脱硫脱硝工艺总结

脱硫脱硝工艺总结
脱硫脱硝工艺总结

大纲:

脱硫脱硝的发展趋势

常见脱硫工艺

常见脱硝工艺

常见脱硫脱硝一体化工艺

0脱硫脱硝的发展趋势

目前,脱硫脱硝行业的主要收入来源是在电站锅炉领域;钢铁行业将全面展开脱硫脱硝是必然趋势,其在脱硫脱硝行业市场中的占有率将会大幅提升;全国水泥企业将进行环保整改,因此未来脱硝产业在水泥行业也将有很好的市场前景。总之,电站锅炉是现在脱硫脱硝的主体,钢铁行业和水泥行业是未来新的增长点。

1常见脱硫工艺

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。

其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),

在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO

3

(石灰石)

为基础的钙法,以MgO为基础的镁法,以Na

2SO

3

为基础的钠法,以NH

3

为基础的

氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟

囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。

脱硫的几种工艺

(1)石灰石—石膏法烟气脱硫工艺

石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。

它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。

(2)旋转喷雾干燥烟气脱硫工艺

喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液

滴的吸收剂与烟气混合接触,与烟气中的SO

2发生化学反应生成CaSO

3

,烟气中

的SO

2

被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺

有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。

喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。

(3)磷铵肥法烟气脱硫工艺

磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收(磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:

烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。

肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解

磷矿粉(P

2O

5

含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和

后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。

(4)炉内喷钙尾部增湿烟气脱硫工艺

炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在~时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除

尘器收集下来。

该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。

(5)烟气循环流化床脱硫工艺

烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。

由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾

降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO

3和CaSO

4

。脱硫

后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。

此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,

主要由飞灰、CaSO

3、CaSO

4

和未反应完的吸收剂Ca(OH)

2

等组成,适合作废矿井

回填、道路基础等。

典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。

(6)海水脱硫工艺

海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中

的SO

32-被氧化成为稳定的SO

4

2-,并使海水的PH值与COD调整达到排放标准后排

放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、

燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。

(7)电子束法脱硫工艺

该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过

电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H

2SO

4

)和硝酸

(HNO

3

)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)

2SO

4

与硝酸氨NH

4

NO

3

的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过

输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品

仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。

(8)氨水洗涤法脱硫工艺

该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤

烟气,烟气中的SO

2

被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。

燃烧前脱硫

燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。煤的气化,是指用水蒸

汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H

2、CO、CH

4

等可

燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于%、挥发份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。

燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。

煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。

燃烧中脱硫,又称炉内脱硫

炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO

3

等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:

CaCO

3→CaO+CO

2

CaO+SO

2→CaSO

3

CaSO

3+1/2O

2

→CaSO

4

(1) LIMB炉内喷钙技术

早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。

(2) LIFAC烟气脱硫工艺

LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和IVO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%~85%。

加拿大最先进的燃煤电厂Shand电站采用LIFAC烟气脱硫工艺,8个月的运行结果表明,其脱硫工艺性能良好,脱硫率和设备可用率都达到了一些成熟的SO2控制技术相当的水平。我国下关电厂引进LIFAC脱硫工艺,其工艺投资少、占地面积小、没有废水排放,有利于老电厂改造。

燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD)

燃煤的烟气脱硫技术是当前应用最广、效率最高的脱硫技术。对燃煤电厂而

言,在今后一个相当长的时期内,FGD将是控制SO

2

排放的主要方法。目前国内

外火电厂烟气脱硫技术的主要发展趋势为:脱硫效率高、装机容量大、技术水平先进、投资省、占地少、运行费用低、自动化程度高、可靠性好等。

干式烟气脱硫工艺

该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。

(1)喷雾干式烟气脱硫工艺:喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦Niro Atomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。

(2)粉煤灰干式烟气脱硫技术:日本从1985年起,研究利用粉煤灰作为脱硫剂的干式烟气脱硫技术,到1988年底完成工业实用化试验,1991年初投运了首台粉煤灰干式脱硫设备,处理烟气量644000Nm3/h。其特点:脱硫率高达60%以上,性能稳定,达到了一般湿式法脱硫性能水平;脱硫剂成本低;用水量少,无需排水处理和排烟再加热,设备总费用比湿式法脱硫低1/4;煤灰脱硫剂可以复用;没有浆料,维护容易,设备系统简单可靠。

湿法FGD工艺

世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸钠(Na2CO3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。这种工艺已有50年的历史,经过不断地改进和完善后,技术比较成熟,而且具有脱硫效率高(90%~98%),机组容量

大,煤种适应性强,运行费用较低和副产品易回收等优点。据美国环保局(EPA)的统计资料,全美火电厂采用湿式脱硫装置中,湿式石灰法占%,石灰石法占%,两法共占87%;双碱法占%,碳酸钠法占%。世界各国(如德国、日本等),在大型火电厂中,90%以上采用湿式石灰/石灰石-石膏法烟气脱硫工艺流程。

石灰或石灰石法主要的化学反应机理为:

石灰法:SO

2+CaO+1/2H

2

O→CaSO

3

·1/2H2O

石灰石法:SO

2+CaCO

3

+1/2H

2

O→CaSO

3

·1/2H

2

O+CO

2

其主要优点是能广泛地进行商品化开发,且其吸收剂的资源丰富,成本低廉,废渣既可抛弃,也可作为商品石膏回收。目前,石灰/石灰石法是世界上应用最多的一种FGD工艺,对高硫煤,脱硫率可在90%以上,对低硫煤,脱硫率可在95%以上。

传统的石灰/石灰石工艺有其潜在的缺陷,主要表现为设备的积垢、堵塞、腐蚀与磨损。为了解决这些问题,各设备制造厂商采用了各种不同的方法,开发出第二代、第三代石灰/石灰石脱硫工艺系统。

湿法FGD工艺较为成熟的还有:氢氧化镁法;氢氧化钠法;美国Davy Mckee 公司Wellman-Lord FGD工艺;氨法等。

在湿法工艺中,烟气的再热问题直接影响整个FGD工艺的投资。因为经过湿法工艺脱硫后的烟气一般温度较低(45℃),大都在露点以下,若不经过再加热而直接排入烟囱,则容易形成酸雾,腐蚀烟囱,也不利于烟气的扩散。所以湿法FGD装置一般都配有烟气再热系统。目前,应用较多的是技术上成熟的再生(回转)式烟气热交换器(GGH)。GGH价格较贵,占整个FGD工艺投资的比例较高。近年来,日本三菱公司开发出一种可省去无泄漏型的GGH,较好地解决了烟气泄漏问题,但价格仍然较高。前德国SHU公司开发出一种可省去GGH和烟囱的新工艺,它将整个FGD装置安装在电厂的冷却塔内,利用电厂循环水余热来加热烟气,运行情况良好,是一种十分有前途的方法。

等离子体烟气脱硫技术

等离子体烟气脱硫技术研究始于70年代,目前世界上已较大规模开展研究的方法有2类:

(1)电子束辐照法(EB)

电子束辐照含有水蒸气的烟气时,会使烟气中的分子如O

2、H

2

O等处于激发

态、离子或裂解,产生强氧化性的自由基O、OH、HO

2和O

3

等。这些自由基对烟

气中的SO

2和NO进行氧化,分别变成SO

3

和NO

2

或相应的酸。在有氨存在的情况

下,生成较稳定的硫铵和硫硝铵固体,它们被除尘器捕集下来而达到脱硫脱硝的

目的。

(2)脉冲电晕法(PPCP)

脉冲电晕放电脱硫脱硝的基本原理和电子束辐照脱硫脱硝的基本原理基本一致,世界上许多国家进行了大量的实验研究,并且进行了较大规模的中间试验,但仍然有许多问题有待研究解决。

海水脱硫

海水通常呈碱性,自然碱度大约为~L,这使得海水具有天然的酸碱缓冲能

力及吸收SO

2

的能力。国外一些脱硫公司利用海水的这种特性,开发并成功地应

用海水洗涤烟气中的SO

2

,达到烟气净化的目的。

海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。

脱硫法以及脱硫法的方程式:

(1) SO

2

被液滴吸收;

SO

2(气)+H

2

O→H

2

SO

3

(液)

(2)吸收的SO

2

同溶液的吸收剂反应生成亚硫酸钙;

Ca(OH)

2(液)+H

2

SO

3

(液)→CaSO

3

(液)+2H

2

O

Ca(OH)

2(固) +H

2

SO

3

(液)→CaSO

3

(液)+2H

2

O

(3)液滴中CaSO

3

达到饱和后,即开始结晶析出;

CaSO

3(液)→CaSO

3

(固)

(4)部分溶液中的CaSO

3

与溶于液滴中的氧反应,氧化成硫酸钙;

CaSO

3(液)+1/2O

2

(液)→CaSO

4

(液)

(5) CaSO

4

(液)溶解度低,从而结晶析出

CaSO

4(液)→CaSO

4

(固)

SO

2与剩余的Ca(OH)

2

及循环灰的反应

Ca(OH)

2(固)→Ca(OH)

2

(液)

SO

2(气)+H

2

O→H

2

SO

3

(液)

Ca(OH)

2(液)+H

2

SO

3

(液)→CaSO

3

(液)+2H

2

O

CaSO

3

(液)→CaSO3(固)

CaSO

3(液)+1/2O

2

(液)→CaSO

4

(液)

CaSO

4(液)→CaSO

4

(固)

2常见脱硝工艺

常见的脱硝技术中,根据氮氧化物的形成机理,降氮减排的技术措施可以分为两大类:

一类是从源头上治理。控制煅烧中生成NOx。其技术措施:①采用低氮燃烧器;②分解炉和管道内的分段燃烧,控制燃烧温度;③改变配料方案,采用矿化剂,降低熟料烧成温度。

另一类是从末端治理。控制烟气中排放的NOx,其技术措施:①“分级燃烧+SNCR”,国内已有试点;②选择性非催化还原法(SNCR),国内已有试点;③选择性催化还原法(SCR),目前欧洲只有三条线实验;③SNCR/SCR联合脱硝技术,国内水泥脱硝还没有成功经验;④生物脱硝技术(正处于研发阶段)。

国内的脱硝技术,尚属探索示范阶段,还未进行科学总结。各种设计工艺技术路线和装备设施是否科学合理、运行是否可靠脱硝效率、运行成本、能耗、二次污染物排放有多少等都将经受实践的检验。

脱硝技术具体可以分为:

燃烧前脱硝: 1)加氢脱硝

2)洗选

燃烧中脱硝

1)低温燃烧

2)低氧燃烧

3)FBC燃烧技术

4)采用低NOx燃烧器

5)煤粉浓淡分离

6)烟气再循环技术

燃烧后脱硝

1)选择性非催化还原脱硝(SNCR)

2)选择性催化还原脱硝(SCR)

3)活性炭吸附

4)电子束脱硝技术

其中SNCR脱硝效率在大型燃煤机组中可达 25%~40% ,对小型机组可达80%。由于该法受锅炉结构尺寸影响很大,多用作低氮燃烧技术的补充处理手段。其工程造价低、布置简易、占地面积小,适合老厂改造,新厂可以根据锅炉设计配合使用。

而选择性催化还原技术(SCR)是目前最成熟的烟气脱硝技术,它是一种炉后脱硝方法,最早由日本于20世纪60~70 年代后期完成商业运行,是利用还原

剂(NH3,尿素)在金属催化剂作用下,选择性地与 NOx 反应生成N

2和H

2

O,而

不是被 O2 氧化,故称为“选择性”。目前世界上流行的SCR工艺主要分为氨法SCR和尿素法 SCR 两种。

3常见脱硫脱硝一体化工艺

一体化工艺是指将脱硫脱硝技术合并在同一个设备中进行。许多发达国家已开发出多种烟气脱硫脱硝一体化装置,但其中能实现工业化应用的较少,大部分

尚处于中间试验阶段。这些技术按照脱除机理的不同可分为两大类:联合脱硫

脱硝(Combined SO

2/NO

x

Removal)技术和同时脱硫脱硝(Simultaneous SO

2

/NO

x

Removal)技术。特别指出,这里所提及的联合、同时脱硫脱硝技术都是在同一个反应设备中完成的。而二者的差异在于能否只用一种反应剂并在不添加氨的条件下直接达到脱除的目的。联合脱硫脱硝技术实质上还是分两个工艺流程分别脱

除 SO

2和 NO

x

,采用氨作为还原剂。而同时脱硫脱硝技术才是真正意义上的一

体化脱除技术,用一种反应剂在一个过程内将烟气中的 SO

2和 NO

x

并脱除。

联合脱硫脱硝技术

炭质材料吸附法

炭质吸附材料主要是指活性炭和活性焦。其实,活性焦与活性炭制法相似,

但前者的突出特点是比表面积小,强度高,且细孔结构独特,与活性炭相比具有

更好的脱硫、脱硝性能。烟气中的SO

2

在活性焦微孔的吸附催化作用下生成硫酸;

NO

x 则在加氨的条件下经活性焦的催化还原生成水和 N

2

该工艺主要由吸附、解吸和再生三部分组成。烟气首先进入活性焦吸收塔的

第I段,在此SO

2被脱除,流经吸收塔的第II段时,喷入氨以除去NO

x

。其工艺

流程如图1所示。

图 1 活性焦吸附法工艺流程图

CuO吸附法

CuO吸收还原法一般采用负载型的CuO作为吸收剂,常见的有CuO/Al

2 O

3

该法的脱硫脱硝过程为:在烟气中注入适量的NH

3

,混合后的烟气通过装填有

CuO/Al

2O

3

吸收剂的床层时,CuO会与SO

2

在氧化性气氛中反应生成CuSO

4

,而 CuSO

4

及CuO对氨气选择还原NO

x

具有很高的催化活性。吸收饱和后的吸附剂被送去再

生,再生出的SO

2

可通过Claus装置进行回收。其简易工艺流程如图2所示。

图 2 CuO吸附法工艺流程图

CuO/Al

2O

3

法的优点是可联合脱硫脱硝,不产生干的或湿的废渣,没有二次

污染。该工艺能达到90%以上的SO

2脱除率和75%-80%的NO

x

脱除率。但长期运行

后,吸收剂表面会由于氧化铝硫酸盐化而导致吸附SO

2

能力下降,经过多次循环之后就失去了作用,这也是至今仍没有工业化报道的主要原因。

电子束法

电子束法(Electron Beam with Ammonia,EBA)是一种集物理与化学原理于一身的脱硫脱硝技术。

其基本原理是利用高能电子束辐照烟气,使之产生多种活性基团来氧化烟气

中的 SO

2和NO

x

,生成HNO

3

和H

2

SO

4

,最后与加入烟气中的NH

3

反应生成NH

4

NO

3

(NH

4)

2

SO

4

。工艺流程如图3所示。

图 3 电子束法脱硫脱硝工艺流程图

该方法在国外已进行了大量的研究并取得了良好的效果。运行数据表明SO

2的脱除率超过95%,NO

的脱除效率也达到了80%-85%。由此看来,EBA可同时获

x

得较高的脱硫脱硝效率,而且工艺简单,操作方便,对于不同煤种和烟气量的变化有较强的适应性,副产物硫酸铵和硝酸铵可用作化肥,在运行中无废水排放。但该技术的缺陷是需要庞大的X射线防护设备和昂贵的电子加速器,系统运行和维护工作量大,另外还存在氨泄漏等问题。

脉冲电晕法

脉冲电晕等离子体法(Pulse Corona Induced Plasma Chemical Process ,PPCP)是1986年Lee等根据电子束法的特点首先提出的,其脱硫脱硝原理基本与EPA 相同,而二者的差异在于高能电子的来源不同,EPA法是利用电子加速器获得高能电子,PPCP法则是利用高压脉冲电源放电获得活化电子,来打断烟气气体分子的化学键而生成自由基等活性物质,从而达到脱除的目的。其工艺流程如图4 所示。

图 4 脉冲电晕等离子体法脱硫脱硝工艺流程图

国内外学者对PPCP 法进行了大量的实验研究,结果表明该法的脱除效率均

可达到80%以上,另外氨与脉冲电晕的协同效应能显著提高SO

2

脱除率。与此同时,PPCP法还具有一定的除尘功效。可见,脉冲电晕法是一种能集脱硫脱硝和粉尘收集于一体的烟气治理方法。但该法和电子束法同样面临着能耗高,氨泄漏等问题,仍需要深入研究加以解决。

同时脱硫脱硝技术

NO x SO 技术

NO

x SO技术是一种干式吸附再生技术,采用担载在γ-Al

2

O

3

圆球(Φ)上的

钠盐为吸附剂,可同时去除烟气中的SO

2和NO

x

,处理过程包括吸收、再生等步

骤。具体操作流程是:经过除尘后的烟气进入吸收器,在此SO

2和 NO

x

同时被吸

附剂脱除,净化后的烟气排入烟囱。吸附剂达到一定的吸收饱和度后,被移至再生器内进行再生。吸附剂经再生处理并冷却后返回吸收器重复使用。其工艺流程如图5所示。

图 5 NO

x

SO工艺流程图

湿法同时脱硫脱硝技术

(1) 络合吸收法

某些金属鳌合物添加剂(如 Fe(II)·EDTA)会与NO结合,形成亚硝酰亚铁鳌合物。目前,大多数联合湿法工艺都采用在WFGD中添加金属螯合物的方法,

以达到脱除 SO

2和NO

x

的目的。但溶液中的Fe2+易被氧化,且再生工艺复杂,不

利于大规模推广应用。为了克服此缺点,Chang等提出用含-SH 基团的亚铁络合物作为吸收液,从而开辟了一条新的同时脱硫脱硝途径。该方法是利用具有强

还原性的半胱氨酸亚铁溶液吸收、还原烟气中的SO

2和NO

x

,并将其转移到液相。

SO

2和 NO

x

最后分别以SO

3

2-、SO

4

2-和N

2

的形式去除。钟秦等也对半胱氨酸亚铁溶

液同时脱硫脱硝进行了深入的实验研究,在模拟烟气的基础上得到了较高的脱硫

和脱硝效率。由此可见,与其他亚铁螯合剂相比,半胱氨酸亚铁溶液具有更大的优势。

但从实验转为应用,还有待进一步研究开发。

(2) NaClO

2

氧化吸收法

早在20世纪70年代末,国外许多学者就开始用NaClO

2

溶液吸收烟气中的

NO

x

。在前人研究的基础上,华北电力大学刘凤等通过自行设计的小型鼓泡反应器进行了烟气同时脱硫脱硝的实验研究。结果表明,在确定的最佳实验条件下,

脱硫、脱硝效率分别达到了100%和%。实验过程中NO和SO

2与NaClO

2

发生了氧化

反应,主要产物为SO

42-和NO

3

-,ClO

2

-反应后的主要产物为Cl-和ClO-。该技术的

工艺流程如图6所示。

根据华北电力大学NaClO

2

同时脱硫脱硝的实验研究情况,马宵颖以此为基

石进行了NaClO

2

同时脱硫脱硝脱汞的实验研究。实验表明,汞的存在对脱硫脱

硝率影响并不大,在最佳反应条件下,亚氯酸钠可以去除100%SO

2

、%NO、 76%单质汞。

综上所述,该法符合脱硫脱硝脱汞一体化的研究思想,同时能与当今占主流的湿法工艺有效的结合起来,简单易行,减少了占地面积而且脱硫脱硝效率较高。但同时也存在一些缺点,例如生成物复杂,不易进行二次利用,会对设备造成腐蚀性等。

烟气循环流化床技术

传统的烟气循环流化床(CFB)脱硫脱硝工艺是由Lurgi GmbH公司开发。虽然脱除工艺是在循环流化床体内完成的,但实质还是分开进行,吸收剂不能既脱硫又脱硝。针对这些问题,华北电力大学环境学院赵毅等人发明了一种“富氧型高活性吸收剂”,并已申请了专利。该吸收剂采用粉煤灰、消石灰和添加剂等原料制成,然后将吸收剂放入具有独特内、外循环结构的烟气循环流化床进行脱硫

脱硝研究,其工艺流程如图7所示。吸收剂与烟气中的SO

2

反应生成 CaSO 3 和

CaSO

4,与 NOx 反应生成 Ca(NO

3

)

2

,与单质汞(Hg)反应生成 HgCl

2

或HgO,并

被固体颗粒吸附,从而达到同时脱除烟气中硫氧化物、氮氧化物和汞的目的。实

验证明,当钙硫比Ca/(S+N)为时,对SO

2的脱除率在90%以上,NO

x

的脱除率在

60%以上。

图 7 烟气循环流化床工艺流程图

光催化氧化法

光催化处理污染物是一种新兴的颇有发展前途的技术,其中TiO

2

是被人们所熟知的光催化材料。

在紫外光的照射下,TiO

2

产生的空穴和电子与烟气中的水蒸气、氧气形成一

系列的活性自由基,这些活性物质几乎无选择的催化氧化SO

2和NO

x

。该技术工

艺简单,无二次污染,并具有较高的催化活性。

但由于在实际应用过程中大面积使用紫外光源有一定的难度,而限制了该技术的发展。

脱硫脱硝工艺概述

石灰石-石膏湿法脱硫工艺概述 烟气脱硫采用技术为石灰石-石膏湿法烟气脱硫工艺。脱硫剂采用石灰石粉(CaCO3), 石灰石由于其良好的化学活性及低廉的价格因素而成为目前世界上湿法脱硫广泛采用的脱硫剂制备原料。SO2与石灰石浆液反应后生成的亚硫酸钙, 就地强制氧化为石膏,石膏经二级脱水处理可作为副产品外售。 本设计方案采用传统的单回路喷淋塔工艺,将含有氧化空气管道的浆池直接布置在吸收塔底部, 塔内上部设置三层喷淋层与二级除雾器。从锅炉来的原烟气中所含的SO2与塔顶喷淋下来的石灰石浆液进行充分的逆流接触反应,从而将烟气中所含的SO2去除,生成亚硫酸钙悬浮。在浆液池中通过鼓入氧化空气,并在搅拌器的不断搅动下,将亚硫酸钙强制氧化生成石膏颗粒。脱硫效率按照不小于90%设计。其她同样有害的物质如飞灰,SO3,HCI 与HF也大部分得到去除。该脱硫工艺技术经广泛应用证明就是十分成熟可靠的。 工艺布置采用一炉一塔方案,石灰石制浆、石膏脱水、工艺水、事故浆液系统等两塔公用。#1锅炉来的原烟气由烟道引出,经升压风机(两台静叶可调轴流风机) 增压后, 送至吸收塔,进行脱硫。脱硫后的净烟气经塔顶除雾器除雾后通过烟囱排放至大气。#2炉的烟道系统流程与#1炉相同,布置上与#1炉为对称布置。 脱硫剂采用外购石灰石粉,用滤液水制成30%的浆液后在石灰石浆液箱中贮存,通过石灰石浆液泵不断地补充到吸收塔内。脱硫副产品石膏通过石膏排出泵,从吸收塔浆液池抽出,输送至石膏旋流站(一级脱水系统),经过一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行二级过滤脱水。石膏被脱水后含水量降到10%以下。石膏产品的产量为20、42t/h(#1、#2炉设计煤种,石膏含≤10%的水分)。脱硫装置产生的废水经脱硫岛设置的废水处理装置处理后达标排放或回收利用。 脱硝工艺系统描述 3、1 脱硝工艺的原理与流程 本工程采用选择性催化还原法(SCR)脱硝技术。SCR脱硝技术就是指在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮与水,从而去除烟气中的NOx。选择性就是指还原剂NH3与烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。 化学反应原理 4 NO + 4 NH3 + O2 --> 4 N2 + 6 H2O 6 NO2 + 8 NH3 + O2 --> 7 N2 + 12 H2O

脱硫脱硝工艺总结

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 脱硫脱硝工艺总结 大纲:脱硫脱硝的发展趋势常见脱硫工艺常见脱硝工艺常见脱硫脱硝一体化工艺0 脱硫脱硝的发展趋势目前,脱硫脱硝行业的主要收入来源是在电站锅炉领域;钢铁行业将全面展开脱硫脱硝是必然趋势,其在脱硫脱硝行业市场中的占有率将会大幅提升;全国水泥企业将进行环保整改,因此未来脱硝产业在水泥行业也将有很好的市场前景。 总之,电站锅炉是现在脱硫脱硝的主体,钢铁行业和水泥行业是未来新的增长点。 1 常见脱硫工艺通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等 3 类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称 FGD),在 FGD 技术中,按脱硫剂的种类划分,可分为以下五种方法:以 CaCO3(石灰石)为基础的钙法,以 MgO 为基础的镁法,以 Na2SO3 为基础的钠法,以 NH3 为基础的氨法,以有机碱为基础的有机碱法。 世界上普遍使用的商业化技术是钙法,所占比例在 90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。 湿法 FGD 技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和 1/ 28

处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法 FGD 技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法 FGD 技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。 特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。 按脱硫产物的用途,可分为抛弃法和回收法两种。

脱硫脱硝工艺总结

脱硫脱硝工艺总结 大纲:脱硫脱硝的发展趋势常见脱硫工艺常见脱硝工艺常见脱硫脱硝一体化工艺0脱硫脱硝的发展趋势目前,脱硫脱硝行业的主要收入来源是在电站锅炉领域;钢铁行业将全面展开脱硫脱硝是必然趋势,其在脱硫脱硝行业市场中的占有率将会大幅提升;全国水泥企业将进行环保整改,因此未来脱硝产业在水泥行业也将有很好的市场前景。总之,电站锅炉是现在脱硫脱硝的主体,钢铁行业和水泥行业是未来新的增长点。1常见脱硫工艺通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。其中燃烧后脱硫,又称烟气脱硫,在FGD技术中,按脱硫剂的种类划分,可分为以下五种方

法:以CaCO3为基础的钙法,以MgO 为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生,或者在湿状态下脱硫、在干状态下处理脱硫产物的烟气

各种脱硝技术工艺流程图大集合

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 高粉尘布置SCR系统工艺流程图

选择性非催化还原脱硝技术(SNCR)工艺流程图 SCR烟气脱硝工艺流程图

烟气脱硫脱硝行业介绍.docx

1.烟气脱硫技术 由于我国的大部分煤炭、铁矿资源中含硫量较高,因此在火力发电、钢铁、建材生产过程中由于高温、富氧的环境而产生了含有大量二氧化硫的烟气,从而给我国大气污染治理带来了极大的环保压力。 据国家环保部统计,2012年全国二氧化硫排放总量为2117.6万吨,其中工业二氧化硫排放量1911.7万吨,而分解到三个重点行业分别如下:电力和热力生产业为797.0万吨、钢铁为240.6万吨、建材为199.8万吨,三个行业共计1237.4万吨达到整个工业二氧化硫排的64.7%。“十一五”期间,我国全面推行烟气脱硫技术以后,我国烟气脱硫通过近十年的发展,积累了大量的工程实践经验,其中最常用的为湿法、干法以及半干法烟气三种脱硫技术。

1.1湿法脱硫技术 1.1.1石灰石-石膏法 这是一种成熟的烟气脱硫技术,在大型火电厂中,90%以上采用湿式石灰石—石膏法烟气脱硫工艺流程。该工艺采用石灰石(即氧化钙)浆液作为脱硫剂,与烟气中的二氧化硫发生反应生产亚硫酸钙,亚硫酸钙与氧气进一步反应生产硫酸钙。硫酸钙经过过滤、干燥后形成脱硫副产品石膏。 这项工艺的关键在于控制烟气流量和浆液的pH值,在合适的工艺条件下,即使在低钙硫比的情况下,也能保持较高的脱硫效率,通常可以达到95%以上。但是该工艺流程复杂且需要设置废水处理系统,因而工程造价高、占地面积大。同时,由于石灰石浆液的溶解性较低,即使通过调节了浆液pH值提高了石灰石的溶解度,但是在使用喷嘴时由于压力的变化,仍然容易发生堵塞喷嘴的情况并且易磨损设备,因而大幅度增加了脱硫设施后期的运营维修费用。 同时由于脱硫烟气中的粉尘成分复杂,在采用石灰石-石膏法时生成的脱硫石膏的杂质含量较多,在石灰石资源丰富的我国,这种品质有限的脱硫石膏很难具有利用价值,通常只能采用填埋进行处理。为了解决这一问题,有企业采用白云石(即氧化镁)作为脱硫剂来替代石灰石,从而使脱硫副产品由石膏变为了七水硫酸镁,而七水硫酸镁由于其水溶性高易于提纯,因而可以制成为合格品质的化学添加剂或化肥使用,其经济价值要远高于脱硫石膏。但是与其相关对的是脱硫剂白云石的成本也远高于石灰石,给企业后期运营成本也带来较大的压力。

各种烟气脱硝工艺的比较.

各种烟气脱硝工艺的比较 更新时间:09-4-28 15:32 我国地域大,各地情况不同,对于某一具体的工程采用何种烟气脱硝工艺,必须因地制宜,进行技术、经济比较。在选取烟气脱硝工艺的过程中,应遵循以下原则: 1、NO x的排放浓度和排放量满足有关环保标准; 2、技术成熟,运行可靠,有较多业绩,可用率达到90%以上; 3、对煤种适应性强,并能够适应燃煤含氮量在一定范围内变化; 4、尽可能节省建设投资; 5、布置合理,占地面积较小; 6、吸收剂和、水和能源消耗少,运行费用低; 7、吸收剂来源可靠,质优价廉; 8、副产物、废水均能得到合理的利用或处置。主要烟气脱硝工艺比较如下表: 脱硝工艺适应性特点优缺点脱硝率投资 SCR 适合排气量大,连 续排放源 二次污染小,净化效率高,技术成熟;设备 投资高,关键技术难度大 80%~90%较高 SNCR 适合排气量大,连 续排放源 不用催化剂,设备和运行费用少;NH3用量大, 二次污染,难以保证反应温度和停留时间 30%~60%较低 液体吸收法处理烟气量很小 的情况下可取 工艺设备简单、投资少,收效显著,有些方 法能够回收NO x;效率低,副产物不易处理, 目前常用的方法不适于处理燃煤电厂烟气 效率低较低 微生物法适应范围较大工艺设备简单、能耗及处理费用低、效率高、 无二次污染;微生物环境条件难以控制,仍 处于研究阶段 80%低 活性炭吸附法排气量不大同时脱硫脱硝,回收NOx和SO2,运行费用低; 吸收剂用量多,设备庞大,一次脱硫脱硝效 率低,再生频繁 80%~ 90% 高 电子束法适应范围较大同时脱硫脱硝,无二次污染;运行费用高, 关键设备技术含量高,不易掌握 85%高 只有SCR和SNCR法在大型燃煤电厂获得了较好的商业应用,其中SCR在全球范围内有数百台的成功应用业绩和十几年的运行经验,日本和德国95%的烟气脱硝装置采用

电厂脱硫脱硝工艺流程介绍

电厂在进行脱硫脱硝的时候方法是不一样的,所以其工艺流程也不相同,下面,就具体给大家分享一下。 脱硫工艺又分为两种,具体的流程介绍是:一、双碱法脱硫工艺 1)吸收剂制备与补充; 2)吸收剂浆液喷淋; 3)塔内雾滴与烟气接触混合; 4)再生池浆液还原钠基碱; 5)石膏脱水处理。 二、石灰石-石膏法脱硫工艺 1. 脱硫过程: CaCO3+SO2+1/2H2O→CaSO3·1/2H2O+CO2 Ca(OH)2+SO2→CaSO3·1/2H2O+1/2H2O CaSO3·1/2H2O+SO2+1/2H2O→Ca(HSO3)2 2. 氧化过程: 2CaSO3·1/2H2O+O2+3H2O→2CaSO4·2H2O

Ca(HSO3)2+O2+2H2O→CaSO4·2H2O+H2SO4 脱销工艺也分为两种,具体的流程介绍是:一、SNCR脱硝工艺1. 采用NH3作为还原剂时: 4NH3 + 4NO+ O2 →4N2 +6H2O 4NH3 + 2NO+ 2O2 →3N2 +6H2O 8NH3 + 6NO2 →7N2 +12H2O 2. 采用尿素作为还原剂时: (NH2)2CO→2NH2 + CO NH2 + NO→N2 + H2O CO + NO→N2 + CO2 二、SCR脱硝工艺 1. 氨法SCR脱硝工艺: NO+NO2+2NH3—>2N2+3H2O

4NO+4NH3+O2—>4N2+6H2O 2NO2+4NH3+O2—>3N2+6H2O 2. 尿素法SCR脱硝工艺: NH2CONH2+H2O→2NH3+CO2 4NO+4NH3+O2→3N2+6H2O 6NO+4NH3→5N2+6H2O 以上内容由河南星火源科技有限公司提供。该企业是是专业从事环保设备、自动化系统、预警预报平台开发的技术服务型企业。公司下辖两个全资子公司,分别从事污染源监测及环境第三方检测。参股两家子公司分别从事环保设备的生产制造、自动化软件平台及智慧环保相关平台的定制开发。

锅炉烟气脱硫脱硝工艺比选

锅炉烟气脱硫脱硝工艺比选 一、烟气脱硫: 根据吸收剂及脱硫产物在脱硫过程中的干湿状态,火力发电行业一般将脱硫技术分为湿法、干法和半干(半湿)法。 (1)湿法烟气脱硫技术是用含有吸收剂的浆液在湿态下脱硫和处理脱硫产物,该方法具有脱硫反应速度快、脱硫效率高、吸收剂利用率高、技术成熟可靠等优点,但也存在初投资大、运行维护费用高、需要处理二次污染等问题。应用最多的湿法烟气脱硫技术为石灰石湿法,如果将脱硫产物处理为石膏并加以回收利用,则为石灰石-石膏湿法,否则为抛弃法。 其他湿法烟气脱硫技术还有氨洗涤脱硫和海水脱硫等。 (2)干法烟气脱硫工艺均在干态下完成,无污水排放,烟气无明显温降,设备腐蚀较轻,但存在脱硫效率低、反应速度慢、石灰石利用率较低等问题,有些方法在设备大型化的进程中困难很大,技术尚不成熟(主要有炉内喷钙等技术)。 半干法通常具有在湿态下进行脱硫反应,在干态下处理脱硫产物的特点,可以兼备干法和湿法的优点。主要包括喷雾干燥法、炉内喷钙尾部增湿活化法、烟气循环流化床脱硫法、电子束辐照烟气脱硫脱氮法等。下表为几种主要脱硫工艺的比较。

目前,在众多的脱硫工艺中,石灰石—石膏湿法烟气脱硫工艺(简称FGD)应用最广。据统计,80%的脱硫装置采用石灰石(石灰)—石膏湿法,10%采用喷雾干燥法(半干法),10%采用其它方法。湿法脱硫工艺是目前世界上应用最多、最为成熟的技术,吸收剂价廉易得、副产物便于利用、煤种适应范围宽,并有较大幅度降低工程造价的可能性。 安徽电力设计院建议采用炉内与炉外湿法脱硫相结合的方法进行脱硫,脱硫效率可达98%。 二、脱硝: 烟气脱硝工艺可以分为湿法和干法两大类。 (1)湿法,是指反应剂为液态的工艺技术。通过氧化剂O2、ClO2、KMnO2把NO x氧化成NO2,然后用水或碱性溶液吸收脱硝。包括臭氧氧化吸收法和ClO2气相氧化吸收法。 (2)干法,是指反应剂为气态的工艺技术。包括氨催化还原法和非催化还原法。 无论是干法还是湿法,依据脱硝反应的化学机理,又可以分为还原法、分解法、吸附法、等离子体活化法和生化法等。 目前,世界上较多使用的湿法有气相氧化液相吸收法和液相氧化吸收法,较多使用的干法有选择性催化还原法(SCR)。 SCR脱硝:

废气脱硫脱硝工艺分析总结

废气脱硫脱硝工艺分析总结

————————————————————————————————作者:————————————————————————————————日期:

废气脱硫脱硝工艺分析汇总 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术

优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A、石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 、间接石灰石-石膏法:

脱硫脱硝差异比较

很多公司从火电厂烟气脱硫起步,开展烟气脱硝工作,经常自觉不自觉地用脱硫的思路去看待脱硝的问题,但是两者之间差别还是很大的。将脱硫、脱硝调试工作期间的一些心得体会罗列如下,供各位参考。 1)脱硫中二氧化硫浓度与燃煤硫份直接相关,这决定了我们用几台循环泵,液气比多大;脱硝则很大程度上取决于锅炉型式和燃烧水平,入口氮氧化物的浓度决定催化剂的设计,很大程度上也决定了液氨的消耗量。 2)脱硫Ca/S比与脱硝mol比的不同 脱硝效率70%,mol比大约0.703;效率80% mol则为0.805,与效率直接相关。脱硫则不然,不论效率95%还是80%,理想的Ca/S比一般为1.02--1.05。脱硫和脱硝的差别关键在于定义不一样。脱硫的Ca/S比概念是基于脱除的二氧化硫,而脱硝的mol比是基于入口氮氧化物浓度(不是脱除的氮氧化物)。如果两者都基于脱出的二氧化硫(氮氧化物),则比例基本上都是略大于1。 3)脱硫废水与脱硝废水泵 脱硫工艺过程中形成废水,需要不断地处理排放以保证系统的氯离子、重金属等维持在一定范围内。而脱硝氨区的废水泵所指的“废水”严格意义上不是脱硝废水,而是氨区雨水、消防水、氨罐喷淋水等汇集到地坑,(当然也有几率很小的安全阀动作、检修,收集氨气形成的氨水)由“废水泵”打出。 “废水泵”的概念容易导致人们误解,以为脱硝工艺过程产生废水,经常有人问脱硝废水如何处理、排放,就是这个概念的误导。 如果将废水泵改为地坑泵可能更有利于交流和沟通。 4)吸收剂的消耗量 脱硫石灰石的消耗与负荷近似成正比,很多人以为这条经验适用于脱硝,其实不然,氮氧化物的含量与锅炉负荷、温度有很大关系,低负荷工况下,往往伴随着氮氧化物浓度的提高,这也是有的电厂负荷低时,液氨消耗量反而高的原因。 从电厂经济运行的角度看,大负荷工况下运行,氮氧化物含量降低,减少了污染,提高了经济效益。不论从整个社会看,还是从脱硝运行的成本看,满负荷是科学发展的要求和体现。 5)运行控制的不同 脱硫主要控制的是浆液PH 值,在此基础上根据硫份、负荷、排放浓度考虑运行几层喷淋层。而脱硝直接控制的是出口浓度(或效率),随着电厂对脱硝运行水平期望值的提高,要实现压线运行,而氮氧化物浓度、烟气量受很多条件干扰,要避免短时间超标,控制就更难了。 6)脱除剂的过量导致不同后果 相同点:脱除剂的过量投入,都会引起效率的提高、脱除剂的浪费,抛开经济因素其带来的后果存在很大差异。 石灰石的过量,最明显的特点是PH的提高,石膏中石灰石含量超标,其主要问题是经济方面,石灰石浪费,石膏不纯,长期运行还有磨损、结垢问题。 氨气过量,抛开经济因素,最大的问题是氨逃逸。过量逃逸的氨气会和烟气中的三氧化硫反应,导致后面空预器的堵塞,直接威胁系统安全运行。 因此,烟气脱硝应避免一味追求“高效率”。 7)脱除剂过量原因

莱烧结烟气脱硫脱硝工艺的比较(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 莱烧结烟气脱硫脱硝工艺的比较 (标准版)

莱烧结烟气脱硫脱硝工艺的比较(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:烧结机头是钢铁行业SO2和NOx主要排放源。随着环境保护的压力不断加大,烧结烟气脱硫脱硝工艺的选择就显得尤为重要。本文主要介绍了目前国内外主流的烧结烟气脱硫脱硝工艺,并对各种工艺的优缺点进行比较分析。 钢铁生产在国民经济中具有重要作用,同时污染也较为严重。为了降低钢铁行业的污染物排放水平,生态环境部等五部门于2019年4月联合发布了《关于推进实施钢铁行业超低排放的意见》(环大气[2019]35号),在全国范围内推动钢铁行业超低排放改造。钢铁行业是SO2和NOx的排放大户,而烧结机头烟气是SO2和NOx的主要排放源。钢铁行业的超低排放要求烧结烟气SO2和NOx的排放质量浓度小时均值不高于35mg/m3和50mg/m3。因此,钢铁企业烧结烟气为满足达标排放的要求,必须采取脱硫脱硝措施。 1我国烧结烟气脱硫脱硝现状 目前,我国烧结烟气采取脱硫措施较为普遍,大部分烧结机均采

脱硫工艺流程

现运行的各种脱硫工艺流程图汇总

脱硫技术简介

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的

半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫

废气脱硫脱硝工艺分析汇总

废气脱硫脱硝工艺分析汇总 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术

优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A、石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 、间接石灰石-石膏法:

常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法:

最全面的烟气脱硫脱硝技术大汇总

最全面的烟气脱硫脱硝技术大汇总 第一部分脱硫技术 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A 石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。

B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法: 原理:柠檬酸(H3C6H5O7˙H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。 另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 二、干法烟气脱硫技术 优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。 缺点:但反应速度慢,脱硫率低,先进的可达60-80%。但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比较严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。 分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。 典型的干法脱硫系统是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。以石灰石为例,在高温下煅烧时,脱硫剂煅烧后形成多孔的氧化钙颗粒,它和烟气中的SO2反应生成硫酸钙,达到脱硫的目的。

烟气脱硫脱硝技术大汇总

烟气脱硫脱硝技术大汇总 第一部分 脱硫技术 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 1湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙 (CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石

灰法容易结垢的缺点。 B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法: 原理:柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。 另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 2干法烟气脱硫技术 优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。 缺点:但反应速度慢,脱硫率低,先进的可达60-80%。但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比较严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。 分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。 典型的干法脱硫系统是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。以石灰石为例,在高温下煅烧时,脱硫剂煅烧后形成多孔的氧化

各种烟气脱硫、脱硝技术工艺与其优缺点

各种烟气脱硫、脱硝技术工艺与优缺点 2019.12.11 按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。

系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A、石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成

结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 、间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法:

最主流烟气脱硫脱硝技术大汇总

最主流烟气脱硫脱硝技术大汇总 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 一、湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A 石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),

以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应 用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法: 原理:柠檬酸(H3C6H5O7˙H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。

脱硫工艺流程

现运行的各种脱硫工艺流程图汇总1

2

3

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 4

半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到 5

人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 6

脱硝电除尘脱硫简介

脱硝、电除尘、脱硫简介 一、脱硝系统: (一)#5、6机组: 1、主要设备简介: 1)低氮燃烧器:低氮燃烧器是国内外燃煤锅炉控制NOx排放的优先选用技术。现代低NOx燃烧技术将煤质、制粉系统、燃烧器、二次风及燃尽风等技术作为一个整体考虑,以低NOx 燃烧器和空气分级为核心,在炉内组织燃烧温度、气氛和停留时间,形成早期的、强烈的、煤粉快速着火欠氧燃烧,利用燃烧过程产生的氨基中间产物来抑制或还原已经生成的NOx。低NOx直流燃烧器:燃烧器首要任务是燃烧,浓淡偏差稳燃措施也有助于控制NOx。在煤粉喷嘴前,通过偏流装置(弯头、百叶窗、挡块)使煤粉浓缩分离成浓淡两股。喷嘴设扰流钝体,一方面可卷吸高温烟气回流,另一方面使浓相煤粉在绕流时偏离空气,射入高温回流烟气区域。这样,在燃烧器钝体下游,可形成高浓度煤粉在高温烟气中的浓淡偏差欠氧燃烧,从而有效控制燃烧初期的NOx生成量。 2)脱硝SCR:SCR是一种成熟的深度烟气氮氧化物后处理技术,无论是新建机组还是在役机组改造,绝大部分煤粉锅炉都可以安装SCR装置。典型的烟气脱硝SCR工艺流程见图,具有如下特点:

●脱硝效率可以高达95%,NOx排放浓度可控制到 50mg/m3以下,是其他任何一项脱硝技术都无法单独达到的。 ●催化剂是工艺关键设备。催化剂在和烟气接触过程中, 受到气态化学物质毒害、飞灰堵塞和冲蚀磨损等因素的影响,其活性逐渐降低,通常3~4年增加或更换一层催化剂。对于废弃的催化剂,由于富集了大量痕量重金属元素,需要谨慎处理。 ●反应器内烟气垂直向下流速约4~4.5m/s,催化剂通道 内烟气速度约5~7m/s。300MW、600MW及1000MW机组对应的每台SCR反应器截面积分别约80~90m2、150~180m2、230~250m2。 ●脱硝系统会增加锅炉烟道系统阻力约约700~1000Pa, 需提高引风机压头。 ●SCR系统的运行会增加空预器入口烟气中SO3浓度,并 残留部分未反应的逃逸氨气,二者在空预器低温换热面上反应形成硫酸氢铵,易恶化空预器冷端的堵塞和腐蚀,需要对空预器采取抗硫酸氢铵堵塞措施。 ●受制于锅炉烟气参数、飞灰特性及空间布置等因素的 影响,根据反应器的布置位置,SCR工艺分为高灰型、低灰型和尾部型等三种:高灰型SCR是主流布置,工作环境相对恶劣,催化剂活性惰化较快,但烟气温度合适(300~400℃),经济性最高;低灰型SCR和尾部型SCR的选择,主要是为了净化催化剂运行的烟气条件或者是受到布置空间的限制,由于需将烟气加热到300℃以上,只适合于特定环境。

烟气脱硫脱硝技术简介

烟气脱硫脱硝技术简介 :烟气脱硫脱硝技术是应用于多氮氧化物、硫氧化物生成化工工业的一项锅炉烟气净化技术。氮氧化物、硫氧化物是空气污染的主要来源之一。故应用此项技术对环境空气净化益处颇多。目前已知的烟气脱硫脱硝技术有PAFP、ACFP、软锰矿法、电子束氨法、脉冲电晕法、石膏湿法、催化氧化法、微生物降解法等技术。 一、磷铵肥法(PAFP)烟气脱硫技术 磷铵肥法(Phosphate Ammoniate Fertilizer Process,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单位共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。其脱硫率≥95%,脱硫副产品为氮硫复合肥料。此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。 二、烟气脱硫脱硝技术活性炭纤维法(ACFP)烟气脱硫技术 活性炭纤维法(Activated Carbon FiberProcess,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。 该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。由于工艺过程简单,设备少,操作简单。投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。该技术已获国家发明专利,并已列入国家高新技术产业化项目指南。 三、烟气脱硫脱硝技术软锰矿法烟气脱硫资源化技术 MnO2是一种良好的脱硫剂。在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。 常规生产工业硫酸锰方法是:软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。由于我国软锰矿品位不高,硫酸耗量增大,成本上升。该法与常规生产工业硫酸锰相比是,不用硫酸和硫精沙,溶液杂质也降低,原料成本和工艺成本都有降低,比常规生产工业硫酸锰方法节约成本25%以上,加之国家对环保产品在税收上的优惠,竞争力将大大提高。

相关文档
最新文档