一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质知识点和典型例题讲解
一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质

一、知识要点:

1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;

(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线,

(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)

(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、性质:

(1)图象的位置:

(2)增减性

k>0时,y随x增大而增大

k<0时,y随x增大而减小

4.求一次函数解析式的方法

求函数解析式的方法主要有三种

(1)由已知函数推导或推证

(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。

(3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:

①利用一次函数的定义

构造方程组。

②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。

③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。

④利用题目已知条件直接构造方程。

二、例题举例:

例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。

证明:∵与成正比例,

设=a(a≠0的常数),

∵y=, =(k≠0的常数),

∴y=·a=akx,

其中ak≠0的常数,

∴y与x也成正比例。

例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断

=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。

解:依题意,得

解得 n=-1,

∴=-3x-1,

=(3-)x, 是正比例函数;

=-3x-1的图象经过第二、三、四象限,随x的增大而减小;

=(3-)x的图象经过第一、三象限,随x的增大而增大。

说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。

例3.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。

分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例 y=2x,y=2x+3的图象平行。

解:∵y=kx+b与y=5-4x平行,

∴k=-4,

∵y=kx+b与y=-3(x-6)=-3x+18相交于y轴,

∴b=18,

∴y=-4x+18。

说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0, b)点,反之亦成立,即由函数图象方向定k,由与y 轴交点定b。

例4.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。

解:∵点B到x轴的距离为2,

∴点B的坐标为(0,±2),

设直线的解析式为y=kx±2,

∵直线过点A(-4,0),

∴0=-4k±2,

解得:k=±,

∴直线AB的解析式为y=x+2或y=-x-2.

说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。

(1)图象是直线的函数是一次函数;

(2)直线与y轴交于B点,则点B(0,);

(3)点B到x轴距离为2,则||=2;

(4)点B的纵坐标等于直线解析式的常数项,即b=;

(5)已知直线与y轴交点的纵坐标,可设y=kx+,

下面只需待定k即可。

例5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。

分析:自画草图如下:

解:设正比例函数y=kx,

一次函数y=ax+b,

∵点B在第三象限,横坐标为-2,

设B(-2,),其中<0,

∵=6,

∴AO·||=6,

∴=-2,

把点B(-2,-2)代入正比例函数y=kx,得k=1

把点A(-6,0)、B(-2,-2)代入y=ax+b,

解得:

∴y=x, y=-x-3即所求。

说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;

(2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式AO·BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用||=BD及点B 在第三象限计算出=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3).

例6.已知正比例函数y=kx (k<0)图象上的一点与原点的距离等于13,过这点向x轴作垂线,这点到垂足间的线段和x轴及该图象围成的图形的面积等于30,求这个正比例函数的解析式。

分析:画草图如下:

则OA=13,=30,

则列方程求出点A的坐标即可。

解法1:设图象上一点A(x, y)满足

解得:;;;

代入y=kx (k<0)得k=-, k=-.

∴y=-x或y=-x。

解法2:设图象上一点A(a, ka)满足

由(2)得=-,

代入(1),得(1+)·(-)=.

整理,得60+169k+60=0.

解得 k=-或k=-.

∴ y=-x或y=-x.

说明:由于题目已经给定含有待定系数的结构式y=kx,其中k为待定系数,故解此例的关键是构造关于k的方程。此例给出的两个解法代表两种不同的思路:解法1是把已知条件先转化为求函数图象上一点的坐标,构造方程解出,再求k;解法2是引进辅助未知数a,利用勾股定理、三角形面积公式直接构造关于a、k的方程组,解题时消去a,求出k值。

例7.在直角坐标系x0y中,一次函数y=x+的图象与x轴,y轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式。

分析:由已知可得A点坐标(-3,0),B点坐标(0,),点C是确定的点(1,0),解题的关键是确定点D的坐标,由点D在x轴上,以∠BCD=∠ABD的条件,结合画草图可知∠BCD的边BC确定,顶点C确定,但边CD可以有两个方向,即点D可以在C点右侧,也可以在C点左侧,因此解此题要分类讨论。

解:∵点A、B分别是直线y=x+与x轴和y轴交点,

∴A(-3,0),B(0,),

∵点C坐标(1,0)由勾股定理得BC=,AB=,

设点D的坐标为(x, 0),

(1)当点D在C点右侧,即x>1时,

∵∠BCD=∠ABD,

∠BDC=∠ADB,

∴△BCD∽△ABD,

∴=

∴=- - - - ①

∴=

∴8-22x+5=0

∴x1=, x2=,

经检验:x1=, x2=,都是方程①的根。

∵x=,不合题意,∴舍去。∴x=,

∴D点坐标为(, 0)。

设图象过B、D两点的一次函数解析式为y=kx+b,

∴所求一次函数为y=-x+

(2)若点D在点C左侧则x<1,

可证△ABC∽△ADB,

∴- - - - ②

∴8-18x-5=0

∴x1=-, x2=,

经检验x1=-, x2=,都是方程②的根。

∵x2=不合题意舍去,∴x1=-,

∴D点坐标为(-, 0),

∴图象过B、D(-, 0)两点的一次函数解析式为y=4x+

综上所述,满足题意的一次函数为y=-x+或y=4x+.

例8.已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C (4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。

解:直线y=x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),

∴OA=6,OB=3,

∵OA⊥OB,CD⊥AB,

∴∠ODC=∠OAB,

∴cot∠ODC=cot∠OAB,即

∴OD===8.

∴点D的坐标为(0,8),

设过CD的直线解析式为y=kx+8,将C( 4,0)代入

0=4k+8, 解得 k=-2

∴直线CD:y=-2x+8,

由解得

∴点E的坐标为(,-)

说明:由于点E既在直线AB上,又在直线CD上,所以可以把两直线的解析式联立,构成二元一次方程组,通过解方程组求得。

(注:可编辑下载,若有不当之处,请指正,谢谢!)

三角函数的图象和性质典型例题

三角函数的图象和性质·典型例题 于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分 k∈Z} 【说明】学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的部分;⑤写出角的范围的表达式,注意加周期.

【例3】求下列函数的定义域: 解:(1)为使函数有意义,需满足2sin2x+cosx-1≥0 【说明】求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成. 【说明】求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围. 【例4】求下列函数的值域:

∴此函数的值域为{y|0≤y<1} 【说明】求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性. 【例5】判断下列函数的奇偶性: 【分析】先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性. ∵f(1-x)=-sin(-2x)=sin2x=-f(x) 【例8】求下列各函数的最大值、最小值,并且求使函数取得最大值、最小值的x 的集合. ∴使y取得最大值的x的集合为{x|x=(2kπ+1)π,k∈Z} ∴使y取得最小值的x的集合为{x|x=2kπ,k∈Z}

函数的基本性质知识点和典型例题

学生姓名: 年级: 班型:1对1 上课时间: (第 次课) 剩余课时: 上课内容:函数的基本性质 一、函数的单调性: 1、定义域为I 的函数f (x )在区间D 上的增减性 (1)共同条件:12 , ,D I x x D ??↓?∈?任意 (2)假设前提:12x x <。 (3)判断依据: ①若__________________,则f (x )在区间D 上是增函数; ②若__________________,则f (x )在区间D 上是增函数。 2、单调区间 如果函数y=f (x )在区间D 上是增函数或减函数,就说f (x )在区间D 上具有(严格的)___________,区间D 叫做f (x )的__________。 思考探究 1、把增(减)函数定义中的“任意两个自变量12,x x ”换成“存在两个自变量12,x x ”还能判断函数是增(减)函数吗? 2、把增(减)函数定义中的“某个区间D ”去掉,其余条件不变,能否判断函数的增减性? 3、所有的函数都具有单调性吗? 自主测评 1、下列说法正确的是( ) A 、定义在(,)a b 上的函数f (x ),若存在12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 B 、定义在(,)a b 上的函数f (x ),若有无穷多对12,(,)x x a b ∈使得12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 C 、若f (x )在区间I 1上为增函数,在区间I 2上也为增函数,那以f (x )在I 1 I 2上也一定为增函数 D 、若f (x )在区间I 上为增函数,且1212()()(,)f x f x x x I <∈,那么12x x <

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质 一、知识要点: 1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。 3、性质: (1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4.求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义 构造方程组。 ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。 ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 ④利用题目已知条件直接构造方程。 二、例题举例: 例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。 证明:∵与成正比例, 设=a(a≠0的常数), ∵y=, =(k≠0的常数), ∴y=·a=akx, 其中ak≠0的常数, ∴y与x也成正比例。 例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断 =(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, ∴=-3x-1,

最全函数概念及基本性质知识点总结及经典例题(汇编)

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈.

对数函数及其性质经典练习题

对数函数及其性质(一) 班级_____________姓名_______________座号___________ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 2.函数y =x |x | log 2|x |的大致图象是( ) 3.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞) C .(0,1)∪(1,2) D .(0,12 ) 4.设a =2log 3,b =2 1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( ) 6.函数y =log 2x 在[1,2]上的值域是( ) A .R B .[0,+∞) C .(-∞,1] D .[0,1] 7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0≤???x x x x 则g [g (1 3)]=________. 10.f (x )=log 21+x a -x 的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.

函数的基本性质知识点和典型例题

学生: 年级: 班型:1对1 上课时间: (第 次课) 剩余课时: 上课容:函数的基本性质 一、函数的单调性: 1、定义域为I 的函数f (x )在区间D 上的增减性 (1)共同条件:12 , ,D I x x D ??↓?∈?任意 (2)假设前提:12x x <。 (3)判断依据: ①若__________________,则f (x )在区间D 上是增函数; ②若__________________,则f (x )在区间D 上是增函数。 2、单调区间 如果函数y=f (x )在区间D 上是增函数或减函数,就说f (x )在区间D 上具有(严格的)___________,区间D 叫做f (x )的__________。 思考探究 1、把增(减)函数定义中的“任意两个自变量12,x x ”换成“存在两个自变量12,x x ”还能判断函数是增(减)函数吗? 2、把增(减)函数定义中的“某个区间D ”去掉,其余条件不变,能否判断函数的增减性? 3、所有的函数都具有单调性吗? 自主测评 1、下列说确的是( ) A 、定义在(,)a b 上的函数f (x ),若存在12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 B 、定义在(,)a b 上的函数f (x ),若有无穷多对12,(,)x x a b ∈使得12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数 C 、若f (x )在区间I 1上为增函数,在区间I 2上也为增函数,那以f (x )在I 1U I 2上也一定为增函数 D 、若f (x )在区间I 上为增函数,且1212()()(,)f x f x x x I <∈,那么12x x <

函数·典型例题精析

2.2 函数2例题解析 【例1】判断下列各式,哪个能确定y 是x 的函数?为什么? (1)x 2+y =1 (2)x +y 2=1 (3)y =11 --x x 解 (1)由x 2+y =1得y =1-x 2,它能确定y 是x 的函数. (2)x y 1y y x 2由+=得=±.它不能确定是的函数,因为对1-x 于任意的x ∈{x|x ≤1},其函数值不是唯一的. (3)y y x =的定义域是,所以它不能确定是的函数.11 --?x x 【例2】下列各组式是否表示同一个函数,为什么? (1)f(x)|x|(t)(2)f(x)g(x)(x)2=,==,=?t x 2 2 (3)f(x)g(x)(4)f(x)g(x)=2,==2,=x x x x x x +--+--111 11122 解 (1)中两式的定义域部是R ,对应法则相同,故两式为相同函数. (2)、(3)中两式子的定义域不同,故两式表示的是不同函数. (4)中两式的定义域都是-1≤x ≤1,对应法则也相同,故两式子是相同函数. 【例3】求下列函数的定义域: (1)f(x)2 (2)f(x)(3)f(x)=++==x x x x x x x --+----145 3210215 2||

(4)f(x)(4x 5)(1)x 10 4x 0 1x 4{x|1x 4}(2)3x 20x {x|x }=+-由-≥-≥得≤≤.∴定义域是≤≤由->,得>,∴定义域是>812323|| x -???解 (3)10x x 210 |x|503x 7x 5{x|3x 7x 5} 2由--≥-≠得≤≤且≠,∴定义域是≤≤,且≠??? (4)10 |x|0 4x 508x 00x x 8[80)(0)()由-≥≠-≠解得-≤<或<<或<≤∴定义域是-,∪,∪,854545454 8||x ?????? ??? 【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域: (1)y f (2)y f(2x)f (3)y f ==+=()()()123 2x x x a + 解(1)01x 1x 1f(){x|x 1x 1}由<≤,得≤-或≥,∴的定义域是≤-或≥1 122x x

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

高一二次函数的性质经典练习题

数学练习题 班级_______姓名______ 一.选择题 1.一次函数()f x 的图象过点(1,0)A -和(2,3)B ,则下列各点在函数()f x 的图象上的是 (A ) (2,1) (B ) (1,1)- (C )(1,2) (D )(3,2) 2.下列各组函数表示同一函数的是( ) A .f (x )= ,g (x )=()2 B .f (x )=1,g (x )=x 0 C .f (x )=,g (x )=x D .f (x )=x ﹣1,g (x )= 3.函数f (x )=x 2﹣(2a ﹣1)x ﹣3在3(,)2 +?上是增函数,则实数a 的范围是( ) A .a ≤1 B .a ≥1 C .a ≤2 D .a ≥2 4.函数y=ax 2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则( ) A .b >0且a <0 B .b=2a <0 C .b=2a >0 D .a ,b 的符号不确定 二.填空题 5.设函数1)(2--=mx mx x f ,若对于R x ∈,0)(

9.函数f (x )=2x ﹣1在x ∈[0,2]上的值域为 . 10.函数f (x )=x 2+2(a ﹣1)x+2在区间(﹣∞,4]上递减,则实数a 的取值范围是 . 11.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围. 12.已知函数y=f (x )在R 上为奇函数,且当x ≥0时,f (x )=x 2﹣2x ,则f (﹣ 3)= . 三.三解答题 13.已知一次函数()f x 满足2(2)3(1)5 2(0)(1)1f f f f -=--=. (1)求这个函数的解析式; (2)若函数2()()g x f x x =-,求函数()g x 的零点 (3)x 为何值时,()0g x > ` 14.若二次函数2() (,,)f x ax bx c a b c R =++∈满足(1)()41f x f x x +-=+,且 (0)3f =. (1)求()f x 的解析式; (2)()f x 在区间[1,1]-上的值域 (2)若在区间[1,1]-上,不等式()6f x x m >+恒成立,求实数m 的取值范围.

一次函数图象和性质经典练习题

一次函数的定义 1、判断正误: (1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( ) 2、选择题 (1)下列说法不正确的是( ) A .一次函数不一定是正比例函数。 B .不是一次函数就不一定是正比例函数。 C .正比例函数是特殊的一次函数。 D .不是正比例函数就一定不是一次函数。 (2)下列函数中一次函数的个数为( ) ①y=2x ;②y=3+4x ;③y=21 ;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0; A .3个 B 4个 C 5个 D 6个 3、填空题 (1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。 (2)当m=__________时,函数y=3x2m+1 +3 是一次函数。 (3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。 4、已知函数y= ()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。 5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x +1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号) (2)当m= 时,y=()()m x m x m +-+-1122是一次函数。 (3)请写出一个正比例函数,且x =2时,y= -6 请写出一个一次函数,且x=-6时,y=2 (4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是 (5)设圆的面积为s ,半径为R,那么下列说法正确的是( )

《函数》典型例题

《函数》典型例题 例1 下面变量之间的关系是不是函数关系?为什么? (1)矩形的面积一定,它的长与宽; (2)任意三角形的高与底; (3)矩形的周长与面积; (4)正方形的周长与面积. 例2下面的表分别给出了变量x与y之间的对应关系,判断y是x的函数吗? 如果不是,说明出理由. 例3 判断下列关系是不是函数关系? (1)长方形的宽一定时,其长与面积; (2)等腰三角形的底边长与面积; (3)某人的年龄与身高; (4)关系式| y |=x中的y与x. 例4 汽车由北京驶往相距850千米的沈阳,它的平均速度为80千米/小时,求汽车距沈阳的路程S(千米)与行驶时间t(小时)的函数关系式,写出自变量

的取值范围. 例5 如图,是某个篮球运动员在五场比赛中的得分情况,依据图回答: (1)该运动员第一场球得多少分; (2)哪场球得分比前一场得分少? (3)在五场比赛中最高得分是多少?最低得分是多少? (4)从这五场比赛中的得分情况分析,该运动员的竞技状态怎么样?

参考答案 例1 解(1)矩形的面积确定时,它的宽取一个值,就有惟一确定的y的值与宽对应,因此这是一个函数关系. (2)当一个三角形的底取一个值时,它的高并不能确定,因此“三角形的高与底”不是函数关系. (3)当矩形的周长是一个确定的值时,由于长、度不能确定,它的面积也不确定,这也不是函数关系. (4)当正方形的周长确定了,它的边长也确定,因此面积也确定,这是函数关系. 例2解:(1)y是x的函数; (2)y是x的函数; (3)y不是x的函数,因为对于变量x=1,变量y有1与-1两个值与它对应; (4)y是x的函数 说明:对于x的每一个值,y都有唯一的值与它对应.第四个是常数函数它符合函数的定义. 例3分析:判断一个关系是不是函数关系,第一要看是不是一个变化过程;第二要看在这个变化过程中,是不是有两个变量;第三要看自变量每取一个确定值,函数是不是都有唯一确定的值与它对应. 解:(1)长方形的宽一定时,其长所取的每一个确定的值,面积都有唯一确定的值与它对应,所以长与面积是函数关系. (2)因为三角形的面积受底和高两个因素的影响,当等腰三角形的底取一个定值时,它的面积又受高的影响,不能有唯一确定的值和底相对应, 所以底边长与面积不是函数关系. (3)人的任意一个确定的年龄,都有唯一确定的身高与之相对应,所以某人的年龄与身高是函数关系. (4)x每取一个正值,y都有两个值与它对应,所以| y | = x不是函数关系. 说明:年龄与身高的变化不按某种规律,但某人每一个确定的年龄,必有唯一确定的身高和它相对应,因此函数关系是一定的,所以不要以为存在一定比例关系

指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y3(2)y(3)y 1 2x === -+- -- 2133 21 x x 解(1)定义域为x∈R且x≠2.值域y>0且y≠1. (2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0. (3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3, ∴值域是≤<. 0y3 【例2】指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c. 【例3】比较大小: (1)2 (2)0.6 、、、、的大小关系是:. 24816 3 2 3589 4 5 1 2 -- () (3) 解(1) y221() x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数, 又<<<<,∴<<<<. 22224282162 1 3 3 8 2 5 4 9 1 2 284162 1 23 1 35 2 58 3 89 4 9 3859 =====

解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()()解 (3)借助数打桥,利用指数函数的单调性,,作函数y 1=,y 2=的图像如图2.6-3,取x =,得 说明 如何比较两个幂的大小:若不同底先化为同 底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与同底与同指数的特点,即为或,如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>, >, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() () ∴<,∴<当>时,∵>,>,∴>,>a a a n n a a a n n n n n n n n n n n n 1111 1111 1 1() () ()--+--+-1a 1n 101 【例5】作出下列函数的图像: (1)y (2)y 22x ==-,()1 2 1 x + (3)y =2|x-1| (4)y

高中数学-函数的性质典型例题讲解

函数的单调性和奇偶性(HSXZ71-1) 函数性质分类型讲解 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴ ∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x1<x2,则 ∵0<x1<x2≤1 ∴x1-x2<0,0<x1x2<1 ∵0<x1x2<1

故,即f(x1)-f(x2)>0 ∴x1<x2时有f(x1)>f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象. 类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为

∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为, 其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数, 则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为 (0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;

中考二次函数总复习经典例题、习题集

第八篇二次函数的图像及性质 【考纲传真】 1. 理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会根据公式确定图象的顶点、开口方向和对称轴,并能掌握二次函数图象的平移. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题.5.会用二次函数的图象求一元二次方程的近似解. 【复习建议】 二次函数是中考的重点容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查. 【考点梳理】 考点一二次函数的概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数. 注意:(1)二次项系数a≠0;(2)ax2+bx+c必须是整式;(3)一次项可以为零,常数项也可以为零,一次项和常数项可以同时为零;(4)自变量x的取值围是全体实数. 考点二二次函数的图象及性质

考点三二次函数图象的特征与a,b,c及b2-4ac的符号之间的关系 考点四二次函数图象的平移 抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下表:

考点五二次函数的应用 设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式 y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值. 考点六二次函数与方程不等式之间的关系 1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了ax2+bx+c=0(a≠0). 2.ax2+bx+c=0(a≠0)的解是抛物线与x轴交点的横坐标. 3.当Δ=b2-4ac>0时,抛物线与x轴有两个不同的交点;当Δ=b2-4ac=0时, 抛物线与x轴有一个交点;当Δ=b2-4ac<0时,抛物线与x轴没有交点. 【典例探究】 考点一二次函数的概念 【例1】下列各式中,y是x的二次函数的是()

函数基本性质典型习题课教案

函数基本性质典型习题课教案 教学目标:1、掌握函数的基本性质; 2、能灵活运用函数单调性、奇偶性解部分中等难度题目 教学重点:能用函数单调性、奇偶性解部分中等难度题目 教学难点:灵活运用函数单调性、奇偶性 教学方法:讲练结合 教学过程: 一、复习 1、增函数、减函数的定义,如何判断一个函数的单调性?步骤是什么? 2、如何求一个函数的最值? 3、奇函数、偶函数的定义,如何判断一个函数的奇偶性?步骤是什么? 4、奇函数、偶函数的性质分别是什么? 二、典例析评 例1、设函数(x)f 是R 上的偶函数,在区间,0)(-∞上递增,且有02a)-(3a -(8)2 + =a a f x 00)(a x (x)a 上是增函数. 证明:任取2121),a (0, ,x x x x <∈令,则 )x a - x a ( )x -(x )x a (x -)x a (x )(x -)(x 2 1 212 21 121+=+ + =f f =)x x a - )(1x -(x 2 121 a x x ≤<<210 0- 10-2 121<<∴x x a x x ∴)x x a -)(1 x -(x 2 121>0 即)(x )(x 21f f > 故函数)上是减函数,在(a f x 00)(a x (x)a >+=

函数性质经典例题由易到难

知识要点 复合函数的单调性:同增异减 结论:①若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为 增(减)函数 ②若)(x f 为增(减)函数,则()f x -为减(增)函数 *③奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 典型例题 例1:2y 25,[1,2]x x x =-+∈-的值域 例2:2()2(1)2f x x a x =+-+在 (,4]-∞上是减函数,则a 的取值范围是( ). A . 3a ≤- B . 3a ≥- C . 5a ≤ D . 3a ≥ 例3:函数12 y=log (21)x -的定义域为 ( ) A .(21,+∞) B .[1,+∞) C .(21,1] D .(-∞,1) 例4:下列函数中,既是偶函数又在(0,)+∞上单调递增的是 ( ) A .3y x = B. 2y x = C. 21y x = D. ln y x = 例5:()f x 是定义在R 上的奇函数,且当0x >时,()23x f x =-,则(-2)f = ( ) A .1 B. 14 C.-1 D. 11-4 例6:函数 223y x x =--+的增区间是( ). A . [-3,-1] B . [-1,1] C . (,3)-∞- D . [1,)-+∞ 例7:已知函数)(x f 是定义在)2,2(-上的减函数,若(1)(21)f m f m ->-,实数m 的取值范 围为( ) A. m>0 B. 30x 满足)()()(y f x f y x f -=。 (1)求)1(f 的值;(2)若1)6(=f ,试求解不等式2)1()3(<-+x f x f 。

《对数函数及其性质》典型例题

拓展延伸 应用点一 求对数型函数的定义域 【例1】求下列函数的定义域: (1)y =log 3(3x -9);(2)y =ln (x -2); (3)y =log (2x -1)(5x -4). 思路分析:求对数型函数的定义域,除了考虑一般的函数有意义的条件外,还要使对数的底数大于零且不等于1,真数大于零. 解:(1)由3x -9>0,得x >3,即定义域为(3,+∞). (2)由ln(x -2)≥0,得x -2≥1, 所以x ≥3,即定义域为[3,+∞). (3)解不等式组????? 5x -4>0,2x -1>0, 2x -1≠1,得x >45 且x ≠1, 所以函数y =log (2x -1)(5x -4)的定义域为(45 ,1)∪(1,+∞). 求下列函数的定义域: (1) y ; (2)y =x -4lg (2x -3) . 应用点二 对数函数的图象 【例2】作函数y =|log 2(x +1)|+2的图象. 思路分析:含有绝对值的函数的图象是一种对称变换,一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象,在f (x )≥0时与y =f (x )的图象相同,而在f (x )<0时与y =f (x )的图象关于x 轴对称. 解:先作基本函数的图象,然后作适当的图形变换,分步骤完成. 第一步:作y =log 2x 的图象(如图2.2.2-2①); 第二步:将y =log 2x 的图象向左平移1个单位长度,得y =log 2(x +1)的图象(如图 2.2.2-2②); 第三步:将y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得y =|log 2(x +1)|

二次函数性质和图像的典型例题

y x O (第4题) D C B (4,4)A (1,4)二次函数的图象和性质 1、小李从如图所示的二次函数c bx ax y ++=2 的图象中,观察得出了下面四条信息:(1)b 2 -4ac >0;(2)c >1;(3)ab >0;(4)a -b +c <0. 你认为其中错误.. 的有( ) A. 2个 B. 3个 C. 4个 D. 1个 第1 2.已知二次函数)0(2 >++=a c bx ax y 经过点M (-1,2)和点N (1,-2),交x 轴于A ,B 两点,交y 轴于C 则……( ) ①2-=b ; ②该二次函数图像与y 轴交与负半轴 ③ 存在这样一个a ,使得M 、A 、C 三点在同一条直线上 ④若2 ,1OC OB OA a =?=则 以上说法正确的有: A .①②③④ B .②③④ C .①②④ D .①②③ 3、在平面直角坐标系中,如果抛物线y =2x 2 不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( ) A .y =2(x + 2)2 -2 B .y =2(x -2)2 + 2 C .y =2(x -2)2-2 D .y =2(x + 2)2 + 2 4.如图,点A ,B 的坐标分别为(1,4)和(4, 4),抛物线n m x a y +-=2 )(的顶点在线段 AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( ) A .-3 B .1 C .5 D .8 5. 抛物线c bx ax y ++=2图像如图所示,则一次函数2 4b ac bx y +--=与反比例函数 a b c y x ++= 在同一坐标系内的图像大致为 ( ) x x x x x

专题:函数性质最经典的题型归纳整理(带答案)

专题:函数性质最经典的题型归纳整理 1.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=,其中a,b∈R,若f()=f(),则a+b的值() 2.设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f()=()3.下列函数中,既是偶函数又在(0,+∞)上单调递增的是() A.f(x)=﹣x2B.f(x)=2﹣x C.f(x)=ln|x|D.f(x)=﹣|x| 4.已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(lnπ),b=f(﹣log52),,则a,b,c的大小关系是() 5.已知函数f(x)=x3+3x.若f(﹣a)=2,则f(a)的值为() 6.设,若,则实数a是() 7.定义在R函数f(x)满足f(﹣x)=f(x),且当x∈[0,2]时,f(x)=3x﹣1则f(﹣1)=()8.函数f(x)是R上的奇函数,且在[0,+∞)上单调递增,则下列各式成立的是()A.f(﹣2)>f(0)>f(1)B.f(﹣2)>f(﹣1)>f(0) C.f(1)>f(0)>f(﹣2)D.f(1)>f(﹣2)>f(0) 9.函数y=(2m﹣1)x+b在R上是减函数.则m()10.函数f(x)=log2(x2﹣3x﹣4)的单调减区间为() 11.已知定义在R上的奇函数f(x)和偶函数g(x),则() A..f(x)+g(x)是奇函B|f(x)|?g(x)是奇函数Cf(x)?g(x)是偶函数D.f(|x|)?g(x)是偶函数12.已知定义在R上的函数f(x)在区间[0,+∞)上单调递增,且y=f(x﹣1)的图象关于x=1对称,若实数a满足f(log2a)<f(2),则a的取值范围是() 13.13.设函数,则不等式f(3log2x)+f(1﹣log2x)<0的解集是( 14.已知函数,f(a)=2,则a=() 15f(x)在(﹣∞,+∞)单调递增且为奇函数.已知f(1)=2,f(2)=3则满足﹣3<f(x﹣3)<2的x的取值范围是() 16.设函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: y a x (a 0且a 1) 的图象和性质。 a>1 0

f(c ) 的大小关系是. 分析:先求b,c的值再比较大小,要注意b x,c x的取值是否在同一单调区间内. 解:∵ f (1 x) f (1 x) , ∴函数 f (x) 的对称轴是x 1 . 故b 2,又f(0) 3,∴ c 3. ∴函数f(x)在∞,1 上递减,在1,∞ 上递增. 若x≥0,则3x≥2x≥1,∴ f(3x)≥f(2x); 若x 0,则3x 2x 1,∴ f(3x) f(2x). 综上可得f(3x)≥ f(2x),即f(c x)≥ f(b x).评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式 例 2 已知(a2 2a 5)3x (a2 2a 5)1 x,则x 的取值范围是_____ .分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵ a2 2a 5 (a 1)2 4≥ 4 1 , ∴函数y (a2 2a 5)x在( ∞,∞) 上是增函数, ∴3x 1 x,解得x 1.∴x的取值范围是1,∞ . 44 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与 1 的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题 例 3 求函数y 1 6x 2的定义域和值域. 解:由题意可得 1 6x 2≥0,即6x 2≤1, ∴x 2≤0,故x≤2.∴函数 f (x)的定义域是∞,2 . 令t 6x 2,则y 1 t , 又∵ x≤2 ,∴ x 2≤ 0.∴ 0 6x 2≤1,即0 t≤1. ∴ 0 ≤ 1 t 1 ,即0 ≤ y 1 . ∴函数的值域是0,1 .评注:利用指数函数的单调性求值域时,

指数函数经典例题和课后习题

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量, 函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如21,2=-=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1 ≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=x2的图象的关系(作图略), ⑴y=12+x与y=22+x. ⑵y=12-x与y=22-x. f(x)的图象 向左平移a个单位得到f(x+a)的图象; 向右平移a个单位得到f(x-a)的图象; 向上平移a个单位得到f(x)+a的图象; 向下平移a个单位得到f(x)-a的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 及时演练求下列函数的定义域与值域 (1) 4 1 2 -=x y ; (2)|| 2()3 x y =; (3)1 241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]

相关文档
最新文档