§ 4 不定积分习题与答案

§ 4 不定积分习题与答案
§ 4 不定积分习题与答案

第四章 不定积分

(A)

1、求下列不定积分

1)?2x dx 2)?x x dx 2

3)dx x ?-2

)2( 4)dx x

x ?+2

2

1

5)??-?dx x

x

x 3

2532 6)dx x x x ?22sin cos 2cos

7)dx x e x

)32(?

+

8)dx x x x

)1

1(2?-

2、求下列不定积分(第一换元法)

1)dx x ?-3

)23( 2)

?

-3

32x

dx

3)dt t

t ?

sin 4)?

)

ln(ln ln x x x dx

5)?x

x dx

sin cos 6)?-+x x e e dx

7)dx x x )cos(2

? 8)dx x x ?-4

3

13 9)dx x x ?3cos sin 10)dx x x

?--2491

11)?-1

22x dx 12)dx x ?3

cos

13)?xdx x 3cos 2sin 14)?

xdx x sec tan 3

15) dx x x ?+2

3

9 16)dx x x ?+22sin 4cos 31 17)

dx x

x ?

-2

arccos 2110 18)dx x x x

?

+)

1(arctan

3、求下列不定积分(第二换元法)

1)dx x

x

?+2

11 2)dx x ?sin

3)dx x x ?

-42 4)?>-)0(,222

a dx x

a x

5)?

+3

2

)

1(x dx 6)

?+

x

dx 21

7)

?-+

2

1x

x dx 8)

?-+

2

11x

dx

4、求下列不定积分(分部积分法)

1)inxdx xs ? 2)?

xdx arcsin

3)?xdx x ln 2

4)dx x

e

x

?

-2

sin 2

5)?xdx x arctan 2 6)?

xdx x cos 2

7)?xdx 2

ln 8)

dx x x 2

cos 2

2?

5、求下列不定积分(有理函数积分)

1)dx x x ?+3

3

2)?-++dx x x x 1033

22

3)

?+)1(2x x dx

(B) 1、

一曲线通过点)3,(2

e ,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲

线的方程。

2、

已知一个函数)(x F 的导函数为

2

11x -,且当1=x 时函数值为π2

3

,试求此函数。

3、

证明:若

?+=c x F dx x f )()(,则

)0(,)(1

)(≠++=+?

a c

b ax F a

dx b ax f 。

4、 设)(x f 的一个原函数为

x

x

sin ,求?'dx x f x )(。

5、

求下列不定积分

1)dx x

?

2

cos 2

2)dx x ?-2sin 1

3)?

+dx x x

211arctan

4)dx x

x x ?+-11 5)?++))((2222b x a x dx

6)dx x a x x ?-2

7)

?+dx x

x

x ln 1ln 8)?

+dx x xe x 2

32arctan )

1(

(C)

1、求以下积分

1)?

-dx e xe x x 1

2)?

+x

x dx

sin 2)2sin(

3)dx e e x x ?2arctan 4)dx x x ?+435

1

5)dx x x

x ?+-1

8

5 6)dx x x x x ?+cos sin cos sin

第四章 不定积分 习 题 答 案

(A)

1、(1)c x +-1 (2)c x +--

23

3

2

(3)

c x x x ++-423

123

(4)c x x +-arctan (5)c x x

+--3

ln 2ln )32(52 (6)c x x ++-)tan (cot (7)c x e x

++ln 32 (8)

c x

x ++4

27)7(4

2、(1)c x +--4

)23(81 (2)c x +--32

)32(2

1

(3)c t +-cos 2 (4)c x +ln ln ln (5)c x +tan ln (6)c e x

+arctan

(7)

c x +)sin(212 (8)c x +--41ln 43

(9)c x

+2

cos 21 (10)c x x +-+24941

32arcsin 21 (11)

c x x ++-1

21

2ln 221

(12)c x

x +-3sin sin 3 (13)

c x x +-5cos 101cos 21 (14)c x x +-sec sec 31

3 (15)

c x x ++-)9ln(292122 (16)c +3

2arctan 321 (17)c x

+-

10

ln 210arccos 2 (18)c x +2)(arctan 3、(1)c t t +-cot csc ln (2)c x x x +--)sin cos (2

(3)c x

x +--)2

arccos 24(tan 22

(4)c x a a

x a x a +--)(arcsin 22222

(5)

c x

x ++2

1 (6)c x x ++-)21ln(2

(7)

c x x x +-++)1ln (arcsin 212 (8)c x

x x +-+-211arcsin

4、(1)c x x x ++-sin cos (2)c x x x +-+21arcsin

(3)

c x x x +-3391ln 31 (4)c x

x e x ++--)2sin 42(cos 1722 (5)c x x x x +++-)1ln(6

161arctan 312

23 (6)c x x x x x +-+sin 2cos 2sin 2

(7)c x x x x x ++-2ln 2ln 2

(8)

c x x x x x x +-++sin cos sin 21612

3 5、(1)c x x x x ++-+-3ln 2792

3312

3 (2)c x x +++-5ln 2ln

(3)c x x ++-)1ln(21ln 2

(4) c x x x x +-+-+-arctan 2

1)1ln(411ln 21ln 2

(5)c x x x x ++++++-3

1

2arctan 3311ln 2122

(B)

1、 设曲线)(x f y =,由导数的几何意义:x y 1=',c x dx x

+=?ln 1,点)3,(2

e 代入即可。

2、 设函数为)(x F ,由2

11)()(x

x f x F -=

=',得

C x dx x f x F +==?arcsin )()(,代入)2

3

,1(π即可解出C 。

3、 由假设得)()(),()(b ax f b ax F x f x F +=+'∴=',故

c b ax F a

dx b ax f b ax F b ax F a ++=+∴+'='+?)(1

)(),(])(1[。 4、把)(x f '凑微分后用分部积分法。

5、(1)用倍角公式:2

cos 12cos

2

x

x += (2)注意0sin cos ≥-x x 或0sin cos <-x x 两种情况。

(3)利用)cot (11

,cot 1arctan 2

x arc d dx x

x arc x -=+=。 (4)先分子有理化,在分开作三角代换。

(5)化为部分分式之和后积分。 (6)可令t a x 2

sin 2=。

(7)可令,sin )(2t a b a x -=-则t a b x b 2cos )(-=-。 (8)令t x =+ln 1。 (9)分部积分后移项,整理。 (10)凑x

e

arctan 后分部积分,再移项,整理。

(11)令t x

=2

tan

。 (12)变形为

?

-?--4

)2(2

3

x x x dx 后,令

t x x =--2

3

, 再由2211t x =--

,两端微分得tdt dx x 2)2(1

2

=-。

(C)

1) 解:令1-=x e u ,则du u

u

dx u x 2

2

12),1ln(+=

+= 所以原式du u

u u u du u ??+-+=+=2

2

22

14)1ln(2)1ln(2 c u u u u ++-+=arctan 44)1ln(22

c e e e x x x x +-+---=1arctan 41412

2)解:方法一:

原式???==+=2

cos 2tan )

2(tan 412cos 2sin )2(4

1)cos 1(sin 22

3x x x d x x x d x x dx c x x x d x x

++=+=?2

tan ln 412tan 81)2(tan 2tan 2tan 14122 方法二:令t x

=2

tan

方法三:变形为

?+-)cos 1)(cos 1(2sin 2x x xdx

,然后令u x =cos

再化成部分分式积分。 3)解:原式)(arctan 2

12?--

=x

x e d e ])

1()(arctan [21222?+--=-x

x x x

x e e e d e e (令u e x

=)])1(arctan [21222?+-

-=-u u du

e e x

x

]1arctan [212

22??++--=-u du u du e e x x []

c e e e e x x x x +++-=--arctan arctan 2

1

2

4)解:原式)](1

1)(11[31)(131********

433x d x x d x x x d x x ???+-++=+=

)]1()1()1()1([3

1341

334

3

3++-++=??-x d x x d x

c x x ++-+=43

3473)1(9

4

)1(214

5)解:原式??-++=+-=----2)()(2122222443x x x x d dx x

x x x ,令2

2-+=x x u c u u u du ++-=-=

?22

ln 2412212 c x x x x ++++-=1

212ln

2

412

4

24

6)解:原式dx x

x x x ?+-+=

cos sin 1

1cos sin 221

dx x

x dx x x x x ??+-++=cos sin 121cos sin )cos (sin 212 ?++

--=)

4

sin()

4(2

21)cos (sin 21ππ

x x d x x

?+-++-=)

4

(cos 1)

4cos(221)cos (sin 212π

x x d x x

)4cos(])

4cos(11)4cos(11[241)cos (sin 21πππ+++++-+-=?x d x x x x c x x x x ++-+++-=)

4

cos(1)

4cos(1ln 241)cos (sin 21ππ

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

大学高等数学第四章 不定积分答案

第四章 不定积分 习 题 4-1 1.求下列不定积分: (1)解:C x x x x x x x x x +-=-= -??- 25 232 122d )5(d )51( (2)解:?+x x x d )32(2 C x x x ++ ?+ =3 ln 29 6 ln 6 22 ln 24 (3)略. (4) 解:? ??-+ -= +-x x x x x x x d )1(csc d 1 1d )cot 1 1( 2 2 2 2 =C x x x +--cot arcsin (5) 解:?x x x d 2103 C x x x x x x += ==??80 ln 80 d 80 d 810 (6) 解:x x d 2 sin 2 ?=C x x x x ++= -= ?sin 2 12 1d )cos 1(2 1 (7)? +x x x x d sin cos 2cos C x x x x x x x x x x +--=-= +-= ?? cos sin d )sin (cos d sin cos sin cos 2 2 (8) 解:? x x x x d sin cos 2cos 2 2 ?? - = -= x x x x x x x x d )cos 1sin 1( d sin cos sin cos 2 2 2 2 2 2 C x x +--=tan cot (9) 解: ???-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2 =C x x +-sec tan (10) 解:},,1max{)(x x f =设?? ? ??>≤≤--<-=1,11,11,)(x x x x x x f 则. 上连续在),()(+∞-∞x f , )(x F 则必存在原函数,???? ???>+≤≤-+-<+-=1,2 1 11, 1,21)(32212 x C x x C x x C x x F 须处处连续,有又)(x F )2 1(lim )(lim 12 1 21 C x C x x x +- =+-+-→-→ ,,2 1112C C +- =+-即

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3 sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积 2、求对数螺线θ ρae =()πθπ≤≤-及射线πθ=所围成的图形的面积

3、求由曲线x y sin =和它在2 π= x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3 x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的 立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长 8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm )成

正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水 面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2222[()]'[()]'=2()x x x x x x e e e e e e ---+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是32π ,求这个函数. 解 设所求函数为f (x ), 则由题意知 2 '()1f x x = - '2(arcsin )1x x = -因为 '2()()d arcsin 1f x f x x x C x ===+-?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知''()2y f x x == 因为 2 ()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

§4不定积分习题与答案

第四章 不定积分 (A) 1、求下列不定积分 1)?2 x dx 2)?x x dx 2 3)dx x ?-2 )2( 4)dx x x ?+2 2 1 5)??-?dx x x x 32532 6)dx x x x ?22sin cos 2cos 7)dx x e x )32(? + 8)dx x x x )1 1(2?- 2、求下列不定积分(第一换元法) 1)dx x ?-3)23( 2) ? -3 32x dx 3)dt t t ? sin 4)? ) ln(ln ln x x x dx

5)?x x dx sin cos 6)?-+x x e e dx 7)dx x x )cos(2 ? 8)dx x x ?-4 3 13 9)dx x x ?3cos sin 10)dx x x ?--2491 11)?-122x dx 12)dx x ?3cos 13)?xdx x 3cos 2sin 14)? xdx x sec tan 3 15) dx x x ?+2 39 16)dx x x ?+22sin 4cos 31 17) dx x x ? -2 arccos 2110 18)dx x x x ? +) 1(arctan

3、求下列不定积分(第二换元法) 1)dx x x ?+2 11 2)dx x ?sin 3)dx x x ? -42 4)?>-)0(,222 a dx x a x 5)? +3 2 ) 1(x dx 6) ?+ x dx 21 7) ?-+ 2 1x x dx 8) ?-+ 2 11x dx 4、求下列不定积分(分部积分法) 1)inxdx xs ? 2)? xdx arcsin 3)? xdx x ln 2 4)dx x e x ? -2 sin 2

(完整版)不定积分习题与答案

不定积分 (A) 1、求下列不定积分 1)?2 x dx 2) ? x x dx 2 3) dx x ?-2)2 ( 4) dx x x ? +2 2 1 5)??- ? dx x x x 3 2 5 3 2 6) dx x x x ?2 2sin cos 2 cos 7) dx x e x) 3 2(?+ 8) dx x x x ) 1 1( 2 ?- 2、求下列不定积分(第一换元法) 1) dx x ?-3)2 3( 2) ? - 33 2x dx 3) dt t t ?sin 4) ? ) ln(ln ln x x x dx 5)? x x dx sin cos6) ?- +x x e e dx 7) dx x x) cos(2 ? 8) dx x x ? -4 3 1 3 9) dx x x ?3 cos sin 10) dx x x ? - - 2 4 9 1 11)? -1 22x dx 12) dx x ?3 cos 13)?xdx x3 cos 2 sin 14) ?xdx x sec tan3 15) dx x x ? +2 3 916) dx x x ? +2 2sin 4 cos 3 1 17) dx x x ? -2 arccos 2 1 10 18) dx x x x ? +) 1( arctan

3、求下列不定积分(第二换元法) 1) dx x x ? +2 1 1 2) dx x ?sin 3) dx x x ?-4 2 4) ?> - )0 (, 2 2 2 a dx x a x 5)? +3 2)1 (x dx 6) ? +x dx 2 1 7)? - +2 1x x dx 8) ? - +2 1 1x dx 4、求下列不定积分(分部积分法) 1) inxdx xs ? 2) ?xdx arcsin 3)?xdx x ln 2 4) dx x e x ?- 2 sin 2 5)?xdx x arctan 2 6) ?xdx x cos 2 7)?xdx 2 ln 8) dx x x 2 cos2 2 ? 5、求下列不定积分(有理函数积分) 1) dx x x ? +3 3 2)? - + + dx x x x 10 3 3 2 2 3)? +)1 (2x x dx (B) 1、一曲线通过点 )3, (2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的 方程。 2、已知一个函数 ) (x F的导函数为2 1 1 x -,且当1 = x时函数值为 π 2 3 ,试求此函数。

第4章不定积分(自测题答案)

《高等数学》单元自测题答案 第四章 不定积分 一、填空题: 1、2ln 2 22 x x ; 2、2 2 ; 3、C x +-2 2 )1(21 ; 4、C x ++1tan 2; 5、C x x ++3 3 1ln 31. 二、选择题: 1、C ; 2 、C ; 3、B . 三、计算下列不定积分: 1、解 ?? ??+- = +-+= += +x x x x x x x x x x de e de e e de e e dx e e )111(111112 C e e e d e de x x x x x ++-=++- = ??)1ln()1(11 。 2、解 ? ?? +- += +-dx x x dx x x dx x x x 2 2 2 1arctan 11arctan C x x x xd x x d +- += - ++= ??2 2 2 2 )(arctan 2 1)1ln(2 1arctan arctan 1)1(2 1。 3、解 令t x sin =,则tdt dx cos =,且 ??? ? -+-= +=-+= -+dt t t t t dt t t t tdt x dx )cos 1)(cos 1() cos 1(cos cos 1cos sin 11cos 112 2 ? ? ? ?? -- = - = -= dt t t t t d dt t t dt t t dt t t t 2 2 2 2 2 2 2 2 sin sin 1sin sin sin cos sin cos sin cos cos C x x x x C t t t ++-+ - =+++-=arcsin 11cot sin 12。 4、解 令12-= x t ,则)1(2 12 += t x ,tdt dx =,且 ?? ?? +- = +-+= += +-dt t dt t t dt t t dx x )1 11(1 111 1 121 C x x C t t +-+--=++-=)121ln(12|1|ln 。 5、解 ????? - =- ==dx x e x e x d e x e de x dx x e x x x x x x 2 1 2cos 2 sin 2 sin 2 sin 2 sin 2 sin )2 c o s 2c o s (212s i n 2c o s 21 2 s i n ??- -=- =x d e x e x e de x x e x x x x x ?-- =dx x e x e x e x x x 2sin 4 12 cos 212 sin 所以,C x e x e dx x e x x x +- = ?)2 cos 2 12 sin (542 sin 。

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

最新不定积分习题与答案

精品文档不定积分(A) 1、求下列不定积分dxdx??2xx2x2)1) ?dx2?dx)(x?22x1?4)3) 2x ??dxdx x223xsincosx5)6)xx2?5?2?3x2cos 13x??dxxx(2e?)dx(1?)2xx8)7) 2、求下列不定积分(第一换元法)dx?3?dx)(3?2x3x32?2)1)dx tsin??dt)xlnxln(lnx t4)3)dxdx??x?x xsincosxe?e6)5) ?dx2?dx)xcos(x4x1?8)7) 3x3 x1?xsin?dx?dx2x49?3xcos)109) dx?3?dxxcos21?2x12)11 ) 3??xdxxsin2xcos3xdxtansec14) 13) ??dxdx222x9?x?4sin3cosx16) 15) 3x1 ??dxdx)x?(x12x?117) 18) x2arccos arctanx10 精品文档. 精品文档3、求下列不定积分(第二换元法)1?dx?dxxsin2xx?12)1) ?)0(a?dx,?dx22x?a x4)3) 2x24x? dx dx??32)1(x?x21?6)5) dxdx??22?1?x1?x1?x7)8) 4、求下列不定积分(分部积分法) ??xdxarcsinxsinxdx1)2) x x?2?dxsine2?xdxxln24)3)

?dxxcos2?xdxln28)7)22??xdxxxcosarctanxdx6)5)x22 5、求下列不定积分(有理函数积分)3x?dx3x?1) 3x?2?dx210??3xx2) dx?2)?x(x1 3 ) (B) 2)3e,(、一曲线通过点,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的1 方程。13?2)(xFx1?1x?2的导函数为2、已知一个函数,且当,试求此函数。时函数值为 精品文档. 精品文档?cx)?f(x)dx?F(,则3、证明:若1?)?0?F(axb)?c,(af(ax?b)dx?a。xsin??dxx(xf) )(xfx。4、设,求的一个原函数为5、求下列不定积分x2?dxcos?dxxsin21?22)1) 1arctanx1?x?dxx?dxx?12x1?3)4) dxx??dxx2222)?ax)(b(x?x?2a6)5)xarctan xe?dx lnx ?3dx2)?x(12x1x?ln)8 7) ?dx?x x2sin?xsin(2)1e?2) 1)(C)求以下积分x xe dx ?dx?dx341x?x2e4)3) 5x x earctan ??dxdx8xxsincos?1?x5)6) 5x?xxxsincos 精品文档. 精品文档不定积分第四章 答案习题 (A)321?cx??c??23x(2)1、(1)

不定积分_定积分复习题与答案

上海第二工业大学 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格3分,共30分) 1、设 sin x x 为()f x 的一个原函数,且0a ≠,则()f ax dx a ?应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x + 2、若x e 在(,)-∞+∞上不定积分是()F x C +,则()F x =( ) (A )12,0(),0x x e c x F x e c x -?+≥=?-+?? ===??-<>。令1()b a s f x dx =?,2()()s f b b a =- 31 [()()]()2 s f a f b b a =+-,则( ) (A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s <<

高等数学第四章不定积分课后习题详解

第4章不定积分 内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析: 利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 2 2 2 3 x dx x C -- ==-+ ? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质, 将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将

第四章不定积分试题与答案

第四单元 不定积分 一、填空题 1、? dx x x =___________。 2、?x x dx 2=_____________。 3、?+-dx x x )23(2=_____________。 4、 ?-dx x x x sin cos 2cos =___________。 5、?+x dx 2cos 1=____________。 6、dt t t ?sin =___________。 7、?xdx x sin =___________。 8、?xdx arctan =__________。 9、=+?dx x x 2sin 12sin ____________。 10、? =''dx x f x )(____________。 11、?=++dx x x 1)3(1________________。 12、 ?=++__________522x x dx 。 二、单项选择 1、对于不定积分 ()dx x f ?,下列等式中( )是正确的. (A )()()x f dx x f d =?; (B ) ()()x f dx x f ='?; (C ) ()()x f x df =? ; (D ) ()()x f dx x f dx d =?。 2、函数()x f 在()+∞∞-,上连续,则()[]dx x f d ?等于( ) (A )()x f ; (B )()dx x f ; (C )()C x f + ; (D )()dx x f '。

3、若()x F 和()x G 都是()x f 的原函数,则( ) (A )()()0=-x G x F ; (B )()()0=+x G x F ; (C )()()C x G x F =-(常数); (D )()()C x G x F =+(常数)。 4、若?+='c x dx x f 33)(,则=)(x f ( ) (A )c x +35 56;(B )c x +35 59;(C )c x +3 ;(D )c x +。 5、设)(x f 的一个原函数为x x ln ,则=?dx x xf )(( ) (A )c x x ++)ln 41 21 (2;(B )c x x ++)ln 21 41(2; (C )c x x +-)ln 21 41(2;(D )c x x +-)ln 41 21(2。 6、设c x dx x f +=?2)(,则=-?dx x xf )1(2( ) (A )c x +--22)1(2;(B )c x +-22)1(2; (C )c x +--22)1(21 ;(D )c x +-22)1(21 。 7、=+-?dx e e x x 11 ( ) (A )c e x ++|1|ln ; (B )c e x +-|1|ln ; (C )c e x x ++-|1|ln 2; (D )c x e x +--|1|ln 2。 8、若)(x f 的导函数为x sin ,则)(x f 的一个原函数是( ) (A )x sin 1+; (B )x sin 1-; (C )x cos 1+; (D )x cos 1-。 9、)(),()('x f x f x F =为可导函数,且1)0(=f ,又2)()(x x xf x F +=,则)(x f =( ) (A )12--x ; (B )12+-x ; (C )12+-x ; (D )12--x 。 10、=?-??dx x x x 23223( ) (A )C x x +?-)23(23ln 23; (B )C x x x +?--1)23 (23; (C )C x +?--)23 (2ln 3ln 2 3; (D )C x x +?--)23 (2ln 3ln 23。

相关文档
最新文档