基于人工神经网络的可取式桥塞胶筒密封性能预测

基于人工神经网络的可取式桥塞胶筒密封性能预测
基于人工神经网络的可取式桥塞胶筒密封性能预测

baker座封工具使用步骤

b a k e r座封工具使用步 骤 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

坐封工具安装流程手册 座封工具使用前须对产品进行检查、装配。检查项目包括: 1.检查产品的螺纹及配合面是否有碰伤、锈蚀情况; 2检查0形圈外观是否有凹陷、切口、断裂等。 在对产品进行检查、装配时需准备:管钳、平口起子、勾头扳手、专用扳手、什锦锉等工具。 一、坐封工具的装配步骤为: 1.将十字键套筒(连接体)放在台钳上。 2. 给挤压心轴的丝扣涂油,以其丝扣一端朝工具的上方插入十字键套筒(连接体)。 3.给活塞推杆涂油,插入挤压心轴,使其下端的槽与心轴和十字键套管(连接体)的槽对齐。 4.插入十字键。套上键板护圈,使其贴紧十字键套筒,上紧键板护圈上的顶丝。 5.给下堵头丝扣涂油,装O圈。 6.将下堵头套在活塞推杆上向下滑,上紧丝扣和止退顶丝。 7.给活塞涂油,装上三个 O圈;将活塞装在活塞推杆上端;把销杆从活塞的侧孔拧进,穿过活塞推杆孔并上紧销杆与活塞侧孔上的丝扣。

8.给二级缸内壁上涂少许机油,将它套在活塞外边向下滑,直到与下堵头的丝扣连接并上紧。 9.给中间接头涂油,装上四个O圈;将中间接头中心孔孔大的一端朝向二级缸,上到二级缸上,拧紧丝扣;中心孔小的一端必须朝外(即小孔向油)。 至此,桥塞工具的下半部分已装配完毕,先放在一边。 10.给增压室下端丝扣涂油,装上 O圈,然后,给泄压接头涂油,装上O圈,让增压室、泄压接头、和一级缸安装在一起。最后,使增压室朝下倒立于地上。 11.给浮动活塞涂油,装上三个 O圈。从一级缸推入,用木棒或铝管把它桶到底与增压室相挨。 12.往一级缸里倒进干净机油,要使油面到一级缸上端面的距离准确。 13.将装好的下半部分倒置,中接头朝下接到一级缸上,将丝扣上到接头与活塞筒的缝小于一英寸以后,就可以将整个桥塞工具平放于小仪器架上,用勾头板手和管钳将丝扣上紧。 14.上紧后,由于机油的压力,活塞可能会稍向下移。从而使十字键套筒(连接体)与下堵头之间离缝。此缝不能大于3/8"(9.5毫米)。如果大于3/8",则必须重新组装,并检查是否装机油太多; 15.擦净增压室上边泄压阀的凹槽和放气孔,将 0圈涂油后放到凹槽底台阶上。将阀座涂油后放人凹槽,压住O圈;

基于BP神经网络的电力系统负荷预测

基于人工神经网络的负荷预测 1.人工神经网络概述 人工神经网络类似于一个“多输入-多输出”的黑匣子,由一些能并行操作的简单单元组成,整个网络的功能是由单元之间的互连所决定的。 人工神经网络是通过“训练-调整-再训练-再调整”的过程,使得一个特定的输入能够通过网络得到一个特定的输出,其实质是通过调整单元之间的相互影响参数。其结构如下图1: 图1 神经网络结构图 2.题目要求及说明: 以广东某城市的2004年7月20日到7月30日的负荷值以及2004年7月 21日到7月31日的气象特征状态作为网络的训练样本,来预测7月31日的电

2.程序源代码 P=[0.2452 0.1466 0.1314 0.2243 0.5523 0.6642 0.7015 0.6981 0.6821 0.6945 0.7549 0.8215 0.2415 0.3027 0; 0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325 0.2385 0.3125 0; 0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156 0.2216 0.2701 1; 0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825 0.7825 0.7895 0.2352 0.2506 0.5; 0.2115 0.1201 0.1312 0.2019 0.5532 0.5736 0.7029 0.7032 0.7189 0.7019 0.7965 0.8025 0.2542 0.3125 0; 0.2335 0.1322 0.1534 0.2214 0.5623 0.5827 0.7198 0.7276 0.7359 0.7506 0.8092 0.8221 0.2601 0.3198 0; 0.2368 0.1432 0.1653 0.2205 0.5823 0.5971 0.7136 0.7129 0.7263 0.7153 0.8091 0.8217 0.2579 0.3099 0; 0.2342 0.1368 0.1602 0.2131 0.5726 0.5822 0.7101 0.7098 0.7127 0.7121 0.7995 0.8126 0.2301 0.2867 0.5; 0.2113 0.1212 0.1305 0.1819 0.4952 0.5312 0.6886 0.6898 0.6999 0.7323 0.7721 0.7956 0.2234 0.2799 1; 0.2005 0.1121 0.1207 0.1605 0.4556 0.5022 0.6553 0.6673 0.6798 0.7023 0.7521 0.7756 0.2314 0.2977 0]'; T=[0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325; 0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156; 0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825

WIZARD可溶性桥塞长宁现场施工方案及套管变形

WIZARD可溶性桥塞长宁现场施工方案及套管变形、缩径等应急预案 一、目的 本文件目的为陈述针对长宁区块WIZARD可溶桥塞作业及应急作业的方法,包括针对套管变形,套管缩径等复杂情况,可溶桥塞施工的补救措施及可行性关键技术方案。 二、长宁区块背景信息 三、规范行引用文件 下列文件针对本文件的应用是必不可少的,凡是注日期的引用文件,仅所注日期的版本实用于本文件。凡是不注日期的引用文件,其最高版本(包括所有的修改项)实用于本文件。 SY/T 5325-2005 射孔施工及质量控制规范; SY/T 5726-2004 石油测井作业安全规程; Q/SH 1025 0473-2007 电缆输送射孔施工作业规程; Q/SH 1025 0686.3-2010 测井作业安全规程第三部分:射孔作业; Q/SH 0291-2009 射孔作业质量控制规范。 四、桥塞作业相关QHSE注意事项 1、所有现场作业工程师都要遵守现场的QHSE规范,如PPE、培训证明、紧急集合点等。现场只允许穿防火、防静电PPE; 2、报告作业中任何违反现场QHSE规定的行为; 3、保障每位作业人员在作业过程中的健康与安全,减轻施工作业活动对环境的影响,更有效的保护和利用自然资源,促进员工健康,安全与环保意识,使人人都积极介入健康、安全与环保事物。创造健康,安全的环境。形成安全,环保的工作氛围,综合项目部的HSE方针和目标。项目的HSE方针:预防为主、保护环境、全员参与、持续改进、追求无伤害、无事故、无污染、无损失的目标。项目HSE控制目标:伤亡人数为0,火灾事故为0,污染事故为0,杜绝传染病,人员中毒事故为0,现场地貌恢复100%。防护用品配备率100%,特殊工种持证率100%。 4、按照HSE监督员指令服从HSE管理,实施安全工作。 5、对事故隐患、不安全行为及时向HSE监督员汇报。 6、每位员工均应清楚意识到自己应为创总并维持一个健康、安全的工作环境而作出努力。 7、每位员工上班均应穿戴工衣、工鞋,安全帽等个人防护用品,用具。

桥塞

桥塞 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。 目录 (1)永久式桥塞封层工艺 简述 工作原理: 桥塞封层工艺 该桥塞具有以下特点: 主要技术指标: 施工方式: 施工步骤: 注意事项: (2)可取式桥塞封层工艺 简介 工作原理: 结构与特点: 该桥塞具有以下特点: 主要技术指标: 适用井条件: 施工方式: 施工步骤: 注意事项: 可取式桥塞的打捞 展开 (1)永久式桥塞封层工艺 简述 工作原理: 桥塞封层工艺 该桥塞具有以下特点: 主要技术指标: 施工方式: 施工步骤: 注意事项: (2)可取式桥塞封层工艺 简介 工作原理: 结构与特点: 该桥塞具有以下特点: 主要技术指标: 适用井条件: 施工方式: 施工步骤: 注意事项:

可取式桥塞的打捞 展开 桥塞-桥塞封层工艺 编辑本段(1)永久式桥塞封层工艺 简述 永久式桥塞形成于80年代初期,由于它施工工序少、周期短、卡封位 桥塞-桥塞封层工艺 置准确,所以一经问世就在油气井封层方面得到了广泛应用,基本上取代了以前打水泥塞封层的工艺技术,成为试油井封堵已试层,进行上返试油的主要封层工艺。 目前在中浅层试油施工中出现的干层、水层、气层及异常高压等特殊层位,为方便后续试油,封堵废弃层位,通常采用该类桥塞进行封层,同时对于部分短期无开发计划的试油结束井也采用永久式桥塞封井。此外,该桥塞也用于深层气井的已试层封堵,为上返测试、压裂改造等工艺技术的成功实施提供保障。 工作原理: 利用电缆或管柱将其输送到井筒预定位置,通过火药爆破、液压坐封或者机械坐封工具产生的压力作用于上卡瓦,拉力作用于张力棒,通过上下锥体对密封胶筒施以上压下拉两个力,当拉力达到一定值时,张力棒断裂,坐封工具与桥塞脱离。此时桥塞中心管上的锁紧装置发挥效能,上下卡瓦破碎并镶嵌在套管内壁上,胶筒膨胀并密封,完成坐封。 结构与特点: 永久式桥塞外观图见图1,结构有如图2所示几个部分组成: 桥塞封层工艺 1-销钉;2-锁环;3-上压外套;4卡瓦;5上坐封剪钉;6-保护伞;7- 桥塞-桥塞封层工艺 封隔件;8-中心管;9-锥体;10-下坐封剪钉 该桥塞具有以下特点:

定向方法与定向专用工具介绍

根据测斜仪器的种类不同,分为四种定向方式: 1.单点定向 此方法只适用造斜点较浅的情况,通常井深小于1000米。因为造斜点较深时,反扭角很难控制,且定向时间较长。施工过程如下: (l)下入定向造斜钻具至造斜点位置(注意:井下马达必须按厂家要求进行地面试验)。 (2)单点测斜,测量造斜位置的井斜角,方位角,弯接头工具面; (3)在测斜照相的同时,对方钻杆和钻杆进行打印,并把井口钻杆的印痕投到转盘面的外缘上,作为基准点; (4)调整工具面(调整后的工具面是:设计方位角十反扭角)。锁住转盘、开泵钻进; (5)定向钻进。每钻进2~4个单根进行一次单点测斜,根据测量的井斜角和方位角及时修正反扭矩的误差,并调整工具面; (6)当井斜角达到8~10度和方位合适时,起钻换增斜钻具,用转盘钻进。在单点定向作业中要注意:

①在确定了反扭角和钻压后,要严格控制钻压的变化范围,通常在预定钻压±19.6千牛(2吨)内变化; ②每次接单根时,钻杆可能会转动一点,注意转动钻杆的打印位置至预定位置; ③如果调整工具面的角度较大(>90度),调整后应活动钻具2~3次(停泵状态),以便钻杆扭矩迅速传递。 2.地面记录陀螺(SRO)定向 在有磁干扰环境的条件下(如套管开窗侧钻井)的定向造斜,需采用SRO定向。这种仪器可将井下数据通过电缆传至地面处理系统,并显示或用计算机打印出来,直至工具面调整到预定位置,再起出仪器,施工过程如下: (l)选择参照物,参照物应选择易于观察的固定目标,距井40米左右; (2)预热陀螺不少于15分钟,工作正常才可下井; (3)瞄准参照物,并调整陀螺初始读数; (4)接探管,连接陀螺外筒,再瞄准参照物,对探管和计算机初始化; (5)下井测量,按规定作漂移检查; (6)起出仪器坐在井口,再次瞄准参照物记录陀螺读数; (7)校正陀螺漂移,确定测量的精度; (8)定向钻进。 3.有线随钻测斜仪(SST)定向 造斜钻具下到井底后,开泵循环半小时左右,然后接旁通头或循环接头。把测斜仪的井下仪器总成下入钻杆内,使定向鞋的缺口坐在定向键上。定向造斜时,可从地面仪表直接读出实钻井眼的井斜、方位和工具面,司钻和定向井工程师要始终跟踪预定的工具面方向,保持井眼轨迹按预定方向钻进。 4.随钻测量仪(MWD)定向

试油射孔联作

完井测试是指利用带有测试工具的管柱,在射孔后井筒中获取地层流体以及测试资料,并对流体和测试资料进行数据分析后,对油层进行定性或定量评价的一种方法。能够通过测试获得的各项地层和流体参数预测油气井的产液量(包括产油量、产气量和产水量),帮助人们判断测试层有无开采价值或者如何采取科学的方法进行开采以及需要采取怎样的措施以提高油气井的产量[1]。但是,完井测试作业一般是在射孔后重新下管柱进行的,射孔后压井起管柱再下测试管柱过程中,会使压井液进入射孔孔道渗入地层,造成对油气层的伤害,从 而影响地层评价的真实性。 通源石油:射孔测试联作是将射孔器与测试工具联接成管柱,一次下井同时完成射孔和测试两项作业的一项工艺技术。采用射孔测试联作,不仅能够降低作业成本和作业风险,而且避免了射孔后再次压井下管柱对地层造成的二次污染,提高油井录取资料的准确性,使油井开发评价更具有真实性[1]。目前,射孔测试联作工艺技术在国内内陆和海上油田已经得到广泛应用,形成了一整套的测试工具、作业规范和数据处理方法,技术成熟。而对于复合射孔,由于射孔的同时伴随火药爆燃所产生的高温高压气体的冲击作用,会对测试管柱(包括封隔器和测试仪器)造成损伤,因此,长期以来,复合射孔一直未能实现与测试联作,特别是在当今复合射孔技术在油气田开发上已经得到了广泛的应用,年作业量占到总射孔量的30%以上,研究开发复合射孔与测试联作工艺技术显得尤为重要。 通源石油:复合射孔与测试联作工艺技术是利用现有成熟的复合射孔产品技术以及地层测试技术,将两项技术有机地结合起来,一次下井作业,实现射孔压裂后无需起管柱,直接进行测试的一项新工艺技术。本文通过对复合射孔井筒压力分布规律的理论和试验研究,设计开发了一套能够有效衰减井筒轴向压力和径向震动的组合工具,经现场应用,该套工具能够有效保护封隔器和测试仪器不受损伤,测试仪器工作正常,解决了长期以来复合射孔与测试未能实现联作的问题。该工艺技术的突破,不仅使作业成本得到大幅度的降低,同时也降低了作业风险,对提高油井录取资料的准确度以及油井开发评价的真实性起到积极的作用。

毕业设计:基于BP神经网络的短期电力负荷预测(终稿)

毕业设计:基于BP神经网络的短期电力负荷预测(终稿)西安工业大学北方信息工程学院 题目:基于BP神经网络的短期电力负荷预测 系别电子信息工程系 专业电气工程及其自动化 班级 B070307 姓名宋亮 学号 B07030716 导师张荷芳焦灵侠 2011年6月 毕业设计(论文)任务书 系别电子信息系专业电气工程自动化班 b070307 姓名宋亮学号 b07030716 1.毕业设计(论文)题目: 基于bp神经网络的短期电力负荷预测题目背景和意义:电力系统是由电力网、电力用户组成,其作用就是对各类用户尽可能经济2. 地提供可靠而合乎标准要求的电能,以随时满足负荷要求。但是由于电力的生产与使用具有 其特殊性,即电能是不能储存的。这就要求系统发出电力随时紧跟系统负荷的变化动态平衡, 否则,就会影响供用电的质量。电力系统负荷预测因此发展起来,成为工程科学中重要的研 究领域,是电力系统自动化中一项重要内容。在电力系统安排生产计划和实际运行的过程中,

负荷预测起着十分重要的作用,主要表现在以下几个方面: (1)经济调度的主要依据。对电力 系统来说,必须对用户提供可靠而经济的电能,以随时满足各类用户的要求,亦即满足用户 的负荷需求,而在另一方面,又要考虑生产成本,由于电能不能大量储存,因此必须在确保 系统安全的情况下尽量减少实时发电备用容量。(2)生产计划的要求。电力系统中,由于其可 靠性的要求,各种发、供电设备都有确定的检修周期。(3)电力系统安全分析的基础。电力事 故所造成经济损失和社会影响是巨大的,必须尽量避免。 3.设计(论文)的主要内容(理工科含技术指标): 负荷预测并达到一定误差范围之内。 4.设计的基本要求及进度安排(含起始时间、设计地点):电子系实验室1-5周;开题,针对原理及应用、主要技术难点的收集资料,熟悉课题方案。 6-10周; 完成方案论证,确定设计方案。 10-15周;利用Matlab对系统做进一步的仿真分析 16-18周;完成所有的设计工作,整理资料,完成毕业论文,准备答辩。 5.毕业设计(论文)的工作量要求 400机时 *? 实验(时数)或实习(天数): 100天 *? 图纸(幅面和张数):A4×2 ? 其他要求: 论文:15000字以上;外文翻译:5000字以上 指导教师签名: 年月日 学生签名: 年月日 系主任审批: 年月日

可取式桥塞使用说明

可取式桥塞QSA(B)C型使用说明一.可取式桥塞是一种油田用井下封堵工具。主要由座封机构,锚定机构,密封机构,解封机构等部分组成。采用独特的自锁定结构,具有可靠的双向承压功能,无需上覆灰面,即可实现可靠密封,可取式桥塞用液压座封工具送进坐封,座封后可解封回收,经更换易损件后仍可重复下井使用。它可以与其他井下工具配合使用,进行临时性封堵、永久性封堵、选择性封堵和不压井作业等。可取式桥塞在功能上完全可以替代丢手+封隔器可钻式桥塞和注灰封堵,是一种安全可靠、成本低廉、功能齐全,适用范围广泛的井下封堵工具。 二、工作原理(ABC三种) 座封:将可取式桥塞连接在液压座封工具的下端,将桥塞下至设计深度,校准深度,用泵车向管柱内打压,迫使座封工具的活塞与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套管环空。在此同时,桥塞内部结构自锁,桥塞的张力棒拉断,桥塞牢牢卡封在井下预定位置。桥塞座封,

座封工具随管柱起出井筒。解封:用油管下入专门的解封工具,抓住桥塞解封套,上提管柱,解除桥塞自锁,胶筒收缩,卡瓦退回卡瓦筒中,桥塞解封,其总成随油管起至地面。注灰:(C型)将桥塞注灰工具连接于注灰管柱上,然后将桥塞注灰工具下入井内。桥塞注灰工具进入注灰桥塞主体内,推动铜滑套向下运动,当铜滑套的注灰孔与桥塞主体的注灰孔相连通时,即可开始注灰,注灰完毕后,上提桥塞注灰工具,桥塞铜滑套回到起始密封状态。 说明: 1) A、B、C型桥塞的区别:A型桥塞是实心的,尾部不能连接油管柱;B型桥塞坐封投放后抽掉芯轴具有通径(内径36mm),不接其他工具时要装母丝堵,尾部可连接油管柱。C型下插管注灰。 2)用途:A型桥塞用于油井暂堵或永久性封堵。B型桥塞可配置分采或卡堵水管柱,与Y341、Y241组合可同打压坐封;也可与单流阀或加丝堵组合单独适用。C型用于挤灰封堵。

电缆桥塞使用说明书

电缆桥塞用1号火药驱动装置使用说明书 电缆桥塞用1号火药驱动装置(以下简称产品)又名桥塞火药,或称桥塞动力源。它就是配合贝克桥塞工具得做功动力源,由点火器、药柱与火药筒组成。其使用说明书内容由以下两个部分组成: 1 产品主要技术指标; 2 使用注意事项。 下面分别予以介绍: 1 产品主要技术指标 A 耐温:产品在150±3oC环境中,恒温60min,不得发火,结构不得破坏。 B安全电流:给点火器通以0、2A±0、01A得直流电源,通电时间3min,点火器不得发火。 C 发火电流:给点火器通以1、2A±0、05A得直流电流,点火器应发火。 D 电阻:在室温条件下,点火器电阻应在3、5Ω—5、0Ω范围。 E 产品输出:按实际使用状态装配产品,发火后,产生得气体压力应大于70Mpa。 2 使用注意事项 A 使用前,用电阻值量程误差不大于0、1Ω得万用表查瞧点火器得直流电阻,电阻值在3、5Ω—5、0Ω内为正常,电阻值超过该范围,则为异常,应作废品处理。 B 装配时,先将火药筒底部涂上大量黄油,塞入工具燃烧室内,并

取掉火药筒上得防潮盖。 C 把药柱放入炮头内,并将弹簧卡圈装上。 D 将点火器装入炮头内。在炮头内有一安放密封盘根得槽,一定要在该槽内放一根合适得盘根。 E 将炮头与电缆头装配好后,再次测定电阻值,如果电阻值变化不超过0、3Ω,则可以使用。 F 发火电源为大于1A得电流。 G 产品应存放在通风干燥处。在包装状态下,产品有效期为2年。 电缆桥塞用2号火药驱动装置使用说明书 1概述 电缆桥塞用2号火药驱动装置(以下简称产品)又名2号桥塞火药,或称2号桥塞动力源。它就是吉尔哈特桥塞工具得做功动力源。具有燃烧时间合理、耐温性能好、燃烧后残渣疏松、易于清除等特点。2性能指标 3功能、使用范围 电缆桥塞用2号火药驱动装置配合吉尔哈特桥塞工具使用,就是座封桥塞得做功动力源。 4 操作方法

基于BP神经网络的短期电力负荷预测

西安工业大学北方信息工程学院 本科毕业设计(论文)题目:基于BP神经网络的短期电力负荷预测 系别电子信息工程系 专业电气工程及其自动化 班级B070307 姓名宋亮 学号B07030716 导师张荷芳焦灵侠 2011年6月

毕业设计(论文)任务书 系别 电子信息系 专业 电气工程自动化 班 b070307 姓名 宋亮 学号 b07030716 1.毕业设计(论文)题目: 基于bp 神经网络的短期电力负荷预测 2.题目背景和意义:电力系统是由电力网、电力用户组成,其作用就是对各类用户尽可能经济地提供可靠而合乎标准要求的电能,以随时满足负荷要求。但是由于电力的生产与使用具有其特殊性,即电能是不能储存的。这就要求系统发出电力随时紧跟系统负荷的变化动态平衡,否则,就会影响供用电的质量。电力系统负荷预测因此发展起来,成为工程科学中重要的研究领域,是电力系统自动化中一项重要内容。在电力系统安排生产计划和实际运行的过程中, 负荷预测起着十分重要的作用,主要表现在以下几个方面: (1)经济调度的主要依据。对电力系统来说,必须对用户提供可靠而经济的电能,以随时满足各类用户的要求,亦即满足用户的负荷需求,而在另一方面,又要考虑生产成本,由于电能不能大量储存,因此必须在确保 系统安全的情况下尽量减少实时发电备用容量。(2)生产计划的要求。电力系统中,由于其可 靠性的要求,各种发、供电设备都有确定的检修周期。(3)电力系统安全分析的基础。电力事 故所造成经济损失和社会影响是巨大的,必须尽量避免。 3.设计(论文)的主要内容(理工科含技术指标): 负荷预测并达到一定误差范围之内。 4.设计的基本要求及进度安排(含起始时间、设计地点):电子系实验室 1-5周;开题,针对原理及应用、主要技术难点的收集资料,熟悉课题方案。 6-10周; 完成方案论证,确定设计方案。 10-15周;利用Matlab 对系统做进一步的仿真分析 16-18周;完成所有的设计工作,整理资料,完成毕业论文,准备答辩。 5.毕业设计(论文)的工作量要求 400机时 ① 实验(时数)*或实习(天数): 100天 ② 图纸(幅面和张数)*:A4×2 ③ 其他要求: 论文:15000字以上;外文翻译:5000字以上 指导教师签名: 年 月 日 学生签名: 年 月 日 系主任审批: 年 月 日 说明:1本表一式二份,一份由学生装订入册,一份教师自留。 2 带*项可根据学科特点选填。

可取式桥塞

可取式桥塞 (Retrievabl e bridge plug)说明书 专利号:00 2 20245.X 200320110198.6

目录 一、简介 2 二、基本原理 2 三、结构分类 3 四、技术指标 5 五、技术特点 5 六、适用范围 6

一、简介 可取式桥塞是一种油田用井下封堵工具。主要由座封机构、锚定机构、密封机构等部份组成。采用独特的自锁定结构,具有可靠的双向承压功能,无需上覆灰面,即可实现可靠密封。可取式桥塞用电缆座封工具或液压座封工具座封,需要时可解封回收、重复使用。它可以进行临时性封堵、永久性封堵、挤注作业等,还可与其它井下工具配合使用,进行选择性封堵和不压井作业等。可取式桥塞是一种安全可靠、成本低廉、功能齐全,适用范围广的井下封堵工具。 二、基本原理 座封: 用电缆座封工具座封:将可取式桥塞与座封工具正确连接并下至井下预定位置,校准深度。将电缆接通电源,引燃桥塞座封工具中的火药柱,使之产生高温高压气体,迫使座封工具的活塞与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套管环空。在此同时,桥塞内部结构自锁,拉断张力棒(环),座封工具随电缆起出井口,桥塞牢牢卡封在井下预定位置。 用液压座封工具座封:将可取式桥塞与座封工具正确连接并下至井下预定位置,校准深度。在地面用泵车向油管加内压,迫使座封工具的活塞与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套管环空。在此同时,桥塞内部结构自锁,拉断张力棒(环),座封工具随油管起出井口,桥塞牢牢卡封在井下预定位置。

解封:用油管和钻杆下入专门的解封工具,抓住桥塞解封套,上提管柱,解除桥塞自锁,胶筒收缩,卡瓦退回卡瓦筒内,桥塞解封,其总成随油管起至地面。 三、结构及分类 (一)桥塞分类 1、常规型桥塞(YJH-A型):常规型封堵工具,主要用于临时性封堵、 永久性封堵。 2、挂壁型桥塞(YJH-B型):选择性封堵工具,主要用于选择性封层以 及卡封套管破漏段等。 3、挤注型桥塞(YJH-C型):挤注型封堵工具,挤灰作业后,可根据 需要将桥塞解封取出。主要用于挤注作业、不压井作业、油气井测试等。

人工神经网络在电力负荷预测上的分析与探讨

人工神经网络在电力负荷预测上的分析与探讨 作者:赵宇红胡玲刘旭宁 来源:《科技创新导报》2011年第02期 摘要:电力负荷的预测是电力系统规划的基础,对配变系统和新发电厂的建立具有重要意义。传统的预测方法是通过数学模型来分析电力负荷与其影响因素之间的关系,但由于实际工作中的不可预见因素较多,因此很难建立一个适用于任何情况的表达式。本文通过对人工神经网络在短期电力负荷预测中应用的分析,对其优缺点进行了探讨。 关键词:电力负荷预测人工神经网络应用人工神经网络的分析与探讨 中图分类号:TM76 文献标识码:A 文章编号:1674-098x(2011)01(b)-0090-01 对电力系统负荷的预测对于实现安全发供电、电力系统的自动化运行以及制定工作计划都有着非常重要的意义。传统的预测方法是将线形或分段线形表达作为负荷的预报函数,通过对其进行概率及数理统计的方式对其进行计算,并最终得出预测值。这种方法存在着建模所需的数据量大、适应性不强以及精度不高的问题,因此正逐渐被人工神经网络预测所取代。 1 日负荷模型的构成 电力系统负荷变化的周期性较强,因天气的变化而出现的负荷波动是导致电力系统负荷变化的主要因素,也就是说,N时刻负荷的变化量可以反映出天气的变化情况。因此,用向量的方式来表示负荷型,从而使全部的自变量相对于神经网络来说都属于输入量的中间分量,进而在自变量中隐含负荷与天气变化之间的函数关系。因此,日负荷模型的构成主要包括日基础负荷型和负荷影响因子模型。 1.1 日基础负荷模型 日基础负荷具有明显的周日性和周期性特征,代表了负荷的连续性,是负荷变化的基本规律。 ML[n,t]=∑(1-w)w(i-1)·L[n-(i·7),t] 其中ML[n,t]代表的是日基础负荷; L[n,t]代表的是第n天t时刻的实际负荷; W代表的是加权系数,取指小于1大于0;

基于BP神经网络的短期负荷预测

基于BP神经网络的短期负荷预测 基于BP神经网络的短期负荷猜测 摘要:基于人工神经网络原理,设计了一个三层的BP网络来实现电力系统的短期负荷猜测。经过仿真验证,利用BP神经网络进行电力系统短期负荷猜测是可行和有效的,其预告结果正确性很高。 要害词:短期负荷猜测;BP神经网络;电力系统 0前言 电力系统负荷猜测是电力生产部门的重要工作之一,通过正确的负荷猜测,可以经济合理地安排机组启停,减少旋转备用容量,合理安排检修计划,降低发电成本,提高经济效益。很多学者对此进行了研究,提出了很多种猜测方法,并且及时地将数学上的最新进展应用到猜测中去,使猜测的水平得到迅速提高,负荷猜测研究取得了很大的进展。 1负荷的分类及其短期猜测的方法 1.1负荷的分类 负荷猜测按猜测时间可以分为长期、中期和短期负荷猜测。其中,在短期负荷猜测中,周负荷猜测(未来7天)、日负荷猜测(未来24小时负荷猜测)及提前小时猜测对于电力系统的实时运行调度至关重要。因为对未来时刻进行预调度要以负荷猜测的结果为依据,负荷猜测的结果的正确性将直接影响调度的结果,从而对电力系统的安全稳定运行和经济性带来重要影响。 1.2负荷短期猜测的方法 电力系统负荷短期预告问题的解决办法和方式可以分为统计技术、专家系统法和神经网络等3种。统计技术中所用的短期负荷模型一般可归为时间系列模型和回归模型。时间系列模型的缺点在于不能充分利用对负荷性能有很大影响的气候信息等因素,但需要事先知道负荷与气象变量之间的函数关系,这是比较困难的。并且为了获得比较精确的预告结果,需要大量的计算,这一方法不能处理气候变量和与负荷之间的非平衡暂态关系。专家系统法利用了专家的经验知识和推理规则,使节假日或有重大活动日子的符合预告精度得到了提高。但是,把专家知识和经验等正确地转化为一系列规则是非常不轻易的。 众所周知负荷曲线是与很多因素相关的一个非线性关系函数。对于抽取盒逼近这种非线性函数,神经网络是一种合适的方法。神经网络的优点在于它具有模拟多变量而不需要对输入变量做复杂的相关假定的能力。它不依靠专家经验,只利用观察到的数据,可以从练习过程中通过学习来抽取和逼近隐含的输入/输出非线性关系。近年来的研究表明,相对于前两种方法,利用神经网络技术进行电力系统短期负荷预告可获得更高的精度。本文主要采纳BP神经网络来对电力系统短期负荷进行猜测。 2BP神将网络 2.1BP学习算法的思想 BP算法的基本思想是,学习过程由暗号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师暗号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差暗号,此误差暗号即作为修正各单元权值的依据。这种暗号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习练习过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行预先预定的学习次数为止。 2.2BP神经网络的组成及作用

baker座封工具使用步骤

坐封工具安装流程手册 座封工具使用前须对产品进行检查、装配。检查项目包括: 1.检查产品的螺纹及配合面是否有碰伤、锈蚀情况; 2检查0形圈外观是否有凹陷、切口、断裂等。 在对产品进行检查、装配时需准备:管钳、平口起子、勾头扳手、专用扳手、什锦锉等工具。 一、坐封工具的装配步骤为: 1.将十字键套筒(连接体)放在台钳上。 2. 给挤压心轴的丝扣涂油,以其丝扣一端朝工具的上方插入十字键套筒(连接体)。 3.给活塞推杆涂油,插入挤压心轴,使其下端的槽与心轴和十字键套管(连接体)的槽对齐。 4.插入十字键。套上键板护圈,使其贴紧十字键套筒,上紧键板护圈上的顶丝。 5.给下堵头丝扣涂油,装O圈。 6.将下堵头套在活塞推杆上向下滑,上紧丝扣和止退顶丝。 7.给活塞涂油,装上三个 O圈;将活塞装在活塞推杆上端;把销杆从活塞的侧孔拧进,穿过活塞推杆孔并上紧销杆与活塞侧孔上的丝扣。 8.给二级缸内壁上涂少许机油,将它套在活塞外边向下滑,直到与下堵头的丝扣连

接并上紧。 9.给中间接头涂油,装上四个O圈;将中间接头中心孔孔大的一端朝向二级缸,上到二级缸上,拧紧丝扣;中心孔小的一端必须朝外(即小孔向油)。 至此,桥塞工具的下半部分已装配完毕,先放在一边。 10.给增压室下端丝扣涂油,装上 O圈,然后,给泄压接头涂油,装上O圈,让增压室、泄压接头、和一级缸安装在一起。最后,使增压室朝下倒立于地上。 11.给浮动活塞涂油,装上三个 O圈。从一级缸推入,用木棒或铝管把它桶到底与增压室相挨。 12.往一级缸里倒进干净机油,要使油面到一级缸上端面的距离准确。 13.将装好的下半部分倒置,中接头朝下接到一级缸上,将丝扣上到接头与活塞筒的缝小于一英寸以后,就可以将整个桥塞工具平放于小仪器架上,用勾头板手和管钳将丝扣上紧。 14.上紧后,由于机油的压力,活塞可能会稍向下移。从而使十字键套筒(连接体)与下堵头之间离缝。此缝不能大于3/8"(9.5毫米)。如果大于3/8",则必须重新组装,并检查是否装机油太多; 15.擦净增压室上边泄压阀的凹槽和放气孔,将 0圈涂油后放到凹槽底台阶上。将阀座涂油后放人凹槽,压住O圈; 16.将 O圈涂油后装到泄压阀芯上的O圈槽内。将阀芯的丝扣一端从护圈的下面拧

基于人工神经网络的电力系统短期负荷预测

龙源期刊网 https://www.360docs.net/doc/d414620776.html, 基于人工神经网络的电力系统短期负荷预测作者:李晶 来源:《科学与技术》2018年第26期 摘要:随着智能电网技术的发展,电网问题的管理变得尤为重要,负荷预测是电网管理的主要内容之一。针对电力负荷预测随机性强、稳定性低、影响因素复杂等特点,具有非线性特性的神经网络可以极大地提高预测精度。 关键词:电力系统;负载预测;神经网络;反向传播算法 引言 电力系统负荷预测按预测的时间可分为长期、中期、短期、超短期以及特殊日,然而其中的短期负荷预测对电力系统来说有着很重要的地位,也是现有电力市场环境下编排发电计划、交易计划、调度计划的基础。随着电力行业的发展,分布式电源的接入和电动汽车等新负荷的加入,电力系统负荷预测的精确度就显得尤其重要。因此负荷预测成为了电网运行和管理的一个重要研究领域。由于负荷预测在电网中占有很重要的地位,所以对负荷预测初始数据的处理、预测方法的选择就显得尤其的重要。对短期负荷预测的研究已有很长的历史,国内外专家和学者在预测方面做了很多工作,提出很多预测模型。 1 负荷预测方法比较 1.1 神经网络法 目前神经网络广泛应用于图像识别、自然语言处理、机器翻译、自动驾驶等方面。谷歌、百度、阿里等企业最主要的人工智能算法都是神经网络。神经网络在能源领域大量应用于电力负荷预测、电力现货市场价格预测、风电发电预测等方面。神经网络法在负荷预测上的应用主要分为人工神经网络和递归神经网络。神经网络法选取过去一段时间的负荷作为训练样本,构建适宜的网络结构,用某种训练算法对网络进行训练,使其满足精度要求之后,此神经网络作为负荷预测模型。神经网络对大量非结构性、非精确性规律具有自适应能力,能够信息记忆、自主学习、知识推理和优化计算,具有很强的计算能力、复杂映射能力、容错能力及各种智能处理能力。江西负荷预测表明,其短期负荷预测精度高于中长期预测精度,日前负荷预测精度可达99.3%,5年规划负荷预测精度约为95.4%。 1.2 模糊预测法 模糊预测法是建立在模糊数学理论上的一种负荷预测技术,可以描述负荷预测中的一些关键因素,如天气状况的评判、经济发展的不确定性等。模糊负荷预测可分为模糊聚类法、模糊相似优先法和模糊最大贴近度法等。江西负荷预测表明,短期负荷模糊预测的精度约为

桥塞

桥塞: 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。在中浅层试油施工中,对于封隔异常高压、高产、跨距大或者斜井等特殊层位,实现上返试油,双封封隔器施工的成功率较低,为方便后续试油,提高试油一次成功率,通常采用该类桥塞进行封层。该桥塞下井时通过拉断棒及拉断环与坐封工具连结,利用电缆或者管柱将其输送到井筒预定位置后,通过地面点火引爆或者从油管内打压实现桥塞坐封和丢手,既安全又可靠。⑤若打捞器抓住桥塞后反复上提管柱不解封时,可将钻具悬重提起,正向转动油管,使桥塞上部安全帽自行脱开,起出管柱和打捞器,然后套铣桥塞本体。 一、用途: 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。 永久式桥塞主要用于套变、带喷、结蜡及井况正常的油、气、水井,代替分层填砂及打水泥塞工艺。 可取式桥塞是一种油田用井下封堵工具,它可与其它井下工具配套使用,进行临时性封堵、选择性封堵等。可取式桥塞可广泛用于试油、修井、测试、油气层改造等施工,是一种安全可靠、成本低廉、功能齐全井下封堵工具。

二、工作原理: 永久式桥塞工作原理:利用油管把永久式桥塞下到设计位置、投球,打压,当压力升至3.0~4.0MPa时,液压工具开始工作,下连接套推动永久式封堵器下行,把锚定及密封装置撑开, 当压力升至18~20MPa时,完成封堵器的封堵和锁紧,实现管柱的丢手,达到永久封堵的目的。 可取式桥塞工作原理:将可取式桥塞连接在液压送井工具的下端,将桥塞下至设计深度,用泵车向管柱内打压,桥塞的张力棒拉断,桥塞坐封,送井工具随管柱起出井筒。需要时,用专用的桥塞打捞工具下井即可解封起出桥塞。 三、技术参数: 1)永久式桥塞技术参数: 1、最大外径:Ф110 2、耐压差:40MPa 3、耐温: 120℃

页岩气水平井泵送桥塞射孔联作常见问题及对策_刘祖林

第36卷 第3期2014年5 月石 油 钻 采 工 艺 OIL DRILLING & PRODUCTION TECHNOLOGY Vol. 36 No. 3May 2014 文章编号:1000 – 7393(2014) 03 – 0075 – 04 doi:10.13639/j.odpt.2014.03.019页岩气水平井泵送桥塞射孔联作常见问题及对策 刘祖林1 杨保军1 曾雨辰2 (1.中原石油工程有限公司井下特种作业公司,河南濮阳 457164;2.深圳市百勤石油技术有限公司,广东深圳 518054) 引用格式:刘祖林,杨保军,曾雨辰.页岩气水平井泵送桥塞射孔联作常见问题及对策[J ].石油钻采工艺,2014,36 (3):75-78. 摘要:泵送桥塞+射孔联作分段压裂近年来在国内外页岩气藏及致密气藏开发中广泛应用。在页岩气水平井泵送桥塞射孔联作分段压裂实践中遇到了泵送桥塞因压力高而不能泵送、桥塞坐封不丢手、桥塞坐封时电缆不点火、电缆点火后桥塞不坐封、射孔枪不响或2簇射孔只射1簇、连续油管射孔意外丢手等各种问题。针对所出现的问题进行原因分析,制定了防范措施和解决方案,现场实施后各页岩气井水平井段的压裂改造施工得以完成,所取得的经验和教训可供今后同类井施工借鉴和参考。 关键词:页岩气;水平井;泵送桥塞射孔联作;事故处理;预防措施中图分类号:TE357.1 文献标识码:B Common problems of pumping bridge plug and clustering perforation for horizontal shale gas well and countermeasures LIU Zulin 1, YANG Baojun 1, ZENG Yuchen 2 (1. Downhole Service Company of Zhongyuan Petroleum Engineering Co., Ltd., Puyang , Henan 457164, China ; 2. Petro-king Oil?eld Technology Ltd., Shenzhen , Guangdong 518054, China ) Abstract: In recent years, the pumping bridge plug and clustering perforation technique has been widely used in staged fracturing of shale gas and tight gas reservoirs at home and abroad. In practical operations in horizontal shale gas wells, various problems have been found, such as failed pumping or release of pumping bridge plug due to high pressure, plug setting without cable igniting, plug not set after cable igniting, dumb shooting of the perforating gun or only 1 of 2 clusters shot, and accidental release in coiled tubing perforat-ing. Based on cause analysis for these problems, appropriate preventive measures and solutions are proposed. They have been applied practically to facilitate the fracturing treatment of horizontal shale gas wells. The experiences and lessons thereof will be meaningful references for staged fracturing operations in similar wells. Key words: shale gas; horizontal well ; pumping bridge plug perforation; accident treatment; preventive measures 基金项目:中原石油工程有限公司科研项目“非常规储层压裂施工技术研究”(编号:201222)。 作者简介:刘祖林,1963年生。1984年毕业于江汉石油学院采油工程专业, 2002年获江汉石油学院油气田开发工程专业硕士学位,现从事油气增产技术的研究与管理工作,高级工程师。E-mail :lzl-lzl @https://www.360docs.net/doc/d414620776.html, 。 页岩储层具有典型的低孔低渗物性特征,国外页岩气开发的成功经验表明,水平井及分段大型压 裂改造是页岩气开发的主体技术[1-3] 。泵送桥塞+电缆射孔联作分段压裂技术作为一种水平井分段改造的主要技术,近年来在国内页岩气水平井多级分段压裂施工中广泛应用并取得了巨大成功[4-7],但施工中也出现了一些问题,对施工造成了影响。因而如何防范问题的出现并在出现问题后迅速解决显 得尤为重要。 1 工艺过程及工具性能 1.1 工艺过程 泵送桥塞+电缆射孔联作分段压裂技术工艺过 程为:(1) 通井、刮管,确保井筒内干净、通畅;(2)连续油管传输,进行第1段射孔; (3)光套管压裂第1段;(4) 通过电缆下入射孔枪+桥塞联作管串,过造斜段

人工神经网络在电力负荷预测中的应用

人工神经网络在电力负荷预测中的应用 发表时间:2019-07-29T14:17:21.220Z 来源:《基层建设》2019年第14期作者:吕海霞南家楠 [导读] 摘要:随着我国电力行业逐步推进智能电网建设,电网管理问题变得愈发重要,电网管理的主要内容就是负荷预测。 内蒙古电力经济技术研究院内蒙古呼和浩特 010090 摘要:随着我国电力行业逐步推进智能电网建设,电网管理问题变得愈发重要,电网管理的主要内容就是负荷预测。通过分析电力负荷预测的重要性,分析电力负荷预测中人工神经网络的应用。 关键词:电力负荷预测;人工神经网络;应用分析 电力系统由发、输、变、配和用电 5 个基本环节组成,电网的运行需要保证其运行的经济性、供电可靠性、以及良好的电能质量。但由于电能生产的实时性,不能被大量储存,这就要求电能在发电和用电之间需要时刻保持着供需平衡,避免电能供电不足或生产过剩等问题。因此为了解决上述问题就需要我们时刻掌握负荷的变化情况,准确的电力负荷预测能够成为满足电力负荷供需平衡研究的重点。 1、电力系统负荷预测方法分类 时间序列法:时间序列的预测算法,是一种处理随机数列并进行预测的有效方法,它是按照一定时间间隔进行采集和记录的时间序列数据,该数据具有较强的随机性和不确定性。将该方法引入到电力系统负荷预测中,则是通过采集、分析电力系统历史负荷数据信息,通过历史数据建立相应的数学模型,发现隐含其中的规律,进而对未来电力负荷进行预测。时间序列法的优点:所需历史数据量少,建立模型的复杂程度低,计算速率快,能够反映负荷变化连续性特点。缺点:对采集得到的历史电力负荷数据随时间的平稳性要求较高,过于集中对数据的拟合而忽略对负荷变化规律的考虑,使得预测精度不高。 支持向量机:SVM 算法是在创建一个新的实例并分配给两个类别之一的模型,即主要是一种二元线性分类器,解决了算法模型预测时会出现的局部最优解的问题,通过该方法最终可以得到一个全局最优解。支持向量机在早期的科研中占据了非常重要的地位,在引入到电力系统负荷预测中,使用 SVM 预测算法,可以取得比传统方法更有效的预测结果。该方法的优点:该算法较为成熟,有坚实的数学理论基础,预测方法收敛速度较快,能够快速求得全局最优解。缺点:实际应用开发较为困难,对于历史数据依赖较大,对历史数据的要求也较高,在预测电力系统负荷波动较小的情况下可以取得很好的效果,但是当负荷波动较大时,预测效果往往较差。 BP 神经网络算法:BP 算法包括正向传播和计算误差的逆向传播过程,即正向传播是训练数据通过输入层,经过隐含层,作用于输出层,产生输出信号得到相应的输出误差,并将该输出误差经过隐含层向输入层逐层逆向反传,将误差分摊给各层所有单元,并调整网络的权值和阈值,使误差沿梯度方向下降,经过反复多次的训练,最终得到误差最小的网络模型,此时的BP 神经网络可以作为电力系统负荷预测的数学模型。优点:具有很强的非线性映射能力和柔性的网络结构,预测结果的精准度较高。缺点:学习速度慢,容易陷入局部最小值,网络层数、神经元数没有理论指导。 2、人工神经网络作用与分类 人工神经网络的研究是从人脑的生理结构出发来研究人的智能行为,模拟人脑信息处理的功能。它是根植于神经科学、数学、统计学、物理学、计算机科学及工程等学科的一种技术。人工神经网络是由大量处理单元广泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为神经元模型应具备连接权值、信号整合、激励函数三个要素。人工神经网络具有非线性、并行性、自学习性、联想存储性和实时性等特点。 人工神经网络的主要类型有感知机、线性神经网络、径向基(RBF)函数网络、BP 神经网络、随机神经网络、竞争神经网络等,其中BP 神经网络是应用得最广泛的一种类型。BP 神经网络是指误差反向传播算法(Error Back Propagtion,BP)网络,是一种有监督学习的前向多层感知机结构,由一种误差计算沿着与网络计算方向相反方向传递的算法求解神经元连接权值。BP 神经网络由多层构成,层与层之间全连接,同一层之间的神经元无连接,包含一个或多个隐层,可以实现复杂的映射关系。 BP 网络采用误差反向传播算法(Back - Propagation Algo-rithm)进行学习。在 BP 网络中,数据从输入层经隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值。误差反向传播算法是一种近似最速下降方法,采用均方误差作为性能指标。 由于 BP 网络具有计算简单、非线性映射性强、网络泛化性好,在电力负荷预测、神经生物现象模拟、农业样本检测等多个方面有着广泛的应用。 3、神经网络在电力负荷预测中的应用 电力负荷预测的方法主要有灰色预测法、线性回归法等传统预测方法、神经网络法、支持向量机、模糊系统等人工智能预测算法。由于电力负荷预测具有随机性强、稳定性低、影响因素复杂等特点,很难建立精确的模型。由于传统模型难以充分利用其他影响因素的数据,使得预测精度往往不能满足电力部门的需求,人工智能预测算法是国内外学者们研究的热点问题。电气负荷数据通常为一个时间序列数据,因此可以使用统计或软计算方法进行分析和预测,Wang等提出了一种 BP 神经网络方法(BPNN),采用反向传播神经网络的精确电力负荷预测算法用于短期电力负荷预测,综合考虑了天气特征,如最高摄氏度,最低摄氏度和天气类型等参数。陈刚等将非负荷因素输入前级 BP 网络中,得出的负荷类型数据作为后级RBF 网络的输入,通过 BP -RBF 的级联神经网络得到准确的整点负荷预测。 由于 BP 神经网络收敛速度慢、易陷于局部极值点的缺点,许多学者结合模糊推理、遗传算法等其他智能算法对电力负荷预测模型进行了进一步完善。基于神经网络的模糊推理方法是通过神经网络的自主学习机制完成模糊化、模糊推理和反模糊化。Ali 等采用模糊逻辑方法研究了长期负荷预测问题,建立了一个电力负荷模糊预测模型,采用温度、湿度和历史负荷数据作为模型,实验结果表明了模糊理论可以较好地应用于负载长期预测。Panapakidis 等利用人工神经网络和聚类方法建立了公交车负荷预测模型,通过聚类的方法提高了人工神经网络模型的预测精度,适用于短期预测。Mordjaoui 等提出了一种预测每日负荷的动态神经网络,获得的结果表明精度和效率优于广泛使用的传统方法。He 等提出了一种基于三角核函数(QRNNT)的分位数回归神经网络的概率密度预测方法,用于短期电力负荷预测。为了构造概率预测方法,应用神经网络对分位数回归模型进行变换,通过对加拿大和中国的负荷数据测试证明了该方法有效性。张平、白杨等针对天气因素采用聚类和神经网络相结合的方法进行了负荷预测 4 结语 总之,电力负荷预测对国民经济、电网稳定和电力安全都有着非常重要的意义。如何提高预测速度、降低预测误差是电力负荷预测研

相关文档
最新文档