TBM盘形滚刀安装方式优化与仿真研究

滚齿加工工作原理

图8-69a为滚齿加工的工作原理。滚齿时切削齿坯的刀具为滚刀,由于滚刀的螺旋升角较大,所以外形象一个蜗杆,滚刀在垂直于螺旋槽方向开槽,形成若干切削刃,其法向剖面具有齿条形状。因此当滚刀连续旋转时,刀齿可视为一个无限长的齿条的移动,如图8-69b。同时刀齿由上而下的进行切削,保持齿条(滚刀)和齿坯之间的啮合关系,滚刀就可在齿坯上加工出渐开线齿形,图8-69c。 滚齿加工的精度一般为8~7级,表面粗糙度Ra为3.2~1.6μm。 滚齿加工是在滚齿机上进行的,图8-70为滚齿机外形图。滚刀安装在刀架上的滚刀杆上,刀架可沿着立柱垂直导轨上下移动。工件则安装在心轴上。 滚齿时滚齿机必须有以下几个运动: 1.切削运动(主运动)即滚刀的旋转运动,其切削速度由变速齿轮的传动比决定。 2.分齿运动即工件的旋转运动,其运动的速度必须和滚刀的旋转速度保持齿轮与齿条的啮合关系。其运动关系由分齿挂轮的传动比来实现。对于单线滚刀,当滚刀每转一转时,齿坯需转过一个齿的分度角度,即1/z转(z为被加工齿轮的齿数)。 3.垂直进给运动即滚刀沿工件轴线自上而下的垂直移动,这是保证切出整个齿宽所必须的运动,由进给挂轮的传动比再通过与滚刀架相连接的丝杆螺母来实现。

在滚齿时,必须保持滚刀刀齿的运动方向与被切齿轮的齿向一致,然而由于滚刀刀齿排列在一条螺旋线上,刀齿的方向与滚刀轴线并不垂直。所以,必须把刀架扳转一个角度使之与齿轮的齿向协调。滚切直齿轮时,扳转的角度就是滚刀的螺旋升角。滚切斜齿轮时,还要根据斜齿轮的螺旋方向,以及螺旋角的大小来决定扳转角度的大小及扳转方向。 齿轮滚刀是一种专用刀具,每把滚刀可以加工模数相同而齿数不等的各种大小不同的直齿或斜齿渐开线外圆柱齿轮。 在滚齿机上除加工直齿、斜齿外圆柱齿轮外,也可以加工蜗轮、链轮。但不能加工内齿轮。对于加工双联齿轮和三联齿轮它也受到许多限制。

气弹簧使用方法

气弹簧使用方法 自由型气弹簧 自由型气弹簧(图 1 )在自由状态下长度最长(行程最小),在受到大于自身推力的外界压力后,可以被压缩,直至最小长度 (行程最大)。自由型气弹簧只有压缩状态 (外界施加压力和自由状态两种) ,在它的行程中无法进行自行锁紧。自由型气弹簧主要起支撑作用!

图一 图二 自由型气弹簧的原理如图2:在压力管内充上高压气体,运动活塞上图2有通孔,保证整个压力管内的压力不会随着活塞的移动而变化。而气弹簧的力主是要压力管和外界大气压作用于活塞杆横截面上的压力差。由于压力管内的气压基本不变,而活塞杆的横截面是一定的,所以在整个行程中气弹簧图一的力基本保持恒定。

自由型气弹簧凭借其轻便、工作平稳、操作方便、 价格优惠等特点,在汽车、工程机械、印刷机械、 纺织设备、烟草机械、制药设备等行业等到了广 发的应用! 第一步:根据您的实际情况,确定直径、行程、安装尺寸、外力等参数。然后参照下面的表格,看您所选的参数是否在表中所给出的范围之内。如果在表中所给的范围之内,说明您所选的参数是可以生产出来的。

第二步选择您所需要的接头,我们为客户准备多种接头形式。 叉形接头单片接头球形接头铰链接头 四、实物图

调角器 自锁型气弹簧(图1)又称调 角器,是一种可以在行程任一位置 锁定的气弹簧。在自锁型气弹簧的 活塞杆端部有一个针阀打开这个 针阀,则自锁型气弹簧可以象自由 型气弹簧那样运行;松开针阀,自锁 型气弹簧能够自型锁定在当时的 位置,并且自锁力往往很大,即 能够支撑相对较大的力量。所以自 锁型气弹簧在保持了自由型气弹 簧功能的同时,还可以在行程的任 一位置锁定,而且锁定后还可以 承载较大的负荷!自锁型气弹簧根 据自锁形式的不同,分为弹性自锁 和刚性自锁。刚性自锁又分为压入

齿轮滚刀刀具简介

齿轮滚刀刀具简介 (一)齿轮滚刀的形成 齿轮滚刀是依照螺旋齿轮副啮合原理,用展成法切削齿轮的刀具,齿轮滚刀相当于小齿轮,被切齿轮相当于一个大齿轮,如图9-24所示。齿轮滚刀是一个螺旋角β0很大而螺纹头数很少(1~3个齿),齿很长,并能绕滚刀分度圆柱很多圈的螺旋齿轮,这样就象螺旋升角γz很小的蜗杆了。为了形成刀刃,在蜗杆端面沿着轴线铣出几条容屑槽,以形成前面及前角;经铲齿和铲磨,形成后刀面及后角,如图9-25所示。 (二)齿轮滚刀的基本蜗杆 齿轮滚刀的两侧刀刃是前面与侧铲表 面的交线,它应当分布在蜗杆螺旋表面上,这个蜗杆称为滚刀的基本蜗杆。基本蜗杆有以下三种:

1.渐开线蜗杆渐开线蜗杆的螺纹齿侧面是渐开螺旋面,在与基圆柱相切的任意平面和渐开螺旋面的交线是一条直线,其端剖面是渐开线。渐开线蜗杆轴向剖面与渐开螺旋面的交线是曲线。用这种基本螺杆制造的滚刀,没有齿形设计误差,切削的齿轮精度高。然而制造滚刀困难。 2.阿基米德蜗杆阿基米德蜗杆的螺旋齿侧面是阿基米德螺旋面。通过蜗杆轴线剖面与阿基米德蜗螺旋面的交线是直线,其它剖面都是曲线,其端剖面是阿基米德螺旋线。用这种基本蜗杆制成的滚刀,制造与检验滚刀齿形均比渐开线蜗杆简单和方便。但有微量的齿形误差。不过这种误差是在允许的范围之内,为此,生产中大多数精加工滚刀的基本蜗杆均用阿基米德蜗杆代替渐开线蜗杆。 3.法向直廓蜗杆法向直廓蜗杆法剖面内的齿形是直线,端剖面为延长渐开线。用这种基本蜗杆代替渐开线基本蜗杆作

滚刀,其齿形设计误差大,故一般作为大模数、多头和粗加工滚刀用。 (三)滚刀的齿形误差 用阿基米德蜗杆代替渐开线基本蜗杆作滚刀,切制的齿轮齿形存在着一定误差,这种误差称为齿形误差。由基本蜗杆的性质可知,渐开线基本蜗杆轴向剖面是曲线齿形,而阿基米德基本蜗杆轴向剖面是直线齿形。为了减少造型误差,应使基本蜗杆的轴向剖面直线齿形与渐开线基本蜗杆轴向剖面的理论齿形在分度圆处相切。阿基米德滚刀基本蜗杆轴向剖面齿形角αx0,应等于渐开线蜗杆轴向剖面齿形的分度圆压力角,如图9-26所示。由斜齿轮法向剖面与轴向剖面齿形角换算关系可得 αx0=αn/cosγz 式中αx0-轴向剖面齿形角 αn-渐开线蜗杆法向剖面分度圆压力角;

齿轮滚刀变模数设计

齿轮滚刀变模数设计 前言 ** 看到论坛上有人问起,再想想自己好久没有总结经验了。于是发帖。 ** 这些东西可是在书上找不到的。 ** 因为该经验为个人经验,不涉及公司机密,且无专利限制,可以拿来和同仁共享。 ** 版权所有。转载注明出处。 1, 原理 1.1 变模数设计在原理上的可行性上非常简单。齿轮配对啮合和齿轮齿条啮合的基本条件之一,就是基节相等,即m1*cos(a1)=m2*cos(a2),所以从理论上来说,对于被加工齿轮参数(m1, a1),有无数个滚刀参数(m2, a2)与之配合。 1.2 滚刀在滚切过程中可近似看作齿条。齿轮齿形为滚刀刀刃包络线。 1.3 TIF为滚齿工序所要求有效渐开线起始点。如果后续工序有剃齿或磨齿需要留余量,则TIF指去除余量后有效渐开线的起始点。滚刀的设计基本要求之一,就是能够得到TIF。 2, 设计的好处 2.1 TIF 得到所要求的TIF是变模数设计的主要目的。很多情况下,客户图纸要求的TIF非常低,而滚刀干涉所得到的过渡曲线部分非常大,你已经采取了所有其他的办法,都不行。于是,减小压力角吧。 小压力角的齿条,在啮合中啮合系数更大,得到的起始点能够大幅下移。形象地说,能够往齿底方向更伸得下去。如果你有齿轮齿条模拟软件,能够看得很清楚,对比很鲜明。汉江以前没有模拟软件,现在可能已经有了。 如果通过变模数,已经把压力角压到不能接受的地步,还是离TIF很远,OK, 联系客户吧。 有时候客户希望能用一把刀切削几个规格的齿轮。往往同时满足所有的TIF要求是很困难的。这种情况下变模数无疑是你最好的帮手。 2.2 优化齿形参数 既然减小压力角能够将TIF的压力大幅降低,那么齿形参数的设计就不用捉襟见肘,那就尽情发挥你的设计才能吧。 2.3 使用原有设计 汽车变速器齿轮和所用齿轮刀具,绝大部分是非标。但是接到一份齿轮图纸,请不要急着设计新刀。你可以找你以前模数相近的设计,然后通过变模数设计,来校核是否能够使用原有设计。 2.4 部分标准化 甚至,对大客户或者系统解决方案,你可以进行一些部份的标准化。将能够滚刀规格的数量大幅下降。 2.5 优化侧后角和顶后角的组合 设计时可以通过改变压力角,变大或者变小,来调节侧后角,从而达到优化其与顶刃后角的组合。 3, 应用的好处 3.1 成本 减少滚刀规格,意味着滚刀制造成本降低。滚刀供应商会报给你更低的价格。 减少滚刀规格,也意味着降低了在滚刀采购上的资金运转量,降低了库存,降低了管理成本。 齿轮经常有试验项目或者不正常中断项目。这时会有一批滚刀成为闲置。2.3中所述能够帮上一部分忙。如果是客户愿意,还可以将旧滚刀重新磨齿形,投入使用。这时候变模数设计就能够提供更多的可能性。 3.2 切削性能 优化的参数,如2.2和2.5中所述,能够改善切削条件,提高滚刀的切削性能。 还有一个容易被忽略的好处是,模数变小(虽然幅度很小),能够增加每排牙齿的数量,从而增加窜刀次数,提高滚刀寿命。这个好处不是很明显。 4, 生产的好处 4.1 成本 滚刀的生产成本对批量非常敏感,特别是3件以内(含)。而汽车齿轮滚刀的批量,大部分是这个范围。所以降

滚刀设计软件的开发思路与实践

滚刀设计软件的开发思路与实践 拙笔:社会咸菜 春末夏初,东北的小伙伴们,秋裤脱了没?反正南方的MM们已经很轻凉了。 简单调皮的问候后,进入正题。 齿轮是机械行业同仁们接触最多的一类零件,几乎所有与机械相关的技术教育和技能教育的专业课程里面都有关于齿轮的内容。然而,即便是渐开线圆柱齿轮这种最基本的齿轮类型,大家在学校学到的也只是其最简单的几种情形,毕竟所有的参数都是标准值,至于滚刀嘛,也就简单提了一下。 在齿轮行业,尤其是需要大批量使用齿轮的细分行业里,很难见到那么标准的东西。具体说来,有非标模数的、非标压力角的、非标齿顶高系数的、非标顶隙系数的、齿顶有倒角的、齿根过渡圆弧有特殊要求的、齿面有精加工余量的、过渡曲线有沉切的、渐开线范围有要求的等等。这就对滚刀设计质量提出了很高的要求。 滚齿加工是展成包络的过程,我们无法从工件图纸上直接读出关于刀具的全部重要细节,这些都给手工设计和经验设计增加了障碍,使得非专业的滚刀设计者无法通过简单计算、查阅齿轮手册或者在各种资料的推荐范围内取值等方法设计出出满足要求的滚刀,也无法判定刀具商提供的设计方案是否合理。 可喜的是,计算机绘图软件、程序开发软件已经大量普及,很多中青年从业人员能编写计算机程序,主流的计算机绘图软件也有供使用者进行二次开发的接口。本人也利用VB6.0和AutoCAD做了实践,取得了预期效果,设计出了具有基本功能的滚刀设计软件。在此将思路和大概过程分享给大家。 一、滚刀设计的输入 设计齿轮滚刀首先要知道工件的必要信息以及滚刀的基本参数初设值。 具体如下:

也许有小伙伴会问:上表中两个模数和两个压力角,它们一定是分别相等的,写出来不是多此一举么?而且表中的还不一样。在此我做一个说明,在有些特殊情况下(要求更小的渐开线起始元、更大的齿面精加工余量、更高的粗加工效率等),滚刀设计需要做一下转位处理,其表现形式就是滚刀的模数和压力角与齿轮的都不相等。本案例已经包含了这一项,详见下文。 二、滚刀设计的主要步骤 1,转位设计 渐开线圆柱齿轮有如下性质:对于一个给定的齿轮,其基元直径、基元齿距、导程、齿数、齿顶元、齿根圆都是定值。模数、压力角、螺 旋角、分度元等参数为相互关联的可变值。可人为给定其中一个,即可 利用几何关系和前述定值计算出其它几个。具体如下: Mn1*cos(An1)= Mn2*cos(An2) -----------------基元不变 Mn1 /Sin(B1)= Mn2 /Sin(B2) -----------------导程不变给定了新的压力角An2,就可以算出与之匹配的模数Mn2和螺旋角B2。有新的模数、压力角、螺旋角做基础,其它齿轮参数计算就很简单 了,在此不赘述。 基于新的参数设计刀具的方法就是转位设计。设计刀具时通常不首先使用转位方法,只有在常规方法下设计不出满足要求的刀具时才会这 样做。 2,滚刀初步设计 依据原齿轮参数或转位后的齿轮参数,利用齿轮手册上的刀具设计

气弹簧使用指引

气弹簧使用指南 一、气弹簧综述 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的弹性元件。气弹簧的基本原理是在密闭的缸体内充入具有一定压力的氮气和油、或油气混合物,进而利用作用在活塞杆或活塞截面上的压力使气弹簧产生推力或拉力,气弹簧和机械弹簧的最大区别在于:前者的力-位移曲线斜率很小,在整个运动行程中力值基本保持不变,后者的力-位移曲线斜率很大。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 ※自由型气弹簧(压缩气弹簧)只有伸展(无外力作用下,长度最长)和压缩(外力大于气弹簧的推力,长度最短)两种状态,在行程中无法自行停止,主要起支撑作用,该类气弹簧有恒阻尼和变阻尼两种结构。在汽车、工程机械、纺织机械、印刷机械、办公家具等行业得到广泛应用。 ※自锁型气弹簧(升降可锁定气弹簧、角调可锁定气弹簧)通过其内部的阀门可以将气弹簧锁定在行程的任意位置,根据内部结构的不同,该类气弹簧有弹性锁定、压缩刚性锁定、拉伸刚性锁定、压缩拉伸双向刚性锁定等类型。自锁型气弹簧同时具备支撑、高度和角度调节的功能,而且操作方便灵活,结构简单。因而在医疗设备、家具、汽车等行业得到广泛应用。 ※随意停气弹簧(平衡气弹簧)通过其内部特殊的平衡阀机构,加上合理的外界负载设计,可以使气弹簧停在行程中的任意位置,但没有额外的锁紧力,它的特点介于自由型气弹簧和自锁型气弹簧之间。主要应用在厨房家具、医疗器械、电子产品等行业。 ※牵引气弹簧(拉伸气弹簧)是一种特殊的气弹簧:别的气弹簧在自由状态的时候都处在最长的位置,即在受到外力后是从最长的位置向最短的位置运动,而牵引式气弹簧的自由状态在最短的位置,受到牵引时从最短处向最长处运行。牵引气弹簧中也有相应的自由型、自锁型等产品。 ※阻尼器通过活塞上的阻尼结构可使阻尼力随着运动速度而改变,可以明显的对相连的机构的速度起阻尼作用,该类产品有多种结构以适合不同的用途。在汽车、家电产品、医疗设备上都用得比较多。 二、气弹簧型号标记方法 ※气弹簧的标记由1代号、2活塞杆直径、3缸体外径、4行程、5伸展长度、6活塞杆端接头形式与缸体端接头形式、7最小伸展力组成。规定如下: ×××××/××-×××-××× (××-××) ××× 1 2 3 4 5 6 7 ※各种气弹簧代号:压缩气弹簧(YQ)、升降可锁定气弹簧(SKQ)、角调可锁定气弹簧(JKQ)、平衡气弹簧(PQ)、拉伸气弹簧(LQ)、阻尼器(ZQ) ※活塞杆直径、缸体外径、行程、伸展长度单位为毫米(mm),最小伸展力单位为牛顿(N) ※接头形式代号:单片(O)、双耳(U)、单耳(L)、球铰(B)、螺纹(M)、锥度(S) ※标记示例:压缩气弹簧的活塞杆直径为10mm,缸体外径为22mm,行程为260mm,伸展长度为630mm,活塞杆端接头为单片式,缸体端接头为球铰式,最小伸展力为380N。 标记为:YQ10/22-260-630(O-B)380 三、气弹簧规格系列

齿轮滚刀使用及检验标准

齿轮滚刀(直槽)使用及检验标准 一、齿轮滚刀使用标准 1、滚刀的轴向窜刀 滚刀使用过程中,除进行正确的安装、调整外,还应进行轴向窜动,以延长滚刀的使用寿命。 1.1滚刀的起始安装位置 如图1-1 滚刀切削区域向齿轮端面的投影图,滚刀实际切削区域长度=切出长度(l 0)+切入部分(l )。 图1-1滚刀切削区域向齿轮端面的投影图 切出长度l 0= 0*cos tan 0*cos ha β αδ 式中0ha ——滚刀的齿顶高; β——被切齿轮的螺旋角; 0α——滚刀刀齿的齿形角; δ——滚刀的安装角。

切入长度l 式中1ra ——被切齿轮齿顶圆半径; 1h ——滚齿时的切入深度; δ——滚刀的安装角。 安装滚刀的初始位置时,应使展成中心位于距切入端端面为l 的位置上,检验计算展成中心与切出端端面距离不小于l 0。 1.2 轴向窜刀的方向 滚刀的轴向窜刀,通常应在与被加工齿轮旋转方向相反的方向上进行,如图1-2轴向窜刀的方向。 图1-2 轴向窜刀的方向 1.3 轴向窜刀的窜刀量 直槽滚刀的窜刀量S 可用下式确定: S=* d *cos d nm c Z π γ 式中n ——滚刀头数; m ——滚刀模数;

Zd——滚刀圆周齿数; γ——滚刀螺旋升角; d c——(确定窜刀量大小的系数,为4、5、6、7、8、9等整数值)。 推荐轴向窜刀的窜刀量S等于滚刀的轴向齿距Px。 1.4轴向窜刀的时机 滚刀轴向窜刀的时机推荐为后刀面磨损约为磨钝标准的25%~30%时,即进行窜刀(单工步未加工完除外)。 在不同的切削条件下,滚刀窜刀量和窜刀时间间隔的最佳数值还要根据实际磨损情况,试验分析后确定。 1.5轴向窜刀的方法 我车间滚齿机的轴向窜刀需靠手动完成,基本方法有两种,推荐方法为方法一。 方法一:按照确定窜刀量的各种倍数值,制作垫刀垫圈,通过变换滚刀心轴上垫圈的厚度,使滚刀沿其轴线移动,以改变滚刀对被加工齿轮轴线的位置。 方法二:切削一定数量的齿轮后,将分齿挂轮脱开,并转动滚刀,以达到轴向窜刀的目的。 2 注:初次磨钝至标准下限即进行刃磨,逐步摸索加工不同材质工件的磨损带宽度理想值。 二、齿轮滚刀检验项目及检验标准 1、容屑槽周节的最大累积误差 容屑槽周节的最大累积误差用于表示滚刀前刀面在圆周上分布的不均

齿轮滚刀全参数化计算机辅助设计

齿轮滚刀全参数化计算机辅助设计 摘要:介绍了齿轮滚刀全参数化计算机辅助设计软件中有关滚刀各部分尺寸计算、自动生成零件图、切齿仿真、被切齿轮对啮合仿真的实现方法,并介绍了三维啮合仿真的动画制作过程。 关键词:齿轮滚刀计算机辅助设计切齿仿真啮合仿真 Whole Parameter Computer Aided Design for Gear Hobs Qu Baiqing et al Abstract:The practical methods about dimension calculation,auto-drafing for spare parts pattem,tooth cutting emulation and engaging emulation for a pair of gears being cutted in the software of the whole parameter CAD for gear hobs are introduced.The procedure of the animation of the three dimensional gear engaging emulation is also presented. Keywords:gear hob CAD tooth cutting emulation gear engaging emulation 一、引言 齿轮滚刀是加工直齿和斜齿圆柱齿轮最常用的刀具。用传统方法对齿轮滚刀进行设计时,由于参数太多,计算复杂,绘图繁琐,不仅设计效率低,而且容易发生错误。更重要的是,在齿轮加工完毕之前,一般没有把握确定滚刀设计是否合理,用其加工的齿轮齿廓曲线是否准确,也无法证实被切削的一对啮合齿轮在运行过程中是否会发生干涉现象等。 目前,AutoCAD软件在机械制造业中的使用已日益广泛。因此,在

盾构滚刀简介

17”盘型滚刀结构和技术参数介绍 图 1 目前国内生产盾构刀具的厂家相当多。 在关键部件轴承的选择,国内多选择USA的“铁木肯”系列轴承。海瑞克选poland 的SKF系列轴承。所选都是世界知名品牌。我认为所有设计都围绕该部件为基准来设计的,所 有我定为关键部件。(图3) 刀圈多为H13 钢(USA牌号,国内和热做模具钢接近的合金钢材料),热处理后HRC55-60. 与刀榖做过盈配合(过盈量在0.15-0.25mm ),预热套装到刀榖配合位置。在加挡圈以防止 刀圈外脱。 轴多采用轴承钢之内的材料;刀榖,上下端盖采用合金结构钢材料锻打,调质后加工而 成。下端盖与轴配合目前国内的产品多为间隙配合在加工楔口防止转动,以O型圈做密封的方法设计的,而海瑞克是下端盖与轴为小过盈的紧配合。上端盖采用与轴的螺纹配合,通过4 个环形阵列的扳手孔旋紧到轴上。(扳手要自己做) 浮动密封的浮动环目前也有大约 2 种加工情况,一种车床加工再做表面处理的,在研磨;一种为时效处理后磨床加工的,在研磨的。相比后者较好。浮动密封的胶圈要恢复性好,弹 性好,耐油。(图4) 防尘密封主要国内厂家的一些滚刀有这个设计,海瑞克没见到过,所以上图片中没有显 示。就是在刀榖与上下端盖的间隙处,在刀榖内加工环槽,在里面安装密封条与端盖发生小 摩擦以防止岩层粉末进入刀体内。 除单刃滚刀外还有双刃, 3 刃等多种滚刀,即在刀榖上安装多个刀圈,分单个刀榖上安装 2 个刀圈;多个刀榖上安装多个刀圈(多为中心滚刀图5) 以海瑞克17”滚刀出厂标准,刀圈外径为17 英寸,扭矩约24-35n.m ,刀圈HRC55-60(未

做准确测量,凭经验和粗测设备估计和参照国内出厂数据)图 3 图

气弹簧安装方式

气弹簧的安装方式怎么计算? 气弹簧气动支撑杆的安装方法 1 气弹簧的特点 气弹簧是一根举力(本文用F表示)近似不变的伸缩杆,在汽车,飞机,医疗器械,宇航器材,纺织机械等领域都有广泛的应用。它的内部构造是一条可在密闭筒腔内作直线运动的活塞杆。密闭筒腔内充满由高压气体和可溶解部分高压气体的液体所构成的液2气两相混合体。气弹簧的举力由高压气体推动活塞杆产生。推动力决定于高压气体的压强。高压气体在液体中的溶解量随气体压缩增加(此过程对应气弹簧工作于压缩阶段),随气体膨胀而减少(此过程对应气弹簧工作于伸长阶段),使得密闭筒腔内的高压气体的密度始终维持一个近似恒值,也就是气压近似不变(即举力近似不变)。 2 气弹簧的安装研究 表面上看,将气弹簧安装到客车舱门上非常简单,实际上安装设计所要解决的问题远非所想象的简单。气弹簧在舱门上的一般安装状态已知安装信息只有门体(几何形状,质量,重心,材料等),铰链和开度α要求,未知安装信息却多达6个(X1,X2,Y1,Y2,Z,F)。而由数学理论知道,要解出6个未知数,必须要解出由这6个未知数构成的6个方程式组成的方程组。由此可见,要求设计人员从纯理论形态入手解决气弹簧的安装几乎是不可能的。因此,从工程角度切入,深挖安装信息,简化未知数,是解决气弹簧安装设计问题的关键所在。 2-11 力学分析 门体,铰链(门体作开关运动的中心)和气弹簧构成一个杠杆系统。由于气弹簧对铰心的力臂远小于门重对铰心的力臂,所以这是一个费力杠杆系统。即是说,气弹簧举力必须远大于门重才可以将门体支撑起来。这是一个很重要的隐蔽条件。有了这个条件,才可以初选多大举力的气弹簧。气弹簧的举力可以确定为门重的3倍左右。当然也可以确定为门重的2倍,4倍,5倍,6倍左右。对同一个门体来说,相对于气弹簧举力取3倍门重,当气弹簧举力取2倍门重时,气弹簧力臂要增大,工作行程要增大,总长度要增加,安装空间增大;反之,当气弹簧举力取4倍以上门重时,气弹簧力臂要减小,工作行程要减小,总长度要减小,安装空间减小。这可根据实际安装空间选取气弹簧举力。笔者在实际设计中常用3倍数。 2-12 确定气弹簧的上下安装点 气弹簧的总长度,工作行程是在确定上下安装点过程中确定的。确定气弹簧上下安装点是整个气弹簧安装设计的最难点。下面以单轴铰链门体为例来说明"两圆法"在进行气弹簧安装设计的应用。安装示意图及有关参数如图2所示。下面的计算是以门体为规则,匀质的理想模型(重心=几何中心)为基础进行的。门体在开门过程中对铰心O的力矩不断变化(小→大→小),有两个峰值,一个是最大值,位于门体处于水平位置(α=90°)时;一个是固定值,位于门体处于开尽位置(α=最大值)时。根据物理学杠杆平衡原理可知,门体要在气弹簧的作用下自动打开和开尽以后长时间不掉下来,气弹簧在门体处于这两个特殊位置时对铰心O的瞬时力矩必须大于等于门体在这两个特殊位置时门重对铰心O的瞬时力矩。由此可以确定气弹簧所需的最大力臂(R),最小力臂(r)分别为(列式,计算过程略): 最大力臂R=G (H/2-h)2F≈G H4F,(当Hmh时)最小力臂r=G (H/2-h) cos(α-90°)2F≈G H cos(α-90°)4F,(当Hmh时)式中G为门重,N;F为气弹簧举力,N;H为门高,mm;h为门顶到铰心的垂距,mm;α为门体最大开度,°;2为每个门使用两支气弹簧作支撑。以铰心O为圆心,以最力臂R,最小力臂r为半径分别作大小两个圆。作小圆的一条切线的延长线交大圆于A点,则A 点为气弹簧的上安装点。气弹簧的下安装点B则必然在此切线下方的某一点上。AB两点的距离L为气弹簧的总长度。需要说明的是:A点必须落在门体内侧并离门面板竖直距离20mm

滚刀工作原理分析

滚刀工作原理分析 盘形滚刀简称盘刀,就是隧道掘进机滚压破岩常用得一种刀具型式,典型得盘刀一般由刀圈、轮毂与轴组成。?盘形滚刀在各类隧道掘进机上使用非常广泛,主要用于全断面岩石隧道掘进机、盾构及顶管设备。过去盘形滚刀主要用于全断面岩石隧道掘进机刀盘破岩,随着隧道及地下工程得快速发展,所遇到地层复杂性逐渐增加,开始在盾构刀盘上使用盘刀(同时布置切刀与滚刀),形成所谓得复合式盾构,以应对各种软硬不均或富水地层,如砂卵(砾)石地层、风化岩地层及越江、跨海隧道得高水压地层_1]。实践证明,这种盾构对地层具有良好得适应性,大大拓展了盾构得适用范围。国际上现在有研发全能隧道掘进机得趋势, 1盘形滚刀得受力及破岩机复合式盾构应该就是全能隧道掘进机得一种雏型。? 理?每把盘形滚刀在切割岩石得过程中,刀刃与岩石之间都存在3个方向得相互作 用力:(1)法向推压力FN,指向开挖面,由刀盘得推力提供;(2)切向滚动切割力FR,指向滚刀切向,由刀盘转矩提供;(3)滚刀边缘得侧向力FIJ,由滚刀对岩石得挤压力与刀盘旋转得离心力所产生,指向刀盘中心,其数值较小,与其它2个力不属于同一数量级,一般不考虑。3个方向得作用力见图1。切向滚动切割力主要取决于推力、切深及滚刀直径。盘刀直径一定,切深越大,所需滚动切割力越大;切深确定时,滚动切割力随盘刀直径得增大而减小。?刀盘工作时,滚刀先与开挖面接触,在推力作用下紧压在岩面上,随着刀盘得旋转,盘形滚刀一方面绕刀盘中心轴公转,同时绕自身轴线自转。盘形滚刀在刀盘得推力与转矩共同作用下,在掌子面上切出一系列同心圆沟槽。刀盘旋转并压人岩石得过程中,盘形滚刀对岩石将产生挤压、剪切、拉裂等综合作用,首先在刀刃下会产生小块破碎体,破碎体在刀刃下被碾压成粉碎体,继而被压密形成密实核,随后密实核将滚刀压力传递给周围岩石,并产生径向裂纹,其中有一条或多条裂纹向刀刃两侧向延伸,到达自由面或与相邻裂纹交汇,形成岩石碎片,整个过程如图2所示。由此形成得岩渣由破碎体、粉碎体及岩石碎片组成,各部分得组成比例取决于岩石性质、刀圈几何尺寸、推压力及刀问距。 图1滚刀受力示意图 ?图2 滚刀破岩原理示意图 2、1 布刀方式分析?盘形滚刀 2盘形滚刀在刀盘上得布置? 在刀盘上得布置应满足一定得力学与几何学规律,布置时一般应满足:(1)尽可能使滚刀及刀盘受力均匀,使作用在大轴承上得径向载荷为零;(2)使前面得刀具能够为后面得刀具提供破岩临空面,形成前后滚刀顺次破岩,如图3所示。 图3 滚刀顺次破岩原理 因此,盘形滚刀在刀盘上一般按单螺旋线或双螺旋线模式,相邻滚刀按一定相位差布置.如R0bbins型与Java型掘进机得中心刀都布置在同一直线上;Robbins型掘进机正刀与边刀都以相邻2把刀为一组呈对称布置(相位角相差180°,相邻2组刀具沿刀盘轴线旋转90°);而Java型掘进机正刀与边刀亦以对称布置为原则,但相邻刀具相隔160~~165°.?盘形滚刀通常有单刃、双刃及三刃3种形式。盘形滚刀在刀盘上得布置应便于形成顺次破岩,即前一把滚刀先形成较好得切割轨迹及延伸裂纹,后一把滚刀到达时产生得裂纹将终止于前把滚刀形成得裂纹(即裂纹贯通、形成岩片)。由于双刃与三刃滚刀不能较好地满足所有滚刀顺次破岩得要求,且容易产生不均匀磨损,造成刀具受力恶化及刀具浪费,应尽可能选用单刃滚刀,边刀也应采用单刃滚刀.但为了节约刀盘空间,无论盾构还就是掘进机,在刀盘中心大都布置双刃或三刃滚刀。 2、2 刀间距得确定原则及方法?无论就是采用哪种方式布置刀具,刀间

齿轮滚刀安装角的调整方法计算口诀

齿轮滚刀安装角的调整方法计算口诀 摘要:本文主要介绍了一种在滚齿机上加工斜齿圆柱齿轮时,滚刀安装角的调整方法及计算口诀,借助于该口诀,能够方便地进行滚刀安装角大小计算及偏转方向确定,从而迅速进行滚刀安装。 关键词:滚刀;安装角;方法;口诀 在Y3150E型滚齿机上加工斜齿圆柱齿轮时,为了切出准确的齿形,应使滚刀和工件处于正确的“啮合”位置,即保证滚刀刀齿的排列方向与齿轮齿槽方向一致,从而加工出一定螺旋角的齿轮齿槽。为此,在加工齿轮前须将滚刀轴线相对于齿轮顶面偏转一定的角度进行安装,该偏转角称为滚刀安装角,用δ表示。滚刀安装角δ的大小和方向不仅与滚刀螺旋升角ω大小和方向有关,还与被加工齿轮的螺旋角β的大小和方向有关,这就给滚刀的实际调整安装带来了不便。本人总结出“八字口诀”,来帮助滚刀的调整安装。 如图所示为滚切斜齿圆柱齿轮时滚刀轴线偏转情况,其安装角大小为:δ=β±ω(β>ω) (a)右旋滚刀滚切右旋齿轮 (b)左旋滚刀滚切右旋齿轮 右旋滚刀滚切左旋齿轮 (d)左旋滚刀滚切左旋齿轮 滚切斜齿圆柱齿轮时滚刀的安装角 从图中不难看出,当滚刀的螺旋升角ω的旋向与齿轮螺旋角β的旋向相同时,滚刀安装角δ的大小为β-ω;当滚刀的螺旋升角ω的旋向与齿轮螺旋角β的旋向不同时,滚刀安装角δ的大小为β+ω。滚刀安装角δ的偏转方向与被加工齿轮的旋向有关,当加工右旋齿轮时,滚刀逆时针偏转;当加工左旋齿轮时,滚刀顺时针偏转。根据以上分析,可总结出如下口诀:“同减异加,右逆左顺。” 同减异加:是指当滚刀的螺旋升角ω的旋向与齿轮的螺旋角β的旋向相同时,滚刀安装角计算公式取“-”号;当滚刀的螺旋升角ω的旋向与齿轮的螺旋角β的旋向不同时,滚刀安装角计算公式取“+”号。 右逆左顺:是指当加工右旋齿轮时,滚刀逆时针偏转安装角δ;加工左旋齿轮时,滚刀顺时针偏转安装角δ。 例如:用ω=2°的左旋滚刀加工β=20°的左旋齿轮时,则对照口诀用“同减”和“左顺”来确定。即:滚刀的安装角大小为δ=β-ω=20°-2°=18°,方向为顺时针偏转。 又如:用ω=2°的左旋滚刀加工β=20°的右旋齿轮时,则对照口诀用:“异加”和“右逆”来计算和偏转。即:滚刀的安装角大小为δ=β+ω=20°+2°=22°,方向为逆时针偏转。 加工直齿轮时,因β=0°,则滚刀安装角δ为: δ=±ω 其偏转方向决定于滚刀的螺旋升角ω的旋向,即左旋时逆时针偏转ω,右旋时顺时针偏转ω,此时不必用以上口诀。

滚刀分析计算流程

3.1.1 岩石试件模拟 3.1.2 盘形滚刀模拟 分析流程: 第一阶段 1.在硬岩a中以带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 2.在较硬岩b中带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 3.在较软岩c中带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分

三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 4.在软岩d中带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 通过观察破岩面积和受力分析在每种岩石条件下的最佳滚刀尺寸第二阶段 1.在硬岩a中选取第一阶段中获得的硬岩下的最佳滚刀模型,选取滚刀的间距50、60、70mm进行计算(两个滚刀是有先后顺序的,不是同时压入),通过观察两个滚刀的裂纹的情况,分析最佳滚刀间距。 2.在软岩d中选取第一阶段中获得的硬岩下的最佳滚刀模型,选取滚刀的间距70、80、90mm进行计算,通过观察两个滚刀的裂纹的情况,分析最佳滚刀间距。 第三阶段 1.通过第一阶段的计算分析硬岩a的条件下,最佳滚刀尺寸时的应力情况,来计算随着滚刀贯入度的增加,应力的增长情况。然后采用两个滚刀同时压入岩石,在几个贯入度时,观察裂纹的闭合连接情况,取裂缝连通时的贯入度为最优贯入度。 2.通过第一阶段的计算分析软岩d的条件下,最佳滚刀尺寸时的应力情况,来计算随着滚刀贯入度的增加,应力的增长情况。然后采用两个滚刀同时压入岩石,在几个贯入度时,观察裂纹的闭合连接情况,取裂缝连通时的贯入度为最优贯入度。 第四阶段 滚刀齿数2、4、8时,滚刀间距80mm(8齿滚刀:8个单滚刀同时压入岩石,无先后顺序),随便取一种岩石情况,贯入度取10mm,掘进速度取3m/h 分析滚刀接触力,裂缝情况。

齿轮工艺员必备的滚刀知识

齿轮工艺员必备的滚刀知识 一、齿轮滚刀概念 △齿软滚刀实质上是一个渐开线圆柱斜齿轮,其齿数很少(常见的为一齿),而螺旋角很大(接近90度),故外型不象齿轮而呈蝸杆状(该蝸杆称之为滚刀的基本蝸杆)。 △常见的大部份滚刀的基本蝸杆为阿基米德蝸杆。 △齿轮滚刀端面上标志m α 是为mn αn HSS为高工钢 D+F为切深。 △滚齿时滚刀转一圈,齿轮转n齿(n为滚刀头数常为1)。 △滚刀常用精度为AA A B 可加工7至9级齿轮。精度有GB JB 企标之分,以GB精度最高(与ISO等效)。 △加工齿数较多的齿轮时,滚刀应长些,否则刀子易磨损,若用较短的滚刀则应增加切削锥,以减轻负荷。 △标谁齿轮滚刀是用来加工ha*=1 C*=0.25 αn=20度的渐开线圆柱外齿轮。齿轮可以是变位的或不变位的,可以是斜齿或直齿。 △只要滚刀的基节和工件的基节相等,且滚刀齿深足够,且该滚刀就可加工该工件,不必拘宜于非要m α 对应相等。 二、普通齿轮滚刀的结构尺寸 表一国内工具厂常用的小结构尺寸 mm 模数 Module 外径 Oustside Dia 长度 Overall Length 孔径 Hole Dia 1 50 40 22 1.25 1.5 55 45 1.75 2 50 2.25 60 2.5 65 55 2.75 3 70 60 27 3.25 75 65 3.5 70 3.75 80 70 4 75 4.25 85 80 4.5 85 5 90 90 5.5 100 95 32 6 105 100 6.5 110 7 115 105 8 125 115

9 140 130 40 10 150 135 表二GB6084规定的结构尺寸(普通型) mm 模数 Module 外径 Outside Dia. 长度 Overall Length 孔径 Hole Dia. 1 50 3 2 22 1.25 1.5 40 1.75 63 50 27 2 2.25 71 55 2.5 2.75 63 3 3.25 80 71 32 3.5 3.75 90 80 4 4.5 90 5 100 100 5.5 112 112 40 6 6.5 118 118 7 125 8 125 132 9 140 150 10 150 170 50 三、滚刀常用材料 1. 钨钢(硬质合金) 2、普通高速钢(M2) 3. 钴高速钢(M35 M42)(SKH55) 4. 粉末冶金高速钢: 1) ASP 2030(ASP30) 2) ASP 2052(ASP52) 3) ASP 2060(ASP60) 四、涂层种类

渐开线齿轮滚刀设计

A NOVEL HO B DESIGN FOR PRECISION INVOLUTE GEARS: PART II The following paper outlines the development of a new precision gear hob design for machining involute gears on conventional gear-hobbing machines. By Stephen P. Radzevich, Ph.D. Abstract This pa per is a imed a t the development of a novel design of precision gea r hob for the ma chining of involute gea rs on a conventiona l gea r-hobbing ma chine. The reported resea rch is ba sed on the use of funda menta l results obta ined in a na lytica l mecha nics of gea ring. For solving the problem, both the descriptive-geometry-ba sed methods (further DGB-methods) together with pure a na lytica l methods ha ve been employed. The use of DGB-methods is insightful for solving most of the principa l problems, which consequently ha ve a n a na lytica l solution. These a na lytica l methods provide a n exa mple of the a pplica tion of the DG/K-method of surfa ce genera tion ea rlier developed by the a uthor. For interpreta tion of the results of resea rch, severa l computer codes in the commercia l softwa re Ma thCAD/Scientific were composed. Ultimately, a method of computation of parameters of design of a hob with straight-line lateral cutting edges for the machining of precision involute gears is developed in the paper. The coincidence of the stra ight-line la tera l cutting edges of the hob with the stra ight-line cha ra cteristics of its genera ting surfa ce elimina tes the ma jor source of devia tions of the hobbed involute gea rs. The rela tionship between ma jor principal design parameters that affect the gear hob performance are investigated with use of vector algebra, matrix calculus, and elements of differential geometry. Gear hobs of the proposed design yield elimination of the principal and major source of deviation of the desired hob tooth profile from the actual hob tooth profile. The reported results of research are ready to put in practice. This is the conclusion of a two-part series. Part I can be downloaded at [https://www.360docs.net/doc/7a12408185.html,].

滚齿加工工作原理

滚齿加工原理 图8-69a为滚齿加工的工作原理。滚齿时切削齿坯的刀具为滚刀,由于滚刀的螺旋升角较大,所以外形象一个蜗杆,滚刀在垂直于螺旋槽方向开槽,形成若干切削刃,其法向剖面具有齿条形状。因此当滚刀连续旋转时,刀齿可视为一个无限长的齿条的移动,如图8-69b。同时刀齿由上而下的进行切削,保持齿条(滚刀)和齿坯之间的啮合关系,滚刀就可在齿坯上加工出渐开线齿形,图8-69c。 滚齿加工的精度一般为8~7级,表面粗糙度Ra为3.2~1.6μm。 滚齿加工是在滚齿机上进行的,图8-70为滚齿机外形图。滚刀安装在刀架上的滚刀杆上,刀架可沿着立柱垂直导轨上下移动。工件则安装在心轴上。 滚齿时滚齿机必须有以下几个运动: 1.切削运动(主运动)即滚刀的旋转运动,其切削速度由变速齿轮的传动比决定。

2.分齿运动 即工件的旋转运动,其运动的速度必须和滚刀的旋转速度保持齿轮与齿条的啮合关系。其运动关系由分齿挂轮的传动比来实现。对于单线滚刀,当滚刀每转一转时,齿坯需转过一个齿的分度角度,即1/z 转(z 为被加工3.垂直进给运动 即滚刀沿工件轴线自上而下的垂直移动,这是保证切出整个齿宽所必须的运动,由进给挂轮的传动比再通过与滚刀架相连接的丝杆螺母来实现。 齿轮的齿数)。 在滚齿时,必须保持滚刀刀齿的运动方向与被切齿轮的齿向一致,然而由于滚刀刀齿排列在一条螺旋线上,刀齿的方向与滚刀轴线并不垂直。所以,必须把刀架扳转一个角度使之与齿轮的齿向协调。滚切直齿轮时,扳转的角度就是滚刀的螺旋升角。滚切斜齿轮时,还要根据斜齿轮的螺旋方向,以及螺旋角的大小来决定扳转角度的大小及扳转方向。 齿轮滚刀是一种专用刀具,每把滚刀可以加工在滚齿机上除加工直齿、斜齿外圆柱齿轮外,也可以模数相同而齿数不等的各种大小不同的直齿或斜齿渐开线外圆柱齿轮。 加工蜗轮、链轮。但不能加工 内齿轮。对于加工双联齿轮和三联齿轮它也受到许多限制。 滚齿加工的原理及滚齿加工润滑油的选择 1.滚齿加工原理 滚齿加工是按照展成法的原理来加工齿轮的。用滚刀来加工齿轮相当于一对交错轴的螺旋齿轮啮合。在这对啮合的齿轮副中,一个齿数很少、只有一个或几个,螺旋角很大,就演变成了一个蜗杆状齿轮,为了形成切削刃,在该齿轮垂直于螺旋线的方向上开出容屑槽,磨前、后刀面,形成切削刃和前、后角,于是就变成了滚刀。滚刀与齿坯按啮合传动关系作相对运动,在齿坯上切出齿槽,形成了渐开线齿面,如图1a 所示。在滚切过程中,分布在螺旋线上的滚

相关文档
最新文档