为一个已知的空间信号源,为人类获取相关的信息资源,开展测距、定位、导航研究搭建了一个世界共享的技术平台。 卫星导航看似涉及了多方面学科的知识,实际原理并不算复杂。卫星导航按测量导航参数的几何定位原理分为测角、时间测距、多普勒测速和组合法等系统(测角法和组合法因精度较低等原因没有实际应用)。多普勒测速定位是指用户定位设备根据从导航卫星上接收到的信号频率与卫星上发送的信号频率之间的多普勒频移测得多普勒频移曲线,根据这个曲线和卫星轨道参数即可算出用户的位置。而时间测距导航定位的方法是用户接收设备精确测量由系统中不在同一平面的4颗卫星(为保证结果唯一,4颗卫星不能在同一平面)发来信号的传播时间,然后完成一组包括4个方程式的模型数学运算,就可算出用户位置的三维坐标以及用户钟与系统时间的误差。卫星导航系统的组成也不算复杂,只有导航卫星、地面台站和用户定位设备三个部分。导航卫星是卫星导航系统的空间部分,由多颗导航卫星构成空间导航网。地面台站则是用来跟踪、测量和预报卫星轨道并对卫星上设备工作进行控制管理,通常包括跟踪站、遥测站、计算中心、注入站及时间统一系统等部分。跟踪站用于跟踪和测量卫星的位置坐标。遥测站接收卫星发来的遥测数据,以供地面监视和分析卫星上设备的工作情况。计算中心根据这些信息计算卫星的轨道,预报下一段时间内的轨道参数,确定需要传输给卫星的导航信息,并由注入站向卫星发送。剩下的用户定位设备通常由接收机、定时器、数据预处理器、计算机和显示器等组成。它接收卫星发来的微弱信号,从中解调并译出卫星轨道参数和定时信息等,同时测出导航参数(距离、距离差和距离变化率等),再由计算机算出用户的位置坐标(二维坐标或三维坐标)和速度矢量分量。用户通过这个设备即可得到卫星导航的帮助。 说到卫星导航,就不得不提到美国的全球定位系统(GPS Global Positioning System)。GPS系统的前身为美军研制的一种子午仪卫星定位系统(Transit),1958年研制,64年正式投入使用。尽管TRANSIT在导航技术的发展中具有划时代的意义,但它存在观测时间长、定位速度慢(2个小时才有一次卫星通过,一个点的定位需要观测2天),不能满足连续实时三维导航的要求,尤其不能满足飞机、导弹等高速动态目标的精密导航要求。于是在六十

推荐-数学建模优秀数码相机定位的数学模型 精品 精品

数码相机定位的数学模型 摘要 随着数码相机定位在各领域的广泛应用,对相关问题《机器视觉》的研究也成为热点。因此建立一个精度较高,稳定性好的数码相机定位的数学模型,具有很好的现实意义。 问题1要求给出确定靶标上圆的圆心在给定相机像平面的像坐标的算法,问题2利用问题1的模型对给定数据求解。为此,首先建立了四个空间直角坐标系,在MATLAB中把图3的数字信息提取出来,主要是五个椭圆的边缘点的信息;同时为了便于运算,通过坐标变换将计算机图像坐标变换为图像坐标;并用提取的图像边界坐标拟合出5个椭圆的方程,利用“曲线切线的投影仍与曲线的投影相切,而且切点的投影仍为投影的切点”这一引理,提取出靶标上圆及其像上的公切点的坐标作为特征点,利用RAC两步法标定过程和最小二乘法建立了计算世界坐标系到相机坐标系的旋转变换矩阵R和平移向量T及径向畸变系数k的算法。利用16个公切点作为特征点,通过Matalb编程求得靶标上圆的圆心在文中给定相机像平面的五个坐标(单位:mm):A(-49.7132, 51.1289 417.1958),B(-23.3475, 49.1539 417.1958),C(33.8194, 44.8716, 417.1958),D(18.8173,-31.5798, 417.1958),E(-59.7830, -31.1754, 417.1958)。 问题3的解决分为两步:一是通过对模型计算出的焦距及畸变系数及上面五个坐标值的分析得出模型的精度较高的结论;二是采用改变特征点数的方法或利用“A,B,C三个标靶的中心的像应在一条直线上”验证模型的稳定性。问题4采用二目立体视觉模型确定了给出两部固定相机相对位置的数学模型和方法。 本文建立的算法可操作性强,精度较高,稳定性好,对解决类似问题的计算有一定的推广价值。 关键词:拟合椭圆特征点提取 RAC两步法坐标旋转矩阵公切点

数码单反相机基础知识

数码单反相机入门基础知识:基本概念篇 最近这一两年,“数码单反相机”这几个字开始急速升温。但是对于很多人来说,数码单反相机是一种全新的事物。虽然它也属于数码相机的范畴,但在使用方法和观念上,却与那些“对准即拍”的卡片相机有着很大的区别。 什么是数码单反相机?要理解这个概念,先要解释什么是单反相机。简而言之,单反相机指的是取景和成像都使用一个镜头。取景时,光线通过反光板、五棱镜(或者五面镜)反射到光学取景器。这时,从取景器中就能看到被拍摄的视图。按下快门后,反光板抬起,快门打开,光线便直接入射到胶卷上,从而完成一次曝光。由于取景和成像都用一个镜头,单反相机可以实现无视差,即所谓的“所见即所得”,这是单反相机相对于旁轴、双反的最大优势。而数码单反相机,自然就是采用数字画,也称为DSLR(Digital ;Single ;Lens ;Reflex)。 其实,对于一般用户而言,你根本不用对数码单反的定义有多么深刻的认识,我想,你更想了解的的是,相对于我们平时使用的卡片相机,数码单反相机具备哪些优势,并且这些优势是否足以让我们改换门庭? 数码单反有什么优势呢?首先是可以更换镜头。有擅长拍摄风光的广角镜头,也有擅长拍摄人像的标准镜头,如果你喜欢拍摄体育比赛或者演出,长焦镜头可以助你一臂之力。如果你喜欢拍摄花卉、昆虫等特写题材的作品,你还可以选择微距镜头。如此一来,不仅大大扩展了数码单反的使用范围,并且各种镜头都能在其擅长的领域内保证最佳的光学素质,这是不能更换镜头的普通消费类数码相机无法比拟的。其次,数码单反相机都采用大尺寸的感光元件(CCD或者CMOS),单个像素的面积是普通卡片DC的数倍之多,拍摄的图像更细腻平滑,噪点更少,动态范围更宽广。尤其是在弱光下和高感光度拍摄时,两者犹如天壤之别。其三,数码单反相机的对焦速度更快,快门时滞更小。而不会像消费类卡片相机那样,按下快门后,拍摄到的图像已经不是自己所希望拍到的了。其四,数码单反相机具备更强的景深控制能力,很容易拍摄出背景虚化的照片,而这是很多人所向往的。第五,数码单反相机具备更强大的后期处理能力。所有的数码单反都支持RAW格式(原始数据格式),相比卡片相机上使用的JPG格式,后期处理范围更加宽广,曝光、白平衡、饱和度、对比度、色调都能进行后期的精细调节,以最大限度地保证最后的成像质量。 所以你现在应该明白了,为什么演出、体育比赛等场合常常能看到数码单反相机,为什么专业摄影记者要采用数码单反相机? 第一,在离被摄物体非常远的情况下,一般的数码相机无法企及。但是数码单反相机可以使用长焦镜头。 第二,在光线微弱的情况下,数码单反相机可以使用高感光度来保证较高的快门速度,同时保证成像质量,而普通数码相机则无能为力。 第三,在体育比赛中,只有极速的对焦才能抓拍到你想要的瞬间,这一点也是普通消费类数码相机的死穴。 第四,为了突出拍摄主题,需要将背景“干掉”,普通数码相机又只能望洋兴叹了。

数码相机原理和基础知识

数码相机 程忆萍 教学目的:掌握数码相机的工作原理、结构及各部件作用 教学难点:工作原理、结构组成 教学工具:数码相机一架 教学过程: 引言: 数码相机也称数字相机,风靡了整个世界。数码相机是数字时代的一个重要标志,它集光学技术、传感技术、微电子技术以及计算机技术和机械技术的优势于一体,采用光电转换器,将光信息转换成电信息,再加以特定处理并进行存储,是一个典型的光机电一体化产品,大有取代传统相机的趋势。 一、 数码相机的组成 1、镜头 数码相机镜头作用与普通相机镜头作用相同。取景。 分类:变焦镜头、定焦镜头。 2、图象传感器 (1)、作用: 将光信号转变为电信号。 图象传感器是数码相机的核心部件,其质量决定了数码相机的成像质量。图象传感器的体积通常很小,但却包含了几十万个乃至上钱万个具有感光特性的二极管――光电二极管。每个光电二极管即为一个像素。当有光线照射时,光电二极管就会产生电荷累积,光线越多,电荷累积的就越多,然后这些累积的电荷就会被转换成相应的像素数据。 (2)、种类 电荷耦合器件(CCD):电路复杂,读取信息需在同步信号控制下一位一位地实地转移后读取,信息读取复杂,速度慢;要三组电源供电,耗电量大,但技术成熟,成像质量好。 A/D转换器 内存 MPU LCD 存储卡 接口 镜头 图象传感器 模数转换微处理器 移动存储 液晶显示屏 图1 数码相机结构示意图

互补金属氧化物半导体(CMOS):电路简单,信息直接读取,速度较快,只需使用一个电源,耗电两小,为CCD的1/8到1/10;但个光电传感元件、电路之间距离近,相的光、电、磁干扰较严重,对图象质量影响很大。 3、A/D转换器(模拟数字转换器) 作用:将模拟信号转换成数字信号的部件。 指标:转换速度、量化精度 量化精度对应于A/D转换器将每一个像素的亮度或色彩值量化为若干个等级,这个等级就是数码相机的色彩深度。 对于具有数字化接口的图象传感器(如CMOS),则不需A/D转换器。 4、MPU(微处理器) 作用:通过对图象传感器的感光强弱程度进行分析,调节光圈和快门。 系统结构: 一般数码相机 采用的 微处理器模块的结构如图2所示,包括图象传感器数据处理DSP 、 SRAM控制器,显示控制器、JPEG编码器、UBS等接口、运算处理单音频接口(非通用模块)和图象传感器时钟生成器等功能模块。 5、存储设备 作用:用于保存数字图象数据。 种类:内置存储器:为芯片,用于临时存储图象。 移动存储器:SD卡、MD卡、软盘、CD、记忆棒等。 6、LCD(液晶显示屏) 作用:电子取景器、图片显示和功能菜单显示。 分类:DSTN LCD(双扫扭曲向列液晶显示器) TFT LCD(薄膜晶体管液晶显示器),数码相机多采用. 7、输入输出接口 作用:数据交互。 常用接口:图象数据存储扩展设备接口、计算机通信接口、连接电视机的视频接口。

基于激光雷达的移动机器人定位与导航技术 大学论文

目录 第一章绪论 (3) 1.1引言 (3) 1.2移动机器人的定义与主要研究内容 (3) 1.2.1移动机器人的定义 (3) 1.2.2移动机器人的主要研究内容 (4) 1.3本文研究课题与内容安排 (5) 1.3.1研究课题 (5) 1.3.2内容安排 (6) 第二章移动机器人导航技术概述 (8) 2.1移动机器人工作环境表示方法 (8) 2.1.1几何地图 (8) 2.1.2拓扑地图 (10) 2.2移动机器人定位技术 (11) 2.2.1相对定位技术 (11) 2.2.2绝对定位技术 (12) 2.3移动机器人路径规划方法 (13) 2.3.1Dijkstra和A*图搜索算法 (13) 2.3.2人工势场法 (13) 2.3.3调和函数势场法 (14) 2.3.4回归神经网络法(RNN) (15) 第三章基于线段关系的扫描匹配定位 (17) 3.1环境描述 (17) 3.2定位传感器 (19) 3.3直线段提取................................................................................. . (20) 3.3.1LRF数据点分段 (20) 3.3.2直线拟合 (21) 3.3.3直线斜率计算 (21) 3.4线段关系(LSR)匹配 (23) 3.4.1判据选取 (23) 3.4.2递进式对应性计算 (25) 3.4.3距离关系比较的分离与合并 (26) 3.4.4最佳匹配搜索 (28) 3.4.5位姿计算 (29) 3.5实验及结果分析 (29) 第四章基于已知地图的路径规划 (32) 4.1基于A*算法的拓扑地图规划 (33) 4.1.1拓扑地图的表示 (33) 4.1.2A*算法 (34) 4.2基于回归神经网络(RNN)的栅格规划算法 (36) 4.2.1栅格环境的RNN表示 (36)

数码相机原理和基础知识

数码相机 程忆萍 教学目的:掌握数码相机的工作原理、结构及各部件作用 教学难点:工作原理、结构组成 教学工具:数码相机一架 教学过程: 引言: 数码相机也称数字相机,风靡了整个世界。数码相机是数字时代的一个重要标志, 它集光学技术、传感技术、微电子技术以及计算机技术和机械技术的优势于一体,采用 光电转换器,将光信息转换成电信息,再加以特立处理并进行存储,是一个典型的光机 电一体化产品,大有取代传统相机的趋势。 一、 数码相机的组成 图1 妁码相机结构示裁图 1、 镜头 数码相机镜头作用与普通相机镜头作用相同。取景。 分类:变焦镜头、泄焦镜头。 2、 图象传感器 (1 )、作用: 将光信号转变为电信号。 图象传感器是数码相机的核心部件,其质量决左了数码相机的成像质量。图象传感 器的体积通常很小,但却包含了几十万个乃至上钱万个具有感光特性的二极管一一光电 二极管。每个光电二极管即为一个像素。当有光线照射时,光电二极管就会产生电荷累 积,光线越多,电荷累积的就越多,然后这些累枳的电荷就会被转换成相应的像素数拯。 (2 )、种类 电荷耦合器件(CCD ):电路复杂,读取信息需在同步信号控制下一位一位地实 地转移后读取,信息读取复杂,速度慢:要三组电源供电,耗电量大,但技术成熟,成 像质量好。 内存 液品显示屏 图象传廉器 移动存储 换 转 数 模

互补金属氧化物半导体(CMOS):电路简单,信息直接读取,速度较快,只需使用一个电源,耗电两小,为C C D的1/8到1/10;但个光电传感元件、电路之间距离近,相的光、电、磁干扰较严重,对图象质量影响很大。 3、A / D转换器(模拟数字转换器) 作用:将模拟信号转换成数字信号的部件。 指标:转换速度、量化精度 量化精度对应于A / D转换器将每一个像素的亮度或色彩值量化为若干个等级,这个等级就是数码相机的色彩深度。 对于具有数字化接口的图象传感器(如C M O S ),则不需A / D转换器。 4、M P U (微处理器) 作用:通过对图象传感器的感光强弱程度进行分析,调肖光圈和快门。 系统结构: DRAM USB 一般数码相机采用的微处理器模块的结构如图2所示,包括图象传感器数据处理 DSP、 S RAM控制器,显示控制器、J PEG编码器、U B S等接口、运算处理单音频接口(非通用模块)和图象传感器时钟生成器等功能模块。 5、存储设备 作用:用于保存数字图象数据。 种类:内置存储器:为芯片,用于临时存储图象。 移动存储器:SD卡、N4D卡、软盘、CD、记忆棒等。 6 x L C D (液晶显示屏) 作用:电子取景器、图片显示和功能菜单显示。 分类:DSTN LCD(双扫扭曲向列液晶显示器) TFT LCD(薄膜晶体管液晶显示器),数码相机多采用. 7、输入输出接口 作用:数据交互。

卫星导航与定位技术学科发展研究论文

卫星导航与定位技术学科发展研究论文 一、引言 卫星导航与定位技术是利用各种用户终端接收由卫星导航定位系统播发的、并沿着视 线方向传送的信号,对目标进行导航、定位和授时。将卫星导航与定位技术与传统的导航 定位技术相比较可知,卫星导航与定位技术具有高时空分辨率、全天候、连续地提供导航、定位和定时的特点。经过几十年的发展,卫星导航与定位技术取得了巨大的进步,已经成 为当今世界高技术群中对现代社会最具影响力的技术之一,并且已然渗透到国民经济的各 个领域,应用于海上舰船、陆地车辆、航空与航天飞行器的导航,以及大地测量、石油勘探、精细农业、精密时间传递、地球与大气科学研究以及移动通信等多领域。未来卫星导 航与定位技术将进入以保障地球系统环境安全、发展战略性新兴空间信息产业、探索地球 系统的新阶段。 卫星导航与定位技术是事关国民经济社会发展、国家科技进步、国家安全等方面的综 合技术领域,是国家科技实力与竞争力的重要标志之一。世界主要军事大国以及经济体都 竞相发展独立自主的全球卫星导航系统Global Navigation Satellite System,GNSS,包括:美国的GPSGlobal Positioning System、俄罗斯的GLONASS Global Navigation Satellite System,欧盟的GALILEOGalileo Navigation Satellite System以及中国的北斗卫星导航系统BDSBeiDou NavigationSatellite System。 当前,卫星导航与定位技术正在从单一的GPS时代转变为多星座并存兼容的GNSS新 时代,卫星导航体系全球化和增强多模化;从以卫星导航为应用主体转变为PNT定位、导航、授时移动通信和Internet等信息载体融合的新阶段。BDS的逐步建成为我国卫星导航与定位技术的进一步发展提供了良好契机。我国应该抓住这一机遇,大力推进卫星导航与 定位学科的进一步发展,为培养大量高精尖专业技术人才,争夺卫星导航与定位的国际市 场奠定良好基础。本文旨在调研国内外卫星导航与定位技术学科的发展现状,对国内外最 具代表性的高校和研究机构进行了对比分析,为我国卫星导航与定位技术学科的发展提出 若干建议。 二、卫星导航与定位技术学科发展 目前,国内研究卫星导航与定位技术的高校和机构主要包括:武汉大学、同济大学、 中南大学、河海大学、山东科技大学、长安大学、上海天文台、中国测绘科学研究院和中 国科学院测量与地球物理研究所等。本文以武汉大学作为国内卫星导航与定位学科的研究 代表。武汉大学卫星导航定位技术研究中心始建于1998年,以建设世界一流学科为目标,经过十余年的努力,在卫星导航及相关领域开展了广泛深入的研究,为我国自主卫星导航 系统的新技术、新方法和新应用的发展做出了巨大贡献。

基于两步法的数码相机定位

基于两步法的数码相机定位

基于两步法的数码相机定位 摘要 数码相机定位在机器自动装配系统、工业视觉检测与识别、三维重建、机器人视觉导航、运动分析、海上目标跟踪、交通监管(电子警察)等诸多领域中得到了运用。 本文给出了确定靶标上圆的圆心在该相机像平面的像坐标的数学模型及确定两部固定相机相对位置的数学模型,并设计出了相应的求解算法。 首先在仅考虑单相机的情况下,在分析相机成像原理和四个坐标系之间的相互变换关系的基础上,考虑了相机径向畸变和切向畸变即非线性畸变因素,选择了一种简化模型,克服了相机内外参数未知情况下求解像坐标的困难,最终建立了基于两步法的像坐标确定模型。该模型满足牛顿迭代法的收敛条件,保证了模型解的稳定性。 其次利用该模型,针对问题1和问题2,借助于Matlab工具,计算了靶标上给定5个圆的圆心像坐标。 然后选择Canny算子对给定靶标的像的几何中心进行了精确检测,并对两种结果进行了对比,分析了误差,精度及稳定性。比较结果如表1所示: 表1 两种算法所得像坐标结果对比(单位: 像素) U坐标的平均误差:1.6551,V坐标的平均误差:1.6754 平均误差:1.6653 最大误差点为C点,最小误差点为A点。 根据表1的数据证明了两步法确定像坐标的模型具有一定的可靠性和实用性。 然后根据给定靶标模型,并在上述模型的基础之上建立了确定两部相机相对位置的模型,同时给出基于平行线“消隐点”理论的切实可行的解法。 本文最后讨论了文中所建模型和所给算法的优缺点及改进方向。 关键词:两步法;像坐标;内外参数;边缘检测;相对位置;平行线消隐点

一、问题的提出 1.1 背景说明 数码相机定位在交通监管(电子警察)等方面有广泛的应用。由于目前数字图像的处理速度越来越快,且可达0.02个像素精度[1],因此考虑畸变系统误差的高精度标定具有重要的意义。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。 本文是通过确定数码照相机的位置,属性参数并建立成像模型,从而确定空间坐标系中物点同它在图像平面上像点之间的对应关系,并通过对所得到的结果进行相关的处理,最终得到其在像平面理想的像坐标。 1.2 重述 有人设计靶标如下A,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以C边上距离A点30mm处的B为圆心,12mm为半径作圆,如下图1所示。 图1靶标示意图 由于图形的图像与拍摄点的位置有关,所以一下得到用一位置固定的数码相机摄得其像,如图2所示。

数码相机定位问题研究

数码相机定位问题研究 赵志刚 薛江堂 冷振鹏 摘要 基于双目CCD 立体测量系统标定技术被广泛用于交通监管中,该技术的核心是摄影测量。本文利用MATLAB 对圆的边界提取,再用最小二乘法拟合椭圆曲线,并借助摄影测量基本公式建立二维模型求得靶标圆心像坐标。并对该模型作t 检验,再利用针孔模型分别求得两部相机像平面对应于物平面的旋转向量12,R R 和平移向量12,t t ,进而确定两相机的相对位置。 首先,我们假设:已知四点的物平面坐标和像平面坐标,借助摄影测量基本公式建立二维模型求得物平面与像平面的对应关系,但有12,c c ...8c 八个未知数待定(将在第二问中给予求解)。 其次,我们根据A 、B 、C 、D 、E 五个圆形靶标的成像情况利用MATLAB 软件提取其边缘阈值。在此基础上利用最小二乘法拟合椭圆求得其中心坐标。在不考虑畸变影响的前提下,该中心坐标即为圆心的像坐标。任取A 、B 、C 、D 、E 中四点代入模型一中,即可求得物平面和像平面的对应关系。 再次,我们在第三问中分别以A 、B 、C 为研究对象求出其在模型一的条件下的圆心像坐标。利用t 检验,比较拟合椭圆中心坐标与模型一求得结果的差异,在置信度0.05a =情况下,这三组结果无显著差异,从而检验了模型的精度及稳定性。 最后利用线性相机模型(针孔模型)确定世界坐标系和计算机数字图像坐标的对应关系,从而分别求得两部摄像机的旋转矩阵12,R R 和平移向量12,t t ,从而我们可以求得两相机相机坐标系间的关系: 112R R R -= 1122t t R t -=- 问题二的求解结果如下表:

1.问题重述 (1)问题的背景 摄影技术自 20 世纪 40 年代开始应用于交通事故分析,已经得到广泛的应用,但仅用做简单定性分析,随着计算机视觉和图像处理技术的发展,摄影测量技术在交通事故现场测量中的应用研究已经成为热点,国内外许多学者已经做了大量研究,使定量分析成为可能。如在 80 年代,Kerkoff 对透视投影发展的历史、透视绘图原理和透视成像原理进行了详细阐述,根据透视原理研究了利用摄影图像确定拖痕长度等的方法,逐步形成了二维摄影测量方法,开发出 Pc-rect 等现场测量软件。在 1994 年,Nicholas 等提出了交通事故现场的反投影照片三维重建法。近年来,随着计算机视觉原理的突破和飞速发展,国内学者李江教授、许洪国教授等相继提出了利用立体视觉原理的多照片重建交通事故现场的方法,并初步开发了软件。为改变标定参考物的限制,进行照相机自标定研究,鲁光泉等提出了基于基础矩阵的交通事故现场三维重建方法。当前主要的交通事故现场重建方法,有二维方法、三维方法等。 (2)问题的提出 用数码相机摄制物体的相片确定物体表面某些特征点的位置,目前最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置是关键,这一过程称为系统标定。本问题的第四小问就是解决该问题。 系统标定最常用的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。所以我们实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,系统标定就可实现。题目中第一问和第二问就是解决该问题。该题目不但要求我们建立模型和算法,而且要求我们对所见的模型进行精度和稳定性分析。在前三个问题的基础上,第四问要求我们通过物平面与像平面的对应关系找到像平面相对物平面的旋转矩阵和平移矩阵,从而建立两部相机像平面的夹角和距离关系,以便确定两部相机的相对位置。 2.条件假设 (1)不考虑相机自身因素导致的误差 (2)对第二问中抽样选取部分边界点拟合的椭圆误差不予考虑 (3)两相机透镜光心处于同一水平高度 (4)两部相机的内部参数是相同 (5)本题中所给图像信息和数据真实准确 (6)不考虑人为因素造成的误差

相关文档
最新文档