简单的三角恒等变换 知识点及习题

简单的三角恒等变换 知识点及习题
简单的三角恒等变换 知识点及习题

§3.2 简单的三角恒等变换 课时目标 1.了解半角公式及推导过程.2.能利用两角和与差的公式进行简单的三角恒等变换.3.了解三角变换在解数学问题时所起的作用,进一步体会三角变换的规律.

1.半角公式

(1)S α2:sin α2

=____________________; (2)C α2:cos α2

=____________________________; (3)T α2:tan α2

=______________(无理形式)=________________=______________(有理形式). 2.辅助角公式

使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=__________________,sin φ=______,其中φ称为辅助角,它的终边所在象限由__________决定.

一、选择题

1.已知180°<α<360°,则cos α2

的值等于( ) A .-1-cos α2 B.1-cos α2

C .-1+cos α2 D.1+cos α2

2.函数y =sin ????x +π3+sin ???

?x -π3的最大值是( ) A .2B .1C.12D. 3 3.函数f (x )=sin x -cos x ,x ∈???

?0,π2的最小值为( ) A .-2B .-3C .-2D .-1

4.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( )

A.π6

B.π3

C.π2

D.2π3

5.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )

A.?

???-π,-5π6 B.????-5π6,-π6 C.????-π3,0D.????-π6,0 6.若cos α=-45,α是第三象限的角,则1+tan α21-tan α2

等于( ) A .-1B.1C .2D .-2

7.函数f (x )=sin(2x -π4

)-22sin 2x 的最小正周期是______. 8.已知等腰三角形底角的余弦值为23

,则顶角的正弦值是________. 9.已知等腰三角形顶角的余弦值为45

,则底角的正切值为________. 10.

2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计

的.弦图是由四个全等直角三角形与一个小正方形拼成一个大正方形(如图所示).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于____.

三、解答题

11.已知函数f (x )=3sin ???2x -π6+2sin 2???

?x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;

(2)求使函数f (x )取得最大值的x 的集合.

12.已知向量m =(cos θ,sin θ)和n =(2-sin θ,cos θ),θ∈(π,2π),且|m +n |=825

,求cos ????θ2+π8的值.

能力提升

13.当y =2cos x -3sin x 取得最大值时,tan x 的值是( )

A.32B .-32

C.13D .4 14.求函数f (x )=3sin(x +20°)+5sin(x +80°)的最大值.

知识梳理

1.(1)±1-cos α2 (2)±1+cos α2

(3)±1-cos α1+cos α sin α1+cos α

1-cos αsin α 2.a a 2+b 2 b a 2+b 2

点(a ,b ) 作业设计

1.C

2.B [y =2sin x cos π3

=sin x .] 3.D [f (x )=2sin ????x -π4,x ∈???

?0,π2. ∵-π4≤x -π4≤π4

, ∴f (x )min =2sin ????-π4=-1.] 4.D [f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ?

???2x +π3+θ. 当θ=23

π时,f (x )=2sin(2x +π)=-2sin2x .] 5.D [f (x )=2sin ????x -π3,f (x )的单调递增区间为????2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为???

?-π6,56π.] 6.A [∵α是第三象限角,cos α=-45

, ∴sin α=-35. ∴1+tan α21-tan α2=1+sin α2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12.] 7.π

解析 f (x )=22sin2x -22cos2x -2(1-cos2x )=22sin2x +22

cos2x - 2 =sin(2x +π4)-2,∴T =2π2=π. 8.459

解析 设α为该等腰三角形的一底角,

则cos α=23

,顶角为180°-2α. ∴sin(180°-2α)=sin2α=2sin αcos α=2

1-????232·23=459

. 9.3

解析 设该等腰三角形的顶角为α,则cos α=45

, 底角大小为12(180°-α).

∴tan ????12(180°-α)=tan ????90°-α2=1tan α2=1+cos αsin α=1+4535

=3. 10.725

解析 由题意,5cos θ-5sin θ=1,θ∈???

?0,π4. ∴cos θ-sin θ=15

. 由(cos θ+sin θ)2+(cos θ-sin θ)2=2.

∴cos θ+sin θ=75

. ∴cos2θ=cos 2θ-sin 2θ=(cos θ+sin θ)(cos θ-sin θ)=725

. 11.解 (1)∵f (x )=3sin2????x -π12+1-cos2???

?x -π12 =2????32

sin2????x -π12-12cos2????x -π12+1 =2sin ???

?2????x -π12-π6+1 =2sin ????2x -π3+1,∴T =2π2

=π. (2)当f (x )取得最大值时,sin ????2x -π3=1, 有2x -π3=2k π+π2

, 即x =k π+5π12

(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12

,k ∈Z }. 12.解 m +n =(cos θ-sin θ+2,cos θ+sin θ),

|m +n |=

(cos θ-sin θ+2)2+(cos θ+sin θ)2 =

4+22(cos θ-sin θ)=4+4cos ????θ+π4 =21+cos ????θ+π4. 由已知|m +n |=825

,得cos ????θ+π4=725. 又cos ????θ+π4=2cos 2???

?θ2+π8-1, 所以cos 2????θ2+π8=1625. ∵π<θ<2π,

∴5π8<θ2+π8<9π8

. ∴cos ????θ2+π8<0.

∴cos ????θ2+π8=-45

. 13.B [y =2cos x -3sin x =13???

?213cos x -313sin x =13(sin φcos x -cos φsin x )

=13sin(φ-x ),当sin(φ-x )=1,φ-x =2k π+π2

时,y 取到最大值. ∴φ=2k π+π2

+x ,(k ∈Z ) ∴sin φ=cos x ,cos φ=-sin x ,

∴cos x =sin φ=213,sin x =-cos φ=-313

. ∴tan x =-32

.] 14.解 3sin(x +20°)+5sin(x +80°)=3sin(x +20°)+5sin(x +20°)cos60°+5cos(x +20°)sin60°

=112sin(x +20°)+532

cos(x +20°)=????1122+????5322sin(x +20°+φ)=7sin ()x +20°+φ 其中cos φ=1114,sin φ=5314

.所以f (x )max =7.

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

(完整版)人教版数学四年级下册第三单元运算定律知识点和练习题

下册 第三讲 运算定律 知识点一、加法的简便运算 加法的交换律:两个数相加,交换加数的位置,和不变。记为a+b=b+a 。 加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不 变。记为:(a+b)+c=a+(b+c) 备注:加法的结合律可以和加法的交换律一起使用 例1、李叔叔准备骑车旅行一个星期,今天上午骑了40千米,下午骑了56千米, (1)今天李叔叔一共骑了多少千米? 40+56 □ 56+40 (2)李叔叔第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,问:李叔叔这三天一共骑了多少千米? ====== 课上练习 1、根据加法交换律填空 300+600=( )+( ) ( )+65=65+35 89+( )=23+( ) a+12=12+( ) 2根据加法结合律填空 (25+68)+32=25+( ) 130+(70+4)=( )+4 能力提升 用简便方法计算 36+158+64 74+(68+26) 149+57+51 知识点二、减法的简便运算 减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。 字母表示:b c a c b a --=-- 减法性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两 个数的和。字母表示:)(c b a c b a +-=-- 例2、昨天看到第66页,今天又看了34页。这本书一共有234页,还剩多少页没有看? 课上练习 1 、在□里和横线上填写相应的运算符号和数。 868-52-48=868□(52+ ) 1500-28-272= -(28 □272)

415-74-26= □(□) 2、计算下面各题,怎么简便就怎么计算 528-53-47 545-167-145 487-187-139-61 456-(27+156)-73 当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整,1006=1000+6,… 当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个 然后利用加减法的运算定律进行简便 计算。例如:97=100-3,998=1000-2,… 注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合 起来就具有很大的简便了。 4996+3993+2992+1991+98 11+13+15+17+19+21+23+25+27+29 20-19+18-17+……4-3+2-1 2735-(735+29+486)71-514 知识点三、乘法简便运算 乘法交换律:交换两个因数的位置,积不变。字母表示:a ? = a? b b 乘法结合律:先乘前两个数,或者先乘后两个数,积不变。 字母表示:) ? a? ? ? b = ) ( c (c b a 备注:乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。 字母表示:c?(b+a)=c?b+c?a,或者是c?b+c?a=c?(b+a) 备注:简便计算中乘法分配律及其逆运算是运用最广泛的一个,一个要掌握它和 它的逆运算。 例如:25×4=100, 250×4=1000 125×8=1000,125×80=10000 例3、简便计算:(1)25×9×4 (2)25×12 (3)125×56 (4)24×25×125 (5)48×125×63 (6)25×15×16

四年级简便计算知识点归纳教学文稿

四、第三单元运算定律知识点归纳及练习1/2 第三单元运算定律知识点归纳及练习 (一)加减法运算定律 1.加法交换律 定义:两个加数交换位置,和不变字母表示:a﹢b﹦b﹢a 例1:16+23=23+16 546+78=78+546 2.加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。 字母表示:(a﹢b)+c﹦a+(b+c) 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。举一反三: (1)46+67+54 (2) 680+485+120 (3)155+657+245 3.减法的性质

注:这些都是由加法交换律和结合律衍生出来的。减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。 字母表示:a-b-c=a-c-b 例2.简便计算:198-75-98 减法性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。字母表示:a-b-c=a-﹙b+c﹚ 例3.简便计算:(1)369-45-155 (2) 896-580-120 4.拆分、凑整法简便计算 拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。例如:103=100+3,1006=1000+6,… 凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个

整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。例如:97=100-3,998=1000-2,… 注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。 例4.计算下式,能简便的进行简便计算: (1)89+106 (2)56+98 (3)658+997 随堂练习:计算下式,怎么简便怎么计算 (1)730+895+170 (2) 820-456+280 (3)900-456-244 (7) 876-580+220 (8) 997+840+260 (9)956—197-56

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换考点典型例题

江苏省成化高级中学09届一轮复习三角专题(二) 三角恒等变换 一、考点、要点、疑点: 考点:1、掌握两角和与差的正弦、余弦、正切; 2、理解二倍角的正弦、余弦、正切; 3、了解几个三角恒等式; 要点: 1、 两角和与差的正弦、余弦、正切公式及其变形 2、 二倍角的正弦、余弦、正切公式及其变形 3、 )sin(cos sin 22?ωωω++= ?+=x B A y x B x A y 4、 几个三角恒等式的推导、证明思路与方法 疑点: 1、在三角的恒等变形中,注意公式的灵活运用,要特别注意角的各种变换. (如,)(αβαβ-+=,)(αβαβ+-= ?? ? ??--??? ??-=+βαβαβα222 等) 2、三角化简的通性通法:从函数名、角、运算三方面进行差异分析,常用的技巧有: 切割化弦、用三角公式转化出现特殊角、 异角化同角、异名化同名、高次化低次 3、辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符 号确定,θ角的值由a b =θtan 确定)在求最值、化简时起着重要作用。 二、激活思维: 1、下列等式中恒成立的有 ① βαβαβαsin cos cos sin )sin(?-?=- ② βαβαβαsin sin cos cos )cos(?-?=- ③ )]sin()[sin(21 cos sin βαβαβα-++=? ④ )]cos()[cos(2 1 sin sin βαβαβα--+=? 2、化简: ① 0 53sin 122sin 37sin 58cos += ② )sin()sin()cos()cos(βαβαβαβα+-++?-= 3、已知),2 ( ,5 3cos ππ θθ∈-=,则)3 cos( θπ -= ,)23 cos( θπ -= 4、若αtan 、βtan 是方程0652 =-+x x 的两根,则)tan( βα+=

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

分数的加减法及简便运算

分数的加减法 一、同分母的分数加减法 知识点:在计算同分母的分数加减法中,分母不变,直接用分子相加减。 注意:在计算同分母的分数加减法中,得数如果不是最简分数,我们必须将得数约分,使它成为最简分数。 例题一 5654+=5 10564=+=2 注意:因为5 10 不是最简分数,所以得约分,10和5的最大公因数是5, 所以分子和分母同时除以5,最后得数是2. 例题二 1059105109= -=-注意:因为10 4 不是最简分数,必须约分,因为4和10的最大公因数 是2,所以分子和分母同时除以2,最后的数是5 2 知识点回顾:如何将一个不是最简的分数化为最简? (将一个非最简分数化为最简,我们就是将这个分数进行约分,一直约到分子和分母互质为止。所以要将一个分数进行约分,我们必须找到分子和分母的最大公因数,然后用分子和分母同时除以他们的最大公因数。)

专项练习一:同分母的分数加减法的专项练习 一、计算 715 - 215 712 - 112 1 - 916 911 - 711 38 + 38 16 + 16 314 +314 34 + 34 二、连线 19 +4 9 2 7377+ 145 +1 5 1 8 987+ 47 + 67 137 115 11141+ 18 +78 2911 9 3 92+ 2411 +511 59 2 121+ 三、判断对错,并改正 (1)47 +37 = 714 (2)6 - 57 - 37 =577 -57 -3 7 =527 -3 7 =51 7 四、应用题 (1)一根铁丝长710 米,比另一根铁丝长3 10 米,了;另一根铁丝长多少米? (2)3天修一条路,第一天修了全长的112 ,第二天修了全长的5 12 ,第三天修了全长的几分之几?

高中数学三角恒等变换精选题目(附答案)

高中数学三角恒等变换精选题目(附答案) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C 2 D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. tan 20tan 4020tan 40? ? ? ? ++的值为( ) A 1 B 3 C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47- B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于 5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-= 的图像( )

A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位 10. 函数sin 22x x y =+的图像的一条对称轴方程是 ( ) A 、x =113π B 、x = 53π C 、53x π=- D 、3 x π =- 11. 已知1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4 3- 12.若0,4πα? ? ∈ ?? ?()0,βπ∈且()1tan 2αβ-=,1 tan 7 β=-,则=-βα2 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 13. .在ABC ?中,已知tanA ,tanB 是方程2 3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则 3sin 22cos 2cos 23sin 2x x x x +-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ?面积的最小值为 。 16. 关于函数( )cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ?? - ???? 上是单调递增; ③函数()f x 的图像关于点,012π?? ??? 成中心对称图像; ④将函数()f x 的图像向左平移 512 π 个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上) 17. 已知02 π α<< ,15tan 2 2tan 2 α α + = ,试求sin 3πα? ?- ?? ?的值. 18. 求) 212cos 4(12sin 3 12tan 30 200--的值.

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A) 一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r,圆心角是α(弧度)的扇形的面积为________. 2. 若 ,则tan(π+α)=________. 3. 若α是第四象限的角,则π-α是第________象限的角. 4. 适合 的实数m的取值范围是_________. 5. 若tanα=3,则cos2α+3sin2α=__________. 6. 函数 的图象的一个对称轴方程是___________.(答案不唯一) 7. 把函数 的图象向左平移 个单位,所得的图象对应的函数为偶函数,则 的最小正值为___________. 8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.

9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________. 10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________. 11. 函数 的递减区间是___________. 12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么 __________. 13. 若函数y=sin(x+ )+cos(x+ )是偶函数,则满足条件的 为_______. 14. tan3、tan4、tan5的大小顺序是________. 二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知 ,求

的值. 16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx). (1) 求函数f(x)的最小正周期和最大值; (2) 在给出的直角坐标系中,画出函数y=f(x)在区间 上的图象. 17. (本小题满分14分)求函数y=4sin2x+6cosx-6( )的值域. 18. (本小题满分16分)已知函数 的图象如图所示. (1) 求该函数的解析式; (2) 求该函数的单调递增区间. 19. (本小题满分16分)设函数

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

小学四年级简便计算知识点归纳

(最新编辑教材) 四、第三单元运算定律知识点归纳及练习1/2 第三单元运算定律知识点归纳及练习 (一)加减法运算定律 1.加法交换律 定义:两个加数交换位置,和不变字母表示:a﹢b﹦b﹢a 例1:16+23=23+16 546+78=78+546 2.加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变. 字母表示:(a﹢b)+c﹦a+(b+c 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算. 举一反三: (1)46+67+54 (2) 680+485+120 (3) 155+657+245 3.减法的性质 注:这些都是由加法交换律和结合律衍生出来的. 减法性质①:

如果一个数连续减去两个数,那么后面两个减数的位置可以互换. 字母表示:a-b-c=a-c-b 例2.简便计算:198-75-98 减法性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和. 字母表示:a-b-c=a-﹙b+c﹚ 例3.简便计算:(1) 369-45-155 (2) 896-580-120 4.拆分、凑整法简便计算;;; 拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算.例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算.例如:97=100-3,

(完整版)简单的三角恒等变换(一)

§3.2 简单的三角恒等变换(一) 学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用. ⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形. 教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变 换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力. 教学方法:讲练结合. 教具准备:多媒体投影. 教学过程: (Ⅰ)复习引入: 师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式. 生:(默写公式). 师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台 本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用. (Ⅱ)讲授例题: 例1试以cos α表示2 sin 2α,2cos 2α,2tan 2α. 分析:α是2 α的二倍角,因此在仅含α的正弦、余弦的二倍角公式(2)C α中,以2 α代替α就可以得到2sin 2α、2cos 2α,然后运用同角三角函数的基本关系可得2tan 2 α. 解:略. 师:例1的结果还可以表示为:

sin 2α =cos 2α=tan 2α=, 有些书上称之为半角公式,其符号由角2 α终边的位置确定. 师:由例题1和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先寻找式子所包含的角之间的联系. 师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点. 例2求证: ⑴1sin cos [sin()sin()]2 αβαβαβ=++-; ⑵sin sin 2sin cos 22 θ?θ?θ?+-+=. 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现 sin cos αβ与和(差)的正弦公式之间的联系.记sin cos x αβ=,cos sin y αβ=, 则有sin()x y αβ+=+,sin()x y αβ-=-,由此解出x ,即求出了sin cos αβ. ⑵的证明可以直接利用⑴的结果,令αβθ+=,αβ?-=,解出α、β后代如即可. 证明:略 师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将22θ?θ?θ+-=+,22 θ?θ??+-=-代入左边,然后利用和(差)的正弦公式展开、合并即可得出右式. 师:在例2的证明中,把sin cos αβ看成x ,cos sin αβ看成y 把等式看作x , y 的方程,通过解方程组求得x ,是方程思想的体现;把αβ+看作θ,αβ-看作?,从而把包含α、β的三角函数式变换成θ、?的三角函数式,是换元思想的应用.

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系

(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos( )cos cos sin sin cos cos sin sin cos( ) (3) tan( tan tan 去分母得 tan tan i tan( )(1 tan tan ) 1 tan tan tan tan tan( )(1 tan tan 、倍角公式的推导及其变形: (1) sin 2 sin( ) sin cos cos sin 2 sin cos sin 1 . cos — sin 2 2 2 1 sin 2 (sin cos (2) cos 2 cos( ) cos cos sin sin cos 2 sin 2 cos 2 cos 2 sin 2 (cos sin )(cos sin ) cos 2 2 ? 2 cos 厶 sin 2 2 COS (1 cos ) 把1移项得 1 cos2 2 cos 2 或 -4- GQS -2- c 2 cos 2 1 2 【因为 是-的两倍,所以公式也可以写成 2 cos 2 cos 2 一 1 或 1 cos 2 cos 2 或 - 1 cos — cos 2 2 2 2 2 因为4 是2的两倍,所以公式也可以写成 cos 4 2 cos 2 2 1 或 1 2 Once 厶 或 nee? O 1 2 cos 2 2 2 cos sin (1 sin 2 ) sin 2 把1移项得1 cos 2 2s in 2 或 -4- 1 2sin 2 2 【因为 是—的两倍,所以公式也可以写成 2 cos 1 2 sin 2— 或 1 cos 2 sin 2 或 4 ---- eos- sin 2 2 2 2 2 因为4 是2 的两倍,所以公式也可以写成 2 1、和差公式及其变形: 2 ) ) 2 sin 2

(完整版)人教版四年级下册运算定律知识点

第三章运算定律 一、加法运算定律: 1加法交换律两个数相加,交换加数的位置,和不变。a+b = b+a 2、加法结合律:]三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加, 再加上第一个数,和不变。(a+b)+c = a+(b+c) 加法的这两个定律往往结合起来一起使用。如:165+93+35 = 93+(165+35) 3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a--b-c = a-(b+c) 二、乘法运算定律: 1乘法交换律:|两个数相乘,交换因数的位置,积不变。axb = b冷 2、乘法结合律:|三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘, 再乘以第一个数,积不变。(a >b) >c = a)(b >c) 乘法的这两个定律往往结合起来一起使用。如:125X78X8 = 78 (125 X8) 3、乘法分配律两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。 (a+b) X=a X c+b X c (a —b) X = a X c —b X c 乘法分配律的应用: ①类型一: (a + b) X c (a —b) X c =a X c + b X c =a X c—b X c ②类型二: a X c+ b X c a X c —b X c =(a + b) X c =(a —b) X c ③类型三: a X 99 + a a X b —a =a X (99 + 1) =a X (b —1) ④类型四: a X 99 a X 102 =a X (100 —1) =a X (100 + 2) =a X 100—a X =a X 100+ a X 三、简便计算 1 ?连加的简便计算: ①使用加法结合律(把和是整十、整百、整千、的结合在一起) ②个位:1与9, 2与8, 3与7, 4与6, 5与5,结合。 2 ?连减的简便计算: ①连续减去几个数就等于减去这几个数的和。如:106-26-74 = 106-(26+74) ②减去几个数的和就等于连续减去这几个数。如:106-(26+74) = 106-26-74 3?加减混合的简便计算: 第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减) 例如:123+38-23=123-23+38 146-78+54=146+54-78

三角恒等变换-知识点+例题+练习

两角和与差的正弦、余弦和正切 基础梳理 1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β 1-tan αtan β; (6)T (α-β):tan(α-β)= tan α-tan β 1+tan αtan β . 2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α; (2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α= 2tan α 1-tan 2α . 3.有关公式的逆用、变形等 (1)tan α±tan β=tan(α±β)(1?tan_αtan_β); (2)cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2 ; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ? ? ???α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 两个技巧 (1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β= α+β2

相关文档
最新文档