备战高考物理法拉第电磁感应定律-经典压轴题附答案解析

备战高考物理法拉第电磁感应定律-经典压轴题附答案解析
备战高考物理法拉第电磁感应定律-经典压轴题附答案解析

备战高考物理法拉第电磁感应定律-经典压轴题附答案解析

一、法拉第电磁感应定律

1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.

(1)求磁感应强度B的大小;

(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;

(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.

【答案】(1)1 T (2)0.3 m(3)0.3n J

【解析】

【详解】

(1)当h=2L时,bc进入磁场时线框的速度

===

v gh gL

222m/s

此时金属框刚好做匀速运动,则有:

mg=BIL

E BLv

==

I

R R

联立解得

1mgR

=

B

L v

代入数据得:

1T

B=

(2)当h>2L时,bc边第一次进入磁场时金属线框的速度

022v gh gL =>

即有

0mg BI L <

又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有

'222v v gL =+

解得:

6m /s v '=

根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有

2v v gh '==

即有

0.3m h =

(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:

'2211

(2)22

mv mg L mv Q +=+ 代入解得:

00.3J Q =

则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。

2.如图所示,正方形单匝线框bcde 边长L =0.4 m ,每边电阻相同,总电阻R =0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P ,手持物体P 使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L =0.4 m ,磁感线方向垂直于线框所在平面向里,磁感应强度大小B =1.0 T ,磁场的下边界与线框的上边eb 相距h =1.6 m .现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb 边保持水平,刚好以v =4.0 m/s 的速度进入磁场并匀速穿过磁场区,重力加速度g =10 m/s 2,不计空气阻力.

(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb 为多少?

(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q 为多少?

(3)若在线框eb 边刚进入磁场时,立即给物体P 施加一竖直向下的力F ,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F 做功W F =3.6 J ,求eb 边上产生的焦耳Q eb 为多少?

【答案】(1)1.2 V (2)3.2 J (3)0.9 J 【解析】 【详解】

(1)线框eb 边以v =4.0 m/s 的速度进入磁场并匀速运动,产生的感应电动势为:

10.44V=1.6 V E BLv ==??

因为e 、b 两点间作为等效电源,则e 、b 两点间的电势差为外电压:

U eb =

3

4

E =1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:

F 安=BLI

根据闭合电路欧姆定律有:

I =

E R

联立解得解得F 安=4 N 所以克服安培力做功:

=2=420.4J=3.2J W F L ???安安

而Q =W 安,故该过程中产生的焦耳热Q =3.2 J

(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:

22122v v a L -=

而根据牛顿运动定律可知:

()M m g

a M m

-=

+

联立整理得:

1

2

(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:

W F -W'安+(M-m )g ·2L =

1

2

(M+m )( 21v -v 2) 联立解得:

W F -W'安=0

而W'安= Q',故Q'=3.6 J

又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:

Q eb =

1

4

Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V.

(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.

3.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:

(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v

Q R

=(3)43cd Blv U =

【解析】 【详解】

(1)线框离开磁场的过程中,则有:

2E B lv =g

E I R = q It = l t v

=

联立可得:2

2Bl q R

=

(2)线框中的产生的热量:

2Q I Rt

=

解得:234B l v

Q R

=

(3) cd 间的电压为:

2

3

cd U I R =g

解得:43

cd Blv

U =

4.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、

内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:

(1)金属棒匀速运动的速度大小;

(2)金属棒与金属导轨间的动摩擦因数μ;

(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。

【答案】(1);(2);(3)mgL2。

【解析】

【分析】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;

(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;

(3)根据功能关系结合焦耳定律求解。

【详解】

(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,

由于

解得:;

(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;

根据平衡条件可得:mg=μF A,

通过导体棒的电流I′=,则F A=BI′L1,

解得μ=;

(3)金属棒经过efgh区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;

根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W克=mgL2,

则Q总=mgL2,

定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。 【点睛】

对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

5.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数

0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整

个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取2

10/g m s =.

()1求0t =时棒所受到的安培力0F ;

()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系

式;

()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去

外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .

【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J

【解析】 【详解】 解:()1由图b 知:

0.2

0.1T /s 2

B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:

0.05V B E Ld t t

Φ===V V V V

感应电流为:0.25A E

I R

==

可得0t =时棒所受到的安培力:

000.025N F B IL ==,方向水平向右;

()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=

故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;

()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =?=?=

设3s 后到撤去外力F 时又运动了1s ,则有:

1

1BLs q q I t R R

Φ-===V V &

解得:16m s =

此时ab 棒的速度设为1v ,则有:22

1012v v as -=

解得:14m /s v =

此后到停止,由能量守恒定律得: 可得:2

1210.195J 2

Q mv mgs μ=

-=

6.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨平面垂直。阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触。t =0时,将开关S 由1掷到2。用q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。请定性画出以上各物理量随时间变化的图象(q-t 、i-t 、v-t 、a-t 图象)。

【答案】图见解析. 【解析】 【详解】

开关S 由1掷到2,电容器放电后会在电路中产生电流。导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动。导体棒切割磁感线,速度增大,感应电动势E=Blv ,即增大,则实际电流减小,安培力F=BIL ,即减小,加速度a =F /m ,即减小。因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速)。由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的,故a-t 图像如图:

由于电容器放电产生电流使得导体棒受安培力运动,而导体棒运动产生感应电动势会给电容器充电。当充电和放电达到一种平衡时,导体棒做匀速运动。则v-t图像如图:

当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0),故q-t图像如图:

这时电容器的电压等于棒的电动势数值,棒中无电流。I-t图像如图:

7.如图所示,ACD、EFG为两根相距L=0.5m的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF平面向上的匀强磁场,磁感应强度大小为B`=1T.两根长度也均为L=0.5m的金属细杆ab、cd与导轨垂直接触形成闭合回路,ab杆的质量m1未知,cd杆的质量m2=0.1kg,两杆与导轨之间的

动摩擦因数均为μ=

3

6

,两金属细杆的电阻均为R=0.5Ω,导轨电阻不计.当ab以速度v1

沿导轨向下匀速运动时,cd杆正好也向下匀速运动,重力加速度g取10m/s2.

(1)金属杆cd中电流的方向和大小

(2)金属杆ab匀速运动的速度v1 和质量m1

【答案】I=5A 电流方向为由d流向c; v1=10m/s m1=1kg

【解析】 【详解】

(1)由右手定则可知cd 中电流方向为由d 流向c

对cd 杆由平衡条件可得:μ

=+00

22安sin 60(cos 60)m g m g F

=安F BLI

联立可得:I =5A (2) 对ab: 由 =12BLv IR

得 1

10m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+

解得: m 1=1kg

8.如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L =0.4m ,上端接有电阻R =0.3Ω,虚线OO ′下方是垂直于导轨平面的匀强磁场,磁感强度B =0.5T 。现将质量m =0.05kg 、电阻r =0.1Ω的金属杆ab ,从OO ′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v -t 图像如图乙所示,0-1s 内的v -t 图像为过原点的直线,2s 后的v -t 图像为平行于t 轴的横线,不计空气阻力,g 取10m/s 2,求:

(1)金属杆ab 刚进入磁场时感应电流的大小;

(2)已知金属杆ab 在t =2s 时在磁场中下落了h =6.65m ,则杆从静止下落2s 的过程中电阻R 产生的热量是多少? 【答案】(1)I 1=5A (2)Q R =3.9J 【解析】 【分析】

本题首先通过对图像的分析,得到金属杆刚开始做匀加速直线运动,可以利用运动学公式与闭合电路的相关知识求解,其次抓住图中匀速可以列出平衡式子,对于非匀变速可以从能量角度列示求解。 【详解】

(1)由图乙可知,t=1s 时,金属杆进入磁场 v 1=gt E 1=BLv 1

联立以上各式,代入数据得 I 1=5A

(2)由第1问,v 1=10m/s ,2s 后金属杆匀速运动,由:mg=BI 2L

E 2 = BLv 2,代入数据得:v 2=5m/s 金属杆下落过程有:

代入数据得Q R =3.9J 【点睛】

本题强化对图像的认识,图像中两段运动比较特殊,一段是匀加速,一段是匀速,这个是解题的突破口,可以用运动学公式结合电路相关公式求解问题。对于非匀变速突出从能量角度找突破口列示求解。

9.如图甲所示,水平放置的电阻不计的光滑平行金属导轨相距L=0.5m ,左端连接R=0.4Ω的电阻,右端紧靠在绝缘墙壁边,导轨间虚线右边与墙壁之间的区域内存在方向垂直导轨平面的磁场,虚线与墙壁间的距离为s=10m ,磁感应强度B 随时间t 变化的图象如图乙所示。一电阻r=0.1Ω、质量为m=0.5kg 的金属棒ab 垂直导轨放置于距离磁场左边界d= 2.5m 处,在t=0时刻金属棒受水平向右的大小F=2.5N 的恒力作用由静止开始运动,棒与导轨始终接触良好,棒滑至墙壁边后就保持静止不动。求:

(1)棒进入磁场时受到的安培力F ; (2) 在0~4s 时间内通过电阻R 的电荷量q ; (3)在0~5s 时间内金属棒ab 产生的焦耳热Q 。 【答案】(1) =2.5F N 安 (2) 10q c = (3)15Q J = 【解析】(1)棒进入磁场之前对ab 受力分析由牛顿第二定律得25m/s F

a m

== 由匀变速直线位移与时间关系2112

d at = 则11s t =

由匀变速直线运动速度与时间关系得15m/s v at ==

金属棒受到的安培力22= 2.5N B L v

F BIL R

==安

(2)由上知,棒进人磁场时=F F 安,则金属棒作匀速运动,匀速运动时间22s s

t v

== 3~4s 棒在绝缘墙壁处静止不动

则在0~4s 时间内通过电阻R 的电量2210C +BLv

q It t R r

==

= (3)由上知在金属棒在匀强磁场中匀速运动过程中产生的2

125J Q I rt ==

4~5s 由楞次定律得感应电流方向为顺时针,由左手定则知金属棒受到的安培力水平向右,则金属棒仍在绝缘墙壁处静止不动, 由法拉第电磁感应定律得5V BLs

E t t

???=

==?? 焦耳热2

223310J E Q I rt rt R r ??

=== ?+?

'?

在0~5s 时间内金属棒ab 产生的焦耳热1215J Q Q Q =+=

【点睛】本题根据牛顿第二定律和运动学公式结合分析棒的运动情况,关键是求解安培力.当棒静止后磁场均匀变化,回路中产生恒定电流,由焦耳定律求解热量.

10.如图所示,足够长的水平导体框架的宽度L=0.5m ,电阻忽略不计,定值电阻R=2Ω.磁感应强度B=0.8T 的匀强磁场方向垂直于导体平面,一根质量为m=0.2kg 、有效电阻r=2Ω的导体棒MN 垂直跨放在框架上,该导体棒与框架间的动摩擦因数μ=0.5,导体棒在水平恒力F=1.2N 的作用下由静止开始沿框架运动到刚开始匀速运动时,通过导体棒截面的电量共为q=2C ,求:

(1)导体棒做匀速运动时的速度:

(2)导体种从开始运动到刚开始匀速运动这一过程中,导体棒产生的电热.(g 取10m/s 2) 【答案】(1)v =5m/s (2) Q 1=0.75J 【解析】

(1)当物体开始做匀速运动时,有:(1分)

又 :(2分)

解得

m/s (1分)

(2) 设在此过程中MN 运动的位移为x ,则

解得:

m (1分)

设克服安培力做的功为W,则:

解得:W="1.5J " (2分)

所以电路产生的总电热为1.5J,导体棒产生的电热为0.75J (1分)

11.53.如图所示,竖直平面内有一半径为r、内阻为R1,粗细均匀的光滑半圆形金属环,在M、N处于相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R.在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B.现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,且平行轨道中够长.已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2.

(1)求导体棒ab从A下落r/2时的加速度大小.

(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2.

(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式.

【答案】(1) (2)

【解析】试题分析:(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律,得

式中由各式可得到

(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即

式中

解得

导体棒从MN到CD做加速度为g的匀加速直线运动,

有得

此时导体棒重力的功率为

根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即

所以,

(3)设导体棒ab进入磁场II后经过时间t的速度大小为,

此时安培力大小为

由于导体棒ab做匀加速直线运动,

有根据牛顿第二定律,有

即:

由以上各式解得

考点:电磁感应,牛顿第二定律,匀加速直线运动。

【名师点睛】本题考查了关于电磁感应的复杂问题,对于这类问题一定要做好电流、安培力、运动情况、功能关系这四个方面的问题分析;也就是说认真分析物理过程,搞清各个力之间的关系,根据牛顿定律列方程;分析各种能量之间的转化关系,根据能量守恒定律列出方程;力的观点和能量的观点是解答此类问题的两大方向.

视频

12.固定在匀强磁场中的正方形导线框abcd,边长为l,其中ab是一段电阻为R的均匀电阻丝,其余三边均为电阻可忽略的铜线.磁场的磁感应强度为B,方向垂直纸面向里.现有一段与ab段的材料、粗细、长度均相同的电阻丝PQ架在导线框上,如图所示.若PQ

以恒定的速度v从ad滑向bc,当其滑过1

3

l的距离时,通过aP段电阻的电流是多大?方

向如何?

【答案】

611Blv

R

方向由P 到a 【解析】 【分析】 【详解】

PQ 右移切割磁感线,产生感应电动势,相当于电源,外电路由Pa 与Pb 并联而成,PQ 滑过

3

l

时的等效电路如图所示,

PQ 切割磁感线产生的感应电动势大小为E=Blv ,方向由Q 指向P . 外电路总电阻为

122

3312

933

R R

R R R R ?==+外

电路总电流为:

92119

E Blv Blv I R R R R R =

==

++外

aP 段电流大小为

26311ap Blv I I R

=

=, 方向由P 到a .

答:通过aP 段电阻的电流是为

611Blv

R

方向由P 到a

13.如图所示,两光滑轨道相距L =0.5m ,固定在倾角为37θ=?的斜面上,轨道下端接入

阻值为R =1.6Ω的定值电阻。整个轨道处在竖直向上的匀强磁场中,磁感应强度B =1T 。一质量m =0.1kg 的金属棒MN 从轨道顶端由静止释放,沿轨道下滑,金属棒沿轨道下滑x =3.6m 时恰好达到最大速度(轨道足够长),在该过程中,金属棒始终能保持与轨道良好接触。(轨道及金属棒的电阻不计,重力加速度g 取10m/s 2, sin37° = 0.6,cos37°= 0.8)求:

(1)金属棒下滑过程中,M 、N 哪端电势高; (2)求金属棒下滑过程中的最大速度v ; (3)求该过程回路中产生的焦耳热Q 。

【答案】(1)M 端电势较高 (2)6m/s (3)0.36J 【解析】 【详解】

(1)根据右手定则,可判知M 端电势较高

(2)设金属棒的最大速度为v ,根据法拉第电磁感应定律,回路中的感应电动势

E =BLv cos θ

根据闭合电路欧姆定律,回路中的电流强度

I =E /R

金属棒所受安培力F 为

F =BIL

对金属棒,根据平衡条件列方程

mg sin θ=F cos θ

联立以上方程解得:

v =6m/s

(3)根据能量守恒

2

1sin 2

mgx mv Q θ=

+ 代入数据解得:

0.36J Q =

【点睛】

本题是力学和电磁学的综合题,综合运用了电磁感应定律、能量守恒定律以及共点力平衡问题,要注意此题中棒不是垂直切割磁感线,产生的感应电动势不是E =BLv .应根据有效

切割速度求解。

14.如图所示,水平放置的平行金属导轨宽度为d =1 m ,导轨间接有一个阻值为R =2 Ω的灯泡,一质量为m =1 kg 的金属棒跨接在导轨之上,其电阻为r =1 Ω,且和导轨始终接触良好.整个装置放在磁感应强度为B =2 T 的匀强磁场中,磁场方向垂直导轨平面向下.金属棒与导轨间的动摩擦因数为μ=0.2,现对金属棒施加一水平向右的拉力F =10

N ,使金属棒从静止开始向右运动.求:

则金属棒达到的稳定速度v 是多少?此时灯泡的实际功率P 是多少? 【答案】6 m/s 32W 【解析】 由1

Bdv I R r

=

+和F 安=BId 可得221

B d v F R r

=

+安 根据平衡条件可得F =μmg +F 安 解得v 1=6 m/s 由P=I 2R 得P=32W

15.如图甲所示的螺线管,匝数n =1500匝,横截面积S =20cm 2,方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化。则

(1)2s 内穿过线圈的磁通量的变化量是多少? (2)磁通量的变化率多大? (3)线圈中感应电动势大小为多少?

【答案】(1)8×10-3Wb (2)4×10-3Wb/s (3)6.0V 【解析】 【详解】

(1)磁通量的变化量是由磁感应强度的变化引起的, 则11B S Φ=,22B S Φ=,21?Φ=Φ-Φ。

43(62)2010Wb 810Wb BS --?Φ?=-??=?=

(2)磁通量的变化率为:

3

3810Wb/s 410Wb/s 2

t --?Φ?==??

(3)根据法拉第电磁感应定律得感应电动势的大小:

31500410V 6.0V E n

t

-==??=?Φ

? 答:(1)2s 内穿过线圈的磁通量的变化量8×

10-3Wb (2)磁通量的变化率为4×

10-3Wb/s (3)线圈中感应电动势大小为6.0V

备战高考物理电磁感应现象的两类情况-经典压轴题及答案

备战高考物理电磁感应现象的两类情况-经典压轴题及答案 一、电磁感应现象的两类情况 1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v = (2)ab 杆运动距离为d ,对ab 杆应用动量定理 1BIL t BLq mv ==V 设cd 杆运动距离为d x +?

22BL x q r r ?Φ?= = 解得 1 22 2rmv x B L ?= cd 杆运动距离为 1 22 27m rmv d x d B L +?=+ = (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能 222 012111100J 222 Q mv mv mv =--= 2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求: (1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。 【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】 解:(1)t=2s 内MN 杆上升的距离为 2 1 2 h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为 BLh ?Φ= 产生的平均感应电动势为 E t ?Φ = 产生的平均电流为

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

(完整word版)高考物理压轴题电磁场汇编

24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量 q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的 方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; v

法拉第与电磁感应定律

法拉第与电磁感应定律 摘要:法拉第,在科学史上做出杰出贡献的实验物理学家,他是名副其实的穷二代,凭借高于常人的智商和自己坚持不懈的努力成为了举世闻名的科学家,他不只是在电磁学中引入了电场线和电磁感应线,这使得后人能更清楚、形象地理解电磁场。他最突出的成就就是发现了电磁感应定律,不但促进了科学的发展而且还开创了人类美好生活的新时代,为人类带来了丰富的物质和精神财富。 关键词:法拉第、电磁感应定律、应用、学习、感应电流 0引言 在21世纪的新时代,法拉第电磁感应定律的运用遍及人类生活的很多方面并使我们的生活越来越便捷,享受着这个时代独有的幸福的同时,我们便更想探索法拉第电磁感应定律具体应用在哪些方面,更想知道到底是什么样的天才发现了这样神奇的定律。本篇论文选择了对近代物理学做出了杰出贡献的英国科学家法拉第的生平进行全面的分析,并综述了电磁感应定律在科技史上的地位。文中有历史、人物和科学的发展过程。 1法拉第简介 1.1法拉第的家庭背景 法拉第,一个自学成才的理工男。1971年9月22日这个未来著名的物理学家呱呱坠地,他是家里的第三个儿子,他的家庭贫困,父亲是一个铁匠,靠着自己勤劳的双手养家糊口,收入甚微,入不敷出。所以,“富二代”、官二代“这样的身份注定与他无缘,要想以后出人头地,只能靠他自己的天赋和努力。贫困的家庭连温饱都难以解决,上学接受教育对他来说那只能是梦想。由于穷困,法拉第在人生最灿烂的时候辍学了,那一年他才13岁,是求知欲最强烈的年华。退学后,为生活所迫,他在街上卖报、在书店当学徒挣钱以贴补家用。是金子就一定会发光,是锤子就一定会受伤,法拉第无疑就是一块金子,就算是出生卑微,无学可上也不会阻碍他这块金子熠熠生辉。 1.2法拉第的求学及工作经历 法拉第酷爱学习,任何一个学习机会对于他都是极其珍贵的,他的哥哥注意到了他的天赋,所以愿意资助他学习,他非常幸运地参加了很多科学活动。通过这些活动他开始接触到了科学的神秘世界并且深深地被科学所吸引,这一切为他未来成为科学家铺好了道路。如果你足够好上帝一定不会埋没你,而且总会为你开上一扇窗,法拉第就是被上帝宠爱的那个人才,上帝为他开了一扇窗从而结识了著名的化学家戴维,他被戴维的才华所征服,随即他大胆地写信给戴维讲述了他对一些科学的见解,并表明自己热爱科学、愿意为科学献身。机会总是垂青于有准备的人,法拉第的能力才华深受戴维的赏识,22岁的他就被戴维任命为自己的实验助理。名师出高徒,法拉第以戴维为师,这为他后来的成就铺就了一条康庄大道。而且法拉第聪明、刻苦,很受戴维的器重,所以每次戴维外出考察时总会让法拉第相伴,而每一次外出考察对他来说都是弥足珍贵的学习机会,都会是他增长知识、开拓视野。 法拉第于1815年回到皇家研究所,而且他的启蒙老师戴维非常耐心地指导他做各种研究工作,在他们共同的努力下好几项化学研究都取得了成果。1816年对法拉第来说是不寻常的一年,是他科学道路的新起点,因为在这一年他发表了他人生中的首篇论文。从1818年开始他和J·斯托达特共同钻研合金钢,并且第一次独立创立了著名的金相分析方法。由于法拉第工作兢兢业业,深受研究院的重视,所以1821年被学院提升担任皇家学院总监这一要职。在两年之后的1823年,经过刻苦的钻研他发现了氯气与其余一些气体的液化方法。世界总是公平的,春天种下什么种子秋天就会收获什么果实,而法拉第所付出的努力也是会得到回报的,1824年1月他终于正式成为皇家学会的会员。1825年2月法拉第传承了启蒙老师戴维曾经的职位即被任命为皇家研究所实验室主任。就在这一年,他又有一项伟大的发现-----他发现了有机物苯。

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

高考物理压轴题电磁场汇编

1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁 感应强度为B。一质量为m带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP= d)射入磁场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线 方向的夹角为φ (如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP 是直径。 设入射粒子的速度为V1,由洛伦兹力的表达式和牛顿第二定律得: v12 m qBv1 d/2 解得:v1-q B d 2m ⑵设O是粒子在磁场中圆弧轨道的圆心,连接 由几何关系得:QQQ Z = QQ^R Z R_d 由余弦定理得:/ 2 2 /2/ (QQ ) =R R -2RR COSr 解得:P Z d(2R-d) 2 ∣R(1 cos J - d 1 2 设入射粒子的速度为v,由m~v√ = qvB R Z 解出: qBd (2R-d) V 2m [R(1 + cos c P) -d 】 2、(17分)如图所示,在XQy平面的第一象限有一匀强电场,电场的方向 平行于y轴向下;在X轴和第四象限的射线QC之间有一匀强磁场,磁 感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带 有 电荷量+q的质点由电场左侧平行于X轴射入电场。质点到达X轴上A 点时,速度方向与X轴的夹角为φ , A点与原点Q的距离为d。接着, 质点进入磁场,并垂直于QC飞离磁场。不计重力影响。若QC与X 轴 的夹角也为φ ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的 场强大小。 D V

电磁感应压轴题

v (m/s) 10 8 6 4 2 M (kg) 0 0.1 0.2. 0.3 0.4 0.5 电磁感应难题训练1 1. 如图所示,两根与水平面成θ=30角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨底端接有阻值为的电阻R ,导轨的电阻忽略不计。整个装置处于匀强磁场中,磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。现有一质量为m =0.2 kg 、电阻为的金属棒用细绳通过光滑滑轮与质量为M =0.5 kg 的物体相连,细绳与导轨平面平行。将金属棒与M 由静止释放,棒沿导轨运动了2 m 后开始做匀速运动。运动过程中,棒与导轨始终保持垂直接触。(取重力加速度g=10m/s 2)求: (1)金属棒匀速运动时的速度; (2)棒从释放到开始匀速运动的过程中,电阻R 上 产生的焦耳热; . (3)若保持某一大小的磁感应强度B 1不变,取不同 质量M 的物块拉动金属棒,测出金属棒相应的 做匀速运动的v 值,得到实验图像如图所示, 请根据图中的数据计算出此时的B 1; (4)改变磁感应强度的大小为B 2,B 2=2B 1,其他条件不变, 请在坐标图上画出相应的v —M 图线,并请说明图线与M 轴的 交点的物理意义。 ~ ; $ B θ m R

2. 如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为4Ω的电阻R,导轨电阻忽略不计.在两平行虚线L1、L2间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场,磁场区域的宽度为d=0.5m.导体棒a的质量为ma=0.6kg,电阻Ra=4Ω;导体棒b的质量为mb=0.2kg,电阻Rb=12Ω;它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M、N处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,sin53°=,且不计a、b之间电流的相互作用).求: (1)在整个过程中,a、b两导体棒分别克服安培力做的功; (2)在a穿越磁场的过程中,a、b两导体棒上产生的焦耳热之比; (3)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比; (4)M点和N点之间的距离. / 。 #

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

《法拉第电磁感应定律》教学案例

法拉第电磁感应定律教学设计 鹿城中学理化生教研组田存群 课程背景: “法拉第电磁感应定律”是高二物理选修(3-2)中的第四章第4节内容,是电磁学的核心内容。从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。 鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,使同学们利用已掌握的旧知识,来理解所要学习的新概念。力求通过明显的实验现象诱发同学们真正的主动起来,从而激发兴趣,变被动记忆为主动认识。 课程详述: 一.教学目标: 1.知道感应电动势,能区分磁通量的变化Δφ和磁通量的变化率Δφ/Δt。 通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。 2.通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律.使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用。 3.通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。 二.教学重点: 法拉第电磁感应定律的建立过程及规律理解。 三.教学难点: 1.磁通量、磁通量的变化量、磁通量的变化率三者的区别。 2.理解E=nΔφ/Δt是普遍意义的公式,而E=BLv是特殊情况下导线在切割磁感线情况下的计算公式。 四.教具:

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

法拉第电磁感应专题大题

法拉第电磁感应定律专题 1.如图所示,宽度L二的足够长的平行光滑金属导轨固定在绝缘水平面上,导 轨的一端连接阻值R=Q的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=.—根质量m=10g的导体棒MN放在导轨上,并与导轨始终接触良好,导轨和导体棒的电阻均可忽略不计。现用垂直MN的水平拉力F拉动导体棒使其沿导轨向右匀速运动,速度v=s,在运动过程中始终保持导体棒与导轨垂直。求: (1)在闭合回路中产生感应电流I的大小; (2)作用在导体棒上拉力F的大小; (3)当导体棒移动50cm时撤去拉力,求整个过程中电阻R上产生的热量Q。 X X 乂MX XXX Q, R2=6Q,整个装置放在磁感应强度为B=的匀强磁场中,磁场方向垂直与整个导轨平面,现用外力F拉着AB向右以v=5m/s速度作匀速运动.求: (1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向, (2)导体棒AB两端的电压U. 3.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应 强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计, 导体棒与圆形导轨接触良好。求: (1)在滑动过程中通过电阻r的电流的平均值; (2)MN从左端到右端的整个过程中,通过r的电荷量; (3)当MN通过圆导轨中心时,通过r的电流是多大 2.如图所示,两个光滑金属导轨(金属导轨电阻忽略不计)相距L=50cm, 导体棒AB的电阻为r=1 Q,且可以在光滑金属导轨上滑动,定值电阻R1=3 4?如图(a)所示,平行金属导轨MN、PQ光滑且足够长,固定在同一水平面上,两导轨间距L=,电阻R=Q,导轨上停放一质量m =、电阻r =Q的金属杆, 导轨 X X n n XXX F X X X [x X XXX X X i/ X X X

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合 一、电磁感应现象的两类情况 1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=?,间距为d =0.2m ,且电阻不计。导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求: (1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。 【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】 (1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。 由平衡条件 sin mg BId θ=① 导体棒切割磁感线产生的电动势为 E =Bdv ② 由闭合电路欧姆定律得 E I R r = +③ 联立①②③得 v =20m/s ④ 由欧姆定律得 U =IR ⑤ 联立①⑤得 U =7V ⑥ (2)由电流定义式得 Q It =⑦ 由法拉第电磁感应定律得 E t ?Φ = ?⑧

B ld ?Φ=?⑨ 由欧姆定律得 E I R r = +⑩ 由⑦⑧⑨⑩得 Q =0.02C ? 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒 ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的 过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求: (1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L v θ=2)sin sin t gvt v v CgR θθ=+ 【解析】 试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R = ,棒所受的安培力F BIL = 联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='= 此时电容器的带电量为 Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V

备战高考物理压轴题专题复习——法拉第电磁感应定律的推断题综合附详细答案

一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

压轴题08 电磁场综合专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题08电磁场综合专题 1.如图所示,真空区域中存在匀强电场与匀强磁场;每个磁场区域的宽度均为0.20m h =,边界水 平,相邻两个区域的距离也为h ,磁感应强度大小 1.0T B =、方向水平且垂直竖直坐标系xoy 平面向里;电场在x 轴下方的整个空间区域中,电场强度的大小 2.5N/C E =、方向竖直向上。质量41.010kg m -=?、电荷量4 4.010C q -=?的带正电小球,从y 轴上的P 点静止释放,P 点与x 轴的距离也为h ;重力加速度g 取10m/s 2,sin 370.6=,cos370.8=,不计小球运动时的电磁辐射。求小球: (1)射出第1区域时的速度大小v (2)射出第2区域时的速度方向与竖直方向之间的夹角θ (3)从开始运动到最低点的时间t 。 2.如图甲所示,平行金属板M 、N 水平放置,板长L =5 m 、板间距离d =0.20m 。在竖直平面内建立xOy 直角坐标系,使x 轴与金属板M 、N 的中线OO ′重合,y 轴紧靠两金属板右端。在y 轴右侧空间存在方向垂直纸面向里、磁感应强度大小B =5.0×10-3T 的匀强磁场,M 、N 板间加随时间t 按正弦规律变化的电压u MN ,如图乙所示,图中T 0未知,两板间电场可看作匀强电场,板外电场可忽略。比荷q m =1.0×107C/kg 、带正电的大量粒子以v 0=1.0×105m/s 的水平速度,从金属板左端沿中线OO ′连续射入电场,进入磁场的带电粒子从y 轴上的 P 、Q (图中未画岀,P 为最高点、Q 为最低点)间离开磁场。在每个粒子通过电场区域的极短时间内,电场可视作恒定不变,忽略粒子重力,求: (1) 进入磁场的带电粒子在电场中运动的时间t 0及在磁场中做圆周运动的最小半径r 0; (2) P 、Q 两点的纵坐标y P 、y Q ; (3) 若粒子到达Q 点的同时有粒子到达P 点,满足此条件的电压变化周期T 0的最大值。

电磁感应部分 压轴题考法

1.电磁感应加速器(共2题) (20 分)在如图甲所示的半径为r的竖直圆柱形区域内,存在竖直向上的匀强磁场,磁感应强度大小随时间的变化关系为B=kt(k>0 且为常量)。 (1)将一由细导线构成的半径为r、电阻为R0 的导体圆环水平固定在上述磁场中,并使圆环中心与磁场区域的中心重合。求在T 时间内导体圆环产生的焦耳热(2)上述导体圆环之所以会产生电流是因为变化的磁场会在空间激发涡旋电场,其电场线是在水平面内的一系列沿顺时针方向的同心圆(从上向下看),圆心与磁场区域的中心重合。同一条电场线上各点的场强大小相等,涡旋电场场强与电势差的关系与匀强电场相同。如图丙所示,在磁场区域的水平面内固定一个内壁光滑的绝缘环形真空细管道,其内环半径为r,管道中心与磁场区域的中心重合,细管道直径远小于r。某时刻,将管道内电荷量为q 的带正电小球由静止释放(小球的直径略小于真空细管道的直径),假设小球在运动过程中其电荷量保持不变,忽略小球受到的重力、小球运动时激发的磁场以及相对论效应。若小球由静止经过一段时间加速,获得动能E m,求小球在这段时间内在真空细管道内运动的圈数 (3)若在真空细管道内部空间加有方向竖直向下的恒定匀强磁场,小球开始运动后经过时间t0,小球与环形真空细管道之间恰好没有作用力,求在真空细管道内部所加磁场的磁感应强度的大小

动生切割中的电容问题(2题) 12.(20分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S 接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问: (1)磁场的方向; (2)MN刚开始运动时加速度a的大小; (3)MN离开导轨后电容器上剩余的电荷量Q是多少。

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

法拉第的电磁感应实验

法拉第的电磁感应实验 作者:不详日期:2006-11-2 来源:本站点击: 我们现在生活在一个电气时代里:电动机在工厂里轰鸣,电车在飞驰,电灯照亮了千家万户,电视机在播放节目,电脑在运作……由于有了电,旧时代许多令人神往的幻想已变成了现实。如今电气业给我们创造的这一切福利和文明,都起源于1831年10月17日法拉第的一次具有划时代意义和意外的电磁实验成功。由于这次成功,法拉第制造了世界上第一台电磁感应发电机;由于这次成功,人类制造出今天的发电机、电动机、水电站,以及一切电力站网。 法拉第(1791~1867)出生于英国伦敦一个铁匠家里。由于家庭贫困,他12岁时就到一家书店当学徒。由于经常接触图书,他发现书里有许多自己从不知道的事物,书籍简直是知识的海洋。从此以后他开始刻苦自学,认真读书,发奋要成为一个有学识的人。他不仅认真阅读电学、化学方面的书籍,而且用平日节约下来的一点钱买了几件实验仪器,按书中所说的做起实验来。 法拉第不仅向书本学习,还利用一切机会向当时著名的科学家学习,买票听他们的讲演,认真做记录。1810年春天,法拉第凑钱去听科学家塔特林讲解自然科学。他每晚都将所做的记录整理誊清。特别对法拉第人生具有重大转折意义的是,他于1812年时到英国皇家学院去听著名科学家戴维的化学讲演。正是从此开始,他踏上了献身科学的道路。 他大胆地给戴维先生写了封信,而且将听讲的记录全寄去了。他在信中说明了自己对科学的热爱,并且渴望能在皇家学会得到一份工作。戴维看到了他的严肃认真和对科学的热情,竟然答应了他的请求,介绍他到皇家学院当助理员,担任了戴维的实验助手。 实验室的工作为法拉第提供了优越的条件。他可以自由地利用图书馆,获得各种资料,从而可以发展各方面的知识。作为戴维的助手和随从,法拉第又获得了到欧洲大陆进行科学考察的机会。尽管在旅行中受到戴维夫人的凌辱,以及其他不公正的待遇,但法拉第借这次机会却增长了知识,结交了朋友,了解了当时各国的科学状况。

物理压轴题电磁场

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半 圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 2.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有 电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着, 质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场 的场强大小。 3.(18分)如图所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一匀强磁场,磁场方向与纸面垂直。一质 量为m 、电荷量为-q (q >0)的粒子以平行于x 轴的速度从y 轴上的 P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离 开磁场。粒子在磁场中的运动轨迹与y 轴交于M 点。已知OP=l , OQ=23l 。不计重力。求:⑴M 点与坐标原点O 间的距离;⑵粒子 从P 点运动到M 点所用的时间。 命题点:带电粒子在组合场中的运动——电场中的加速、偏转;磁场中的圆周 运动 07—25.(18分)飞行时间质谱仪可以对气体分子进行分析。 如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照 射产生不同价位的正离子,自a 板小孔进入a 、b 间的加速电 场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制 区,到达探测器。已知元电荷电量为e ,a 、b 板间距为d ,极 板M 、N 的长度和间距均为L 。不计离子重力及进入a 板时的 初速度。 ⑴当a 、b 间的电压为U 1时,在M 、N 间加上适当的电压U 2, 使离子到达探测器。请导出离子的全部飞行时间与比荷K (K =ne /m )的关系式。 ⑵去掉偏转电压U 2,在M 、N 间区域加上垂直于纸面的匀强磁 x

电磁感应压轴题

v (m/s) 10 8 6 4 2 M (kg) 0 0.1 0.2. 0.3 0.4 0.5 电磁感应难题训练1 1. 如图所示,两根与水平面成θ=30角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨底端接有阻值为 的电阻R ,导轨的电阻忽略不计。整个装置处于匀强磁场中, 磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。现有一质量为m =0.2 kg 、电阻为的金属棒用细绳通过光滑滑轮与质量为M =0.5 kg 的物体相连,细绳与导轨平面平行。将金属棒与M 由静止释放,棒沿导轨运动了2 m 后开始做匀速运动。运动过程中,棒与导轨始终保持垂直接触。(取重力加速度g=10m/s 2 )求: (1)金属棒匀速运动时的速度; (2)棒从释放到开始匀速运动的过程中,电阻R 上 产生的焦耳热; (3)若保持某一大小的磁感应强度B 1不变,取不同 质量M 的物块拉动金属棒,测出金属棒相应的 做匀速运动的v 值,得到实验图像如图所示, 请根据图中的数据计算出此时的B 1; (4)改变磁感应强度的大小为B 2,B 2=2B 1,其他条件不变, 请在坐标图上画出相应的v —M 图线,并请说明图线与M 轴的 交点的物理意义。 B θ m R

2. 如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为4Ω的电阻R,导轨电阻忽略不计.在两平行虚线L1、L2间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场,磁场区域的宽度为d=0.5m.导体棒a的质量为ma=0.6kg,电阻Ra=4Ω;导体棒b的质量为mb=0.2kg,电阻Rb=12Ω;它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M、N处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,sin53°=,且不计a、b之间电流的相互作用).求: (1)在整个过程中,a、b两导体棒分别克服安培力做的功; (2)在a穿越磁场的过程中,a、b两导体棒上产生的焦耳热之比; (3)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比; (4)M点和N点之间的距离.

相关文档
最新文档