等腰三角形应用(垂直平分线、角平分线)人教版(含答案)

等腰三角形应用(垂直平分线、角平分线)人教版(含答案)
等腰三角形应用(垂直平分线、角平分线)人教版(含答案)

学生做题前请先回答以下问题

问题1:垂直平分线相关定理:

①线段垂直平分线上的点_____________________________;

②到一条线段两个端点________________,在这条线段的垂直平分线上.

问题2:角平分线相关定理:

①角平分线上的点__________________________;

②在一个角的内部,______________________在这个角的平分线上.

问题3:已知:如图,点P在∠AOB内部,PC⊥OA于点C,PD⊥OB于点D,且PC=PD.求证:点P在∠AOB的平分线上.你是怎么思考的?

以下是问题及答案,请对比参考:

问题1:垂直平分线相关定理:

①线段垂直平分线上的点;

②到一条线段两个端点,在这条线段的垂直平分线上.

答:①到这条线段的两个端点的距离相等;②距离相等的点.

问题2:角平分线相关定理:

①角平分线上的点;

②在一个角的内部,在这个角的平分线上.

答:①到这个角的两边距离相等;②到角的两边距离相等的点.

问题3:已知:如图,点P在∠AOB内部,PC⊥OA于点C,PD⊥OB于点D,且PC=PD.求证:点P在∠AOB的平分线上.你是怎么思考的?

答:连接OP,

利用HL证明Rt△OCP≌Rt△ODP,所以∠COP=∠DOP.

等腰三角形应用(垂直平分线、角平分线)人教

一、单选题(共9道,每道11分)

1.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠CED的度数为( )

A.40°

B.45°

C.50°

D.60°

答案:C

解题思路:

试题难度:三颗星知识点:垂直平分线相关定理

2.如图,在等腰三角形ABC中,AB=AC=18,BC=10,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE,则△BEC的周长为( )

A.19

B.23

C.28

D.36

答案:C

解题思路:

试题难度:三颗星知识点:垂直平分线相关定理

3.已知:如图,OA垂直平分CP,OB垂直平分PD,连接CD,交OA于M,交OB于N,若△PMN的周长是8cm,则下列说法不一定正确的是( )

A.MC=MP

B.PC=PD

C.NP=ND

D.CD=8cm

答案:B

解题思路:

试题难度:三颗星知识点:垂直平分线相关定理

4.如图,OP平分∠MON,PA⊥ON于A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( )

A.1

B.2

C.3

D.4

答案:C

解题思路:

试题难度:三颗星知识点:角平分线相关定理

5.如图,在△ABC中,点D在BC上,DE⊥AB于E,DF⊥AC于F,且DE=DF,线段AD是( )

A.△ABC的高

B.BC边的中垂线

C.△ABC的中线

D.△ABC的角平分线

答案:D

解题思路:

试题难度:三颗星知识点:角平分线相关定理

6.如图,AB∥CD,AP,CP分别平分∠BAC和∠ACD,PE⊥AC于E,则要求AB与CD之间的距离,只需测量出( )

A.PA的长度

B.PC的长度

C.PE的长度

D.AB的长度

答案:C

解题思路:

试题难度:三颗星知识点:角平分线相关定理

7.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于E,且BE平分

∠ABC,则下列说法错误的是( )

A.BE=AE

B.CE=DE

C.BE=2CE

D.∠A=45°

答案:D

解题思路:

试题难度:三颗星知识点:角平分线相关定理

8.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是( )

A.PA=PB

B.PO平分∠APB

C.OA=OB

D.AB垂直平分OP

答案:D

解题思路:

试题难度:三颗星知识点:角平分线相关定理

9.如图,在Rt△ABC中,∠C=90°,∠A=30°.点E在AC上,过点E作ED⊥AB于D,CE=DE,求∠CBE的度数.

解:如图,

∵________________________________

∴∠CBA=60°

∵∠C=90°

∴EC⊥BC

∵________________________________

∴BE平分∠CBA

请你仔细观察下列序号所代表的内容:

①∠A=30°;②∠C=90°,∠A=30°;③EC⊥BC,ED⊥AB,CE=DE;④CE=DE;⑤EC⊥BC,ED⊥AB.

以上空缺处依次所填最恰当的是( )

A.②④

B.①④

C.②③

D.①⑤

答案:C

解题思路:

试题难度:三颗星知识点:角平分线相关定理

初中数学三角形(二)三角形的角平分线和中垂线

三角形的角平分线和中垂线 姓名时间 【教学目标】 1.要求学生掌握角平分线和中垂线的性质定理及其逆定理——判定定理,会用这四个定理解决一些简单问题。 2.理解角平分线和中垂线的性质定理和判定定理的证明 3.能够作已知角的角平分线,和已知线段的中垂线,并会熟练地写出已知、求作和作法. 【教学重点】 角平分线和中垂线的性质定理及其逆定理。 【教学难点】 掌握角平分线和中垂线的性质定理及其逆定理并进行证明。 【本节知识点】 1、垂直平分线性质及判定定理 判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 2、角平分线性质及判定定理 判定定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上. 性质定理:角平分线上的点到这个角的两边距离相等. 定理:三角形的三条内角平分线相交于一点,并且这一点到三条边距离相等. 3、用尺规作图画线段垂直平分线,已知角的平分线. 【经典练习】 三角形的角平分线的性质及定理 一、判断题 1.角的平分线上的点到角的两边的距离相等 2.到角的两边距离相等的点在角的平分线上 3.角的平分线是到角两边距离相等的点的集合 4.角平分线是角的对称轴 二、填空题 1.如图(1),AD平分∠BAC,点P在AD上,若PE⊥AB,PF⊥AC,则PE__________PF. 2.如图(2),PD⊥AB,PE⊥AC,且PD=PE,连接AP,则∠BAP__________∠CAP.

3.如图(3),∠BAC=60°,AP平分∠BAC,PD⊥AB,PE⊥AC,若AD=3,则PE=__________. 4.已知,如图(4),∠AOB=60°,CD⊥OA于D,CE⊥OB于E,若CD=CE,则∠COD+∠AOB=___度. 5.如图(5),已知MP⊥OP于P,MQ⊥OQ于Q,S△DOM=6 cm2,OP=3 cm,则MQ=__________cm. (4)(5) 三、选择题 1.下列各语句中,不是真命题的是 A.直角都相等 B.等角的补角相等 C.点P在角的平分线上 D.对顶角相等 2.下列命题中是真命题的是 A.有两角及其中一角的平分线对应相等的两个三角形全等 B.相等的角是对顶角 C.余角相等的角互余 D.两直线被第三条直线所截,截得的同位角相等 3.如左下图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么AE+DE等于 A.2 cm B.3 cm C.4 cm D.5 cm 4.如右上图,已知AB=AC,AE=AF,BE与CF交于点D,则①△ABE≌△ACF ②△BDF≌△CDE ③D在∠BAC 的平分线上,以上结论中,正确的是 A.只有① B.只有② C.只有①和② D.①,②与③ 四、解答题

三角形的高中线与角平分线练习题综述

43 2 1E D C B A 1 C D B 三角形的高、中线与角平分线1 1 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R , PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ). (A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正 确 2、 如图,点E 在BC 的延长线上,则下列条件中, 不能判定AB ∥CD 的是( ) A. ∠3=∠4 B.∠B=∠DCE C.∠1=∠2. D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B. (1)试说明 CD 是ΔABC 的高; (2)如果AC=8,BC=6,AB=10,求CD 的长。 4 如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数 5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2 所以 ____∥____ ( ) 因为 ∠1=∠3 所以 ____∥____ ( ) 6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm

A.17 B.22 C.17或22 D.13 8.适合条件∠A=1 2∠B=1 3 ∠C的△ABC是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为() A.30° B.75° C.105° D.30°或75° 10.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.8 11.三角形的一个外角是锐角,则此三角形的形状是() A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值范围是________. 13.如图,BD平分∠ABC,DA⊥AB,∠1=60°, ∠BDC=80°,求∠C的度数. 初一三角形的高、中线与角平分线2 1 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6. (1)CO是△BCD的高吗?为什么? (2)∠5的度数是多少? (3)求四边形ABCD各内角的度数. 2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.

角平分线等腰三角形

角平分线与等腰三角形 江苏 刘顿 角平分线与等腰三角形有着密不可分联系.在许多几何问题中,遇到等腰三角形就会想到顶角的平分线,遇到角平分线又会想到构造等腰三角形.为了能说明这个问题,下面归类说明. 一、角平分线+平行线→等腰三角形 当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形;如图1②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形;如图1③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形;如图1④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形. 例1 如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:AE =AP . 简析 要证AE =AP ,可寻找一条角平分线与EF 平行,于是想到AB =AC ,则可以作AD 平分∠BAC ,所以AD ⊥BC ,而EF ⊥BC ,所以AD ∥EF ,所以可得到△AEP 是等腰三角 形,故AE =AP . 例2 如图 3,在△ABC 中,∠BAC ,∠BCA 的平分线相交于点O ,过点O 作DE ∥ AC ,分别交AB ,BC 于点D ,E .试猜想线段AD ,CE ,DE 的数量关系,并说明你的猜想理由. 简析 猜想: AD +CE =DE .理由如下:由于OA ,OC 分别是∠BAC ,∠BCA 的平分线,DE ∥AC ,所以△ADO 和△CEO 均是等腰三角形,则DO =DA ,EC =EO ,故AD +CE =DE . 例3 如图4,△ABC 中,AD 平分∠BAC ,E ,F 分别在BD ,AD 上,且DE =CD ,EF =AC .求证:EF ∥AB . 简析 由于这里要证明的是EF ∥AB ,而AD 平分∠BAC ,所以必须通过辅助线构造出平行线,这样就可以得到等腰三角形了,于是DE =CD 的提示下,相当于倍长中线,即延长AD 至M ,使DM =AD ,连结EM ,则可证得△MDE ≌△ADC ,所以ME =AC ,又EF =AC ,∠M =∠CAD ,所以∠M =∠EFM ,即∠CAD =∠EFM ,又因为AD 平分∠BAC ,所以∠BAD =∠EFD =∠CAD ,所以EF ∥AB . 二、角平分线+垂线→等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5中,若C A B E D O 图3 图4 F C D E B A M 图2 F B A C D P E 图1 ① D ② C D C ④ F C D

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

等腰三角形、角平分线、中垂线doc资料

等腰三角形、角平分线、中垂线 一、角平分线、中垂线 例1 如图,AB=AC ,DE 垂直平分AB 交AB 于D ,交AC 于E .若 ABC ?的周长为 28,BC=8,则BCE ?的周长为 . 例2 如图,AB >AC ,A ∠的平分线与BC 的垂直平分线DM 相交于D ,自D 作AB DE ⊥于E ,AC DF ⊥于F .求证:BE=CF 例3 如图,在ABC ?中,ο108=∠A ,AB=AC ,21∠=∠.求证:BC=AC+CD 例4 如图,AB=AC ,C B ∠=∠,BAC ∠的平分线AF 交DE 于F .求证:AF 为DE 的 垂直平分线. 例5 如图,在ABC ?中,C ABC ∠=∠3,

21∠=∠,BD AD ⊥.求证:AC=AB+2BD 训练一下: 1.如图,在ABC Rt ?中,ο90=∠C ,BE 平分ABC ∠,交AC 于E ,DE 是斜边AB 的垂直平分线,且DE=1cm ,则AC= cm. 2.如图,在ABC ?中,ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,过D 作DE ∥BC ,分别交AB ,AC 于E ,F .求证:EF=BE-CF 3.如图,在ABC ?中,AB=AC ,ο36=∠A ,21∠=∠,E 为AB 中点,ED 、BC 延长线交于点F .求证:AB=CF

4.如图,ABC ?中,21∠=∠,AB=2AC ,DA=DB .求证:AC ⊥CD 5.如图,在ABC ?中,ο 90=∠ABC ,ο 60=∠ACB , BAC ∠和ABC ∠的平分线AD ,BE 相交于点F .求证:EF=DF 二、等腰三角形、等边三角形 (1)求角的度数 例1、如图所示,已知AB=AC, D 、E 分别在AC 和AB 上,且BD=BC,AD=DE=BE,求∠A 的度数. (2)证明角相等

角平分线和平行线构成等腰三角形的探究

角平分线和平行线构成等腰三角形的探究 -----李春蕊北京市育英学校 一、教材分析:《等腰三角形》是“人教版八年级数学(上)”第十二章第三节的内容。等腰三角形是一种特殊的三角形,它除了具备一般三角形的所有性质外,还有许多特殊的性质,由于这些特殊性质,使它比一般的三角形应用更广泛。这一单元的主要内容是等腰三角形的性质和判定,以及等边三角形的相关知识,尤其是等腰三角形的性质和判定,它们是研究等边三角形、证明线段等和角等的重要依据. 学情分析:本节课在学生已经学习了轴对称、等腰三角形性质及判定基础上,进一步探究角平分线和平行线形成等腰三角形的问题。学生具有一定说理能力,整体几何感观比较清晰,在探究活动中,能够根据老师的问题进行有切入的思考。 二、教学目标: (1)掌握角平分线和平行线形成等腰三角形的基本规律; (2)体会研究问题中用到的分类思想,经历由特征图形问题的解决,发展对问题的进一步探究,认识到在几何问题中,位置关系可得出一定数量关系,特殊的数量关系也能推出一定位置关系. (3)通过交流和研讨,使学生在探索的同时获得解决问题的一种方法,提高学生学习数学的兴趣和信心. 教学重点:掌握角平分线+平行线能形成等腰三角形这个基本规律,利用这个规律解决等腰三角形方面的有关问题. 教学难点:灵活运用角平分线和平行线形成等腰三角形这个基本规律解决有关问题. 突出重点方法:观察,思考,证明. 突出难点方法:自主探究 教学方法:启发与探究相结合 教学准备:PPT,课本,作图工具 三、教学设计: (一)复习等腰三角形相关知识 1、请同学们对等腰三角形的知识要点进行自我回顾: (由学生先进行回顾,教师补充) (二)探究过程 问题1:已知∠ABC,BD平分∠ABC,ED//BC.思考:△EBD是等腰三角形吗? 解:是;EB=ED

三角形的中线与角平分线

一.选择题(共10小题) 1.(2016秋?阿荣旗期末)三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形 C.直角三角形D.周长相等的三角形 【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等. 【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形. 故选:B. 【点评】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线. 2.(2016秋?大安市校级期中)如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线() A.△ABE B.△ADF C.△ABC D.△ABC,△ADF 【分析】根据三角形的角平分线的定义得出. 【解答】解:∵∠2=∠3, ∴AE是△ADF的角平分线; ∵∠1=∠2=∠3=∠4, ∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE, ∴AE是△ABC的角平分线. 故选D. 【点评】三角形的角平分线是指三角形一个内角的平分线与对边交点连接的线段. 3.(2016春?蓝田县期中)如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为()

A.1 B.2 C.3 D.4 【分析】根据三角形中线的定义可得BE=EC=6,再根据BD=BE﹣DE即可求解.【解答】解:∵AE是△ABC的中线,EC=6, ∴BE=EC=6, ∵DE=2, ∴BD=BE﹣DE=6﹣2=4. 故选D. 【点评】本题考查了三角形的中线的定义,是基础题,准确识图并熟记中线的定义是解题的关键. 4.(2017?泰州)三角形的重心是() A.三角形三条边上中线的交点 B.三角形三条边上高线的交点 C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点 【分析】根据三角形的重心是三条中线的交点解答. 【解答】解:三角形的重心是三条中线的交点, 故选:A. 【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键. 5.(2017?诸暨市模拟)已知△ABC在正方形网格中的位置如图所示,则点P叫做△ABC的()

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

三角形中线与角平分线专题(二)

.. 三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

.. 应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交 与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形 状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点, BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A , =∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于 点P ,若∠BPC=40°,则∠CAP=_______.

中垂线与角平分线

中垂线 判断 ( )1.三角形两边的垂直平分线交点在三角形一边上,则该三角形为等边三角形. ( )2.到三角形三顶点距离相等的点在三角形内. ( )3.到三角形距离三边相等的点是三条中垂线的交点. ( )4.四边形ABCD中共有一点P,使PA=PB=PC=PD,则∠A+∠C=180°. ( )5.和线段两端距离相等的点只有线段的中点. ( )6.和线段两端相等的点不一定在线段上. 选择 1.到三角形三个顶点距离相等的是( ) A.三条中线交点 B.三条高的交点 C.三条角平分线的交点 D.三条中垂线的交点 2.线段AB外有两点C,D(在AB同侧)使CA=CB,DA=DB,∠ADB=80°, ∠CAD=10°,则∠ACB=( ) A.90° B.100° C.110° D.120° 3.BD为CE的中垂线,A在CB延长线上,∠C=34°,则∠ABE=( ) A.17° B.34° C.68° D.136° 4.O为△ABC三边中垂线的交点,则O称为△ABC的( ) A.外心 B.内心 C.垂心 D.重心 5.若三角形一边中垂线过另一边中点,则该三角形必为( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.等腰三角形 6. 如图,△ABC中,∠ACB=90°, ∠A=30°AC的中垂线交AC于E.交AB于D,则图中60°的角共有( ) A.6个 B.5个 C.4个D3个 填空 1.△ABC中,AB=AC,P为形内一点,PB=PC,则P在的中垂线上,P还在∠的平分线上. 2.△ABC中,AB=AC=14,腰AB的中垂线交AC于D,△BCD周长为4cm,则BC= . BE= . 3.△ABC中,AB=AC,∠A=120°,AB中垂线交BC于E,则 BC 4.正△ABC内一点O到三边距离相等,且OA=OB=OC.则∠BOC= . 5.△ABC的边AC、BC的中垂线交于AB上一点O,且OC=BC,则∠A= . 6.若PA=PB,DA=DB,则PD是AB的. 角平分线同步练习 判断题 1.角的平分线上的点到角的两边的距离相等 2.到角的两边距离相等的点在角的平分线上 3.角的平分线是到角两边距离相等的点的集合 4.角平分线是角的对称轴 填空题 1.如图(1),AD平分∠BAC,点P在AD上,若PE⊥AB,PF⊥AC,则PE__________PF. 2.如图(2),PD⊥AB,PE⊥AC,且PD=PE,连接AP,则∠BAP__________∠CAP. 3.如图(3),∠BAC=60°,AP平分∠BAC,PD⊥AB,PE⊥AC,若AD=3,则PE=__________.

三角形的高、中线与角平分线(全国优质课一等奖)

2008年全国第六届初中数学优质课比赛教案 课题:§7.1.2三角形的高、中线与角平分线 教材:人教版义务教育课程标准实验教科书七年级数学下册第65~66页 授课教师:临川一中陈良琴 [教材分析] 1、本节教材的地位与作用: 学生已学习了角的平分线,线段的中点,垂线和三角形的有关概念及边的性质等,本节课在此基础上进一步认识三角形,为今后学习三角形的内切圆及三心等知识埋下了伏笔.本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线. 通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别.另外,本节内容也是日后学习等腰三角形等特殊三角形的基础.故学好本节内容是十分必要的. 2、教学重点: 能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.3、教学难点: 在钝角三角形中作高. 4、教学关键: 运用好数形结合的思想,特别是研究三角形的角平分线、中线、高时,从折叠、度量入手,获得三种线段的直观形象,以便准确理解上述基本知识。 [教学目标] 基于上述对教材地位与作用的分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标: (1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点. (2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心. [学情分析] 七年级的孩子思维活跃,模仿能力强,对新知事物满怀探求的欲望.同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.但是受年龄特征的影响,他们知识迁移能力不强,推理能力还需进一步培养. [教学过程] 本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.

等腰三角形+角平分线

第一部分:知识点回顾 角平分线的性质及判定: 1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线; 2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离; 3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上。 4.注意在证明中用到这两个定理,如何把文字叙述转化成数学符号: 例:如图 角的平分线的性质定理的几何语言: ∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E, ∴PD=PE 角的平分线的判定定理的几何语言: ∵PD⊥OA于D,PE⊥OB于E,PD=PE ∴点P在∠AOB的平分线上 等腰三角形的性质及判定: 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 2.等腰三角形的性质和判定 性质1 等腰三角形的两个底角相等(简写成“等边对等角”) 性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”) 判定 (1)有两条边相等的三角形,叫做等腰三角形 (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”) 3.等边三角形 三条边都相等的三角形叫做等边三角形. 4.等边三角形的性质 (1)等边三角形的三个内角都相等,并且每一个角都等于60°. (2)等边三角形是轴对称图形,共有三条对称轴. (3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. 5.等边三角形有关判定 (1 )三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形. (3)有一个角是60°的等腰三角形是等边三角形. 6.由对等边三角形推出的一个关于直角三角形的一个性质 在直角三角形中,如果有一个锐角等于30°,那么它对的直角边等于斜边的一半. 第二部分:典型例题

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

角平分线与线段中垂线

角平分线与线段中垂线 教学目标:整理基础知识与基本方法,巩固典型题型。 教学重点:典型题目的解答与变型。 教学过程: 一、基础知识汇总(10分钟)(学生填,学生纠正,教师规范) 1、角平分线上的点到相等 2、线段中垂线上的点到相等 3、到角两边距离相等的点一定在上 4、到线段两端点距离相等的点一定在上 5、作出下列角的平分线与线段的中垂线(保留作图痕迹) 6、三角形内角平分线交点到距离相等,是三角形的圆心. 7、三角形三边中垂线交点到距离相等,是三角形的圆心. 二、典型题目 1、请做出△ABC的外接圆与△DEF的内切圆(5分钟)(学生做图,教师巡视) 2、如图:请在直线AB上找一点P,使PC+PD的长度最短。(5分钟) 3.已知:如图,PB、PC分别是△ABC的外角平分线,相交于点P. 求证:P在∠A的平分线上.(5分钟) 4、在平行四边形ABCD中,∠A的平分线分对边BC为3cm和4cm的两部分. 求:平行四边形ABCD的周长.(5分钟)

5、如图已知在△ABC 中,∠BAC 的平分线与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PN ⊥AB 于N ,PM ⊥AC 于点M . 求证:BN =CM .(5分钟) 三、小结:阅读与巩固第一部分知识点,梳理本节例题思路。(5分钟) 课后作业: 1、如图:BP 、CP 是△ABC 的角平分线,过点P 作BC 的平行线分别交AB 、AC 于点D 、E ,AB =10,AC =8,则△ADE 的周长为 . 2、如图:已知BP 、CP 是△ABC 的角平分线,∠A =80°. 则∠P 的度数为 3、如图:已知在△ABC 中,MD 垂直平分AB 于M ,交BC 于D ,NE 垂直平分AC 于N ,交BC 于E ,若∠BAC =135°,则∠DAE =_______ 4、如图:∠AOB=60°,OC 为角平分线,OD =6,E 、F 分别为OC 、OB 上的两动点, 求:DE +EF 的最小值. 5、如图,OC 平分∠AOB ,P 是OC 上一点,D 是OA 上一点,E 是OB 上一点,且PD=PE.求证:∠+∠=?PDO PEO 180。 *6、已知:AD 是等边△ABC 的高,AB=6,某人沿AD 以每秒2个单位的速度前进到E ,然后再从E 点每秒一个单位的速度直线前进到B ,问当AE 为多少时,这个人从A 到E 再到B 所用的时间最短? A B C P M N Q C A B E D M N

等腰三角形和角平分线

等腰三角形和角平分线 1、如图,若AB=AC ,BG =BH ,AK=KG ,则∠BAC 的度数为( ) A .30° D .32° C 36° D .40° 第1题 第3题 第4题 第5题 2、等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .30° B .30°或150° C . 120°或150° D .30°或120°或150 3、如图,在等腰直角△ABC 中,AD 为斜边上的高,以D 为端点任作两条互相垂直的射线与两腰相交于E 、F ,连结EF 与AD 相交于G ,则∠AED 与∠AGF 的关系为( ) A .∠AED>∠AGF B .∠AED =∠AGF C .∠AED<∠AGF D .不能确定 4、如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则 ∠CBE 等于( ) A 、80° B 、70° C 、60° D 、50° 5、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( ) A 、4㎝ B 、6㎝ C 、10㎝ D 、不能确定 6、等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为. 7、如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC 的大小是. 第7题 第8题 8、如图AOB 是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE 相等,则最多能添加这样的钢管根. 9、如图,已知AE=BE,D 为AB 的中点,,,则 10、如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠, 使点C 与点A 重合,折痕为DE ,则△ABE 的周长为_________. 11、如图,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为 D ,交BC 于 E ,BE=5,则AE=_______,∠AEC=________,AC=______. 12、如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F , 求证:AF =EF . 12BF =3CF =AC =

三角形三边中垂线、高线、角平分线、中线必交一点

证明:三角形三边中垂线必交与一点 在三角形ABC中 作AB和AC的中垂线,交于O点 则由中垂线性质可知AO=BO,AO=CO 故BO=CO 过O作BC的垂线,垂足为D,则由BO=CO与OD=OD可证得Rt三角形ODB全等于Rt 三角形ODC 故BD=CD,即OD为BC的中垂线 则AB和AC、BC的中垂线都交于O

证明:三角形三个内角角平分线必交与一点 设三角形ABC,首先两条角平分线(假设是角A和角B的)肯定交于一点,设为D,分别过点D作三边垂线,AB BC AC上的垂足为E F G 由角平分线定理,DE=DF,DE=DG 所以DF=DG,由逆定理,CD也为角平分线 证明:三角形三边高线必交于一点 1如图:作AB的高CD和AC的高BE,显然,两高线比交与一点,设为G点,连接AG 延长交BC与F,现在要证明AF⊥BC。 由于∠ADC+∠AEB=180,所以ADGE四点共圆,所以∠DAG=∠DEG 同理有DEBC四点共圆,所以有∠BCD=∠DEG 所以∠BCG=∠DAG,又∠DGA=∠FGC,所以∠CFG=∠ADG=90度 所以AF⊥BC

2利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/ [(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。1.塞瓦定理的逆定理 设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(AE*ctgB)]=1,所以三条高CD、AE、BF 交于一点。 3.解析法,把三条直线设出来,然后算出三条高线的解析式,证明它们交在一个点 证明:三角形三边中线必交于一点 三角形ABC的中线BE和CD交点O,连接并延长AO交BC于F,证明:F是BC中点。作BG平行DC交AO延长线于G 则因D为AB中点,所以O为AG中点 连接GC,则在三角形AGC中,OE是中位线 OE平行GC 所以BOCG为平行四边形 F平分BC,F是BC中点。

三角形中线与角平分线专题(二)

三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点,BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A ,=∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______.

角平分线与等腰三角形及答案

角平分线与等腰三角形 1.(2011?牡丹江)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD. (1)如图②,当∠C≠90°,AD为∠BAC的 角平分线时,线段AB、AC、CD又有 怎样的数量关系?不需要证明,请直接 写出你的猜想: (2)如图③,当AD为△ABC的外角平 分线时,线段AB、AC、CD又有怎样 的数量关系?请写出你的猜想,并对你 的猜想给予证明. 2.(2010?西宁)(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线. (Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P 介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN, 过角尺顶点P的射线OP就是∠AOB的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由; (2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方 案是否可行?请说明理由.

3.(2007?福州)如图,直线AC∥BD, 连接AB,直线AC、BD及线段AB 把平面分成①、②、③、④四个部分,规 定:线上各点不属于任何部分.当动 点P落在某个部分时,连接PA,PB, 构成∠PAC,∠APB,∠PBD三个角.(提 示:有公共端点的两条重合的射线所 组成的角是0°角) (1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD; (2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立) (3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明. 4.(2013?房山区一模)(1)如图1,△ABC和△CDE都是等边 三角形,且B、C、D三点共线,联结AD、BE相交于点P, 求证:BE=AD. (2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和 BD为边在△BCD外部作等边三角形ABC、等边三角形CDE 和等边三角形BDF,联结AD、BE和CF交于点P,下列结论 中正确的是_________(只填序号即可) ①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.

相关文档
最新文档