第四章 微分中值定理与导数的应用

第四章 微分中值定理与导数的应用
第四章 微分中值定理与导数的应用

第四章 微分中值定理与导数的应用

第一节 中值定理(2课时)

要求:理解罗尔中值定理与拉格朗日中值定理。了解柯西中值定理。 重点:理解中值定理及简单的应用。 难点:中值定理证明的应用。

一、罗尔(Rolle)定理

罗尔定理 如果函数)(x f 满足条件

(1)在闭区间],[b a 上连续;

(2)在开区间),(b a 内可导; (3))()(b f a f =.

则在开区间),(b a 内至少有一点)(b a <<ξξ,使得函数)(x f 在该点的导数等

于零,即0)(='ξf .

几何解释

设曲线AB 的方程为))((b x a x f y ≤≤=,罗尔定理的条件的几何表示,

AB 是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,且两个端

点的纵坐标相等,结论是曲线弧AB 上至少有一点C,使该点处曲线的切线是水平的.从图中看到,在曲线的最高点或最低点处,切线是水平的,这就启发了我们证明这个定理的思路,ξ应在函数取最值点处找.

例1.验证罗尔定理对函数34)(2+-=x x x f 在]3,1[上的正确性. 证明 因为函数)3)(1(34)(2--=+-=x x x x x f 在闭区间]3,1[上连续,可导.

)2

(2

4

2

)

(-

=

-

=

'x

x

x

f

且0

)3(

)1(=

=f

f

函数)

(x

f在区间]3,1[上满足罗尔定理条件,所以在区间)3,1(内存在ξ使得

)2

(2

)

(=

-

=

ξ

f,

于是)3,1(

2∈

=

ξ.

故确实在区间)3,1(内至少存在一点2

=

ξ使得0

)2(=

'f,结论成立.

二、拉格朗日中值定理(微分中值定理)

几何分析

拉格朗日中值定理设函数)

(x

f满足条件

(1)在闭区间]

,

[b

a上连续;

(2)在开区间)

,

(b

a内可导.

则在区间)

,

(b

a内至少存在一点)

(b

a<

ξ,使得等式

)

)(

(

)

(

)

(a

b

f

a

f

b

f-

'

=

-ξ成立.

推论1如果函数)

(x

f在区间I上的导数恒为零,那么函数)

(x

f在区间I 上是一个常数(它的逆命题也成立).

例2.试证

2

cot

arctan

π

=

+x

arc

x)

(+∞

<

<

-∞x.

证明构造函数x

arc

x

x

f cot

arctan

)

(+

=,

因为函数)

(x

f在)

,

(+∞

-∞上可导,且

1

1

1

1

)

(

2

2

=

+

-

+

=

'

x

x

x

f

(2)在开区间)

,

(b

a内可导,且0

)

(≠

'x

F,)

,

(b

a

x∈

则在区间)

,

(b

a内至少有一点ξ,使等式

)

(

)

(

)

(

)

(

)

(

)

(

ξ

ξ

F

f

a

F

b

F

a

f

b

f

'

'

=

-

-

成立.

说明

(1)公式

)

(

)

(

)

(

)

(

)

(

)

(

ξ

ξ

F

f

a

F

b

F

a

f

b

f

'

'

=

-

-

中的ξ是同一值,即(

ξ

ξ

ξ

=

'

'

=

'

'

x

x

F

x

f

F

f

)

)

(

)

(

(

)

(

)

(

); (2)当x

x

F=

)

(时,1

)

(

,

)

(

)

(=

'

-

=

-x

F

a

b

a

F

b

F,正是拉氏中值公式;

三个定理联系,罗尔定理

?

?

??

??→

?

=

特例

推广

)(

)

(b

f

a

f拉氏定理

?

?

??

?

?→

?

=

特例

推广

x

X

F)

柯西定理. 作业129

P习题4.1

)3)(1(3963)(2-+=--='x x x x x f ,

(2)令0)(='x f ,得3,1=-=x x ,

(3)列表如下

x

)1,(--∞

1- )3,1(-

3

),3(+∞ )

(x f '符

+ 0

— 0

+

)(x f

极大值 10

极小值 22-

应用定理2判别极值的步骤如下, (1)求出函数)(x f 的定义域,及导数)(x f ';

(2)求出函数)(x f 的全部驻点(即求出方程0)(='x f 在所讨论的区间内的全部实根);

(3)用这些点将函数)(x f 的定义域分成若干小区间,考查在各点两侧导数的符号,根据定理2判别该点是否有极值点,是极大值点还是极小值点; (4)求出各极值点的函数值,就得)(x f 的全部极值. 例2.求函数32)1(x x y -=的极值.

解 (1)函数的定义域为(,)-∞+∞,导数为

3

1325x

x y -=

',

(2)令0='y ,得

5

2=

x , (3)列表如下

x

(0,∞-)

0 (52

,0) 52 ),52

(+∞ y '

+

不存在 — 0 +

最新微分中值定理与导数的应用

微分中值定理与导数 的应用

第三章微分中值定理与导数的应用 本章内容是上一章的延续,主要是利用导数与微分这一方法来分析和研究函数的性质及其图形和各种形态,这一切的理论基础即为在微分学中占有重要地位的几个微分中值定理。在分析、论证过程中,中值定理有着广泛的应用。 一、教学目标与基本要求 (一)知识 1.记住罗尔定理、拉格朗日中值定理、柯西中值定理的条件和结论; 2.记住泰勒公式及其拉格朗日余项的表达式; 3.记住e x,sin(x),cos(x),ln(1+x),1/1+x的N阶麦克劳林公式; 4.知道极限的末定式及其常见的几种类型的求法; 5.知道函数的极值点、驻点的定义以及它们之间的关系; 6.知道曲线的凹凸性与拐点的定义; 7.知道弧微分的定义与弧微分公式; 8.知道光滑曲线、曲率和曲率半径的定义; 9.知道求方程的近似解的基本方法。 (二)领会 1.领会罗尔定理、拉格朗日中值定理、柯西中值定理,领会罗尔定理、拉格朗日中值定理的几何意义; 2.领会罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理之间的联系; 3.领会洛必达法则; 4.领会函数的单调性与一阶导数之间的联系; 5.领会函数的极值与一、二阶导数之间的联系; 6.领会函数的极值和最值的定义以及它们之间的区别和联系; 7.领会曲线的凹凸性与二阶导数之间的联系。 (三)运用 1.会用中值定理证明等式和不等式; 2.会用洛必达法则求末定式的极限; 3.会求一些函数的泰勒公式和利用泰勒公式求函数的极限及一些函数的近似值; 4.会用导数求函数的单调区间和极值; 5.会用函数的单调性证明不等式; 6.会用导数判断函数图形的凹凸性和拐点; 7.会求曲线的水平渐近线和铅直渐近线,会描绘函数的图形; 8.会求一些最值应用问题; 9.会求曲率和曲率半径; 10.会用二分法和切线法求一些方程实根的近似值。 (四)分析综合 1.综合运用中值定理、介值定理和函数的单调性等证明方程实根的存在性和惟一性;

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

中值定理与导数的应用

第三章 中值定理与导数的应用 §3. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0. 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点 )(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即0)('=ξf . 例:设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)1(=f ,证明:在(0,1)内存在ξ,使得ξ ξξ) ()(f f - ='. 【分析】本题的难点是构造辅助函数,可如下分析: ()0)(0)()(0)()() ()(=' →='+→='+→- ='x xf x f x x f f f f f ξξξξ ξξ 【证明】令)()(x xf x G =,则)(x G 在[0,1]上连续,在(0,1)上可导,且 0)1(1G (1 )0,0)(0)0(====f f G ,)()()(x f x x f x G '+=' 由罗尔中值定理知,存在)1,0(∈ξ,使得)()()(ξξξξf f G '+='.即ξ ξξ) ()(f f - =' 例:设函数f (x ), g (x )在[a , b ]上连续,在(a , b )内具有二阶导数且存在相等的最大值,f (a )=g (a ), f (b )=g (b ), 证明:存在(,)a b ξ∈,使得()().f g ξξ''''= 【分析】需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令 ()()()F x f x g x =-,则问题转化为证明()0F ξ''=, 只需对()F x '用罗尔定理,关键是

北大版高等数学第四章微分中值定理与泰勒公式答案习题

习题4.5 x (,3 2 )3 2 (3 2 ,0) 0(0, 3 2 ) 3 2 (3 2 ,+) f0+00+ f拐点拐 点 拐 点x(,0) -∞0(0,1)1(1,2)2(2,) +∞y'0++0 y''++ y 极小值拐点极大值 ()() ()() 2 22222 22 222 32 1.() ()212,()12(2)4 3 642320,0,. 2 x x x x x x x x f x xe f x e x e e x f x e x x xe e x x xe x x - ------- = ''' -=-=--- =-+=-+==± 求函数 的凸凹性区间及拐点. 解= 23 2 1 ,(,). 3 2(2)0,0,2. 220, 1. y x x x y x x x x x y x x =-∈-∞∞ '=-=-== ''=-== 作下列函数的图形: 2.

222223.,(,).2(2)(2)0,0,2;(2)(22)(42)0,2 2. x x x x x x x x y x e x y xe x e e x x e x x x y e x x e x e x x x --------'=∈-∞+∞=-=-=-==''=--+-=-+==± x (,0)-∞ (0,22)- 22- (22,2)- 2 (2,22)+ 22+ (22,)++∞ y ' - + + - - y '' + + - - 0 + y ? 极小值 ? 拐点 ? 极大值 ? 拐点 ? 22231 4.,0. 11 10, 2 1;. y x x x x y x x x y x =+≠-'=-==''=±=

第四章 微分中值定理与导数的应用

第四章 微分中值定理与导数的应用 第一节 中值定理(2课时) 要求:理解罗尔中值定理与拉格朗日中值定理。了解柯西中值定理。 重点:理解中值定理及简单的应用。 难点:中值定理证明的应用。 一、罗尔(Rolle)定理 罗尔定理 如果函数)(x f 满足条件 (1)在闭区间],[b a 上连续; (2)在开区间),(b a 内可导; (3))()(b f a f =. 则在开区间),(b a 内至少有一点)(b a <<ξξ,使得函数)(x f 在该点的导数等 于零,即0)(='ξf . 几何解释 设曲线? AB 的方程为))((b x a x f y ≤≤=,罗尔定理的条件的几何表示,?AB 是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,且两个端点的纵坐标相等,结论是曲线弧? AB 上至少有一点C ,使该点处曲线的切线是水平的.从图中看到,在曲线的最高点或最低点处,切线是水平的,这就启发了我们证明这个定理的思路,ξ应在函数取最值点处找. 例1.验证罗尔定理对函数34)(2+-=x x x f 在]3,1[上的正确性. 证明 因为函数)3)(1(34)(2--=+-=x x x x x f 在闭区间]3,1[上连续,可导.

)2 (2 4 2 ) (- = - = 'x x x f 且0 )3( )1(= =f f 函数) (x f在区间]3,1[上满足罗尔定理条件,所以在区间)3,1(内存在ξ使得 )2 (2 ) (= - = 'ξ ξ f, 于是)3,1( 2∈ = ξ. 故确实在区间)3,1(内至少存在一点2 = ξ使得0 )2(= 'f,结论成立. 二、拉格朗日中值定理(微分中值定理) 几何分析 拉格朗日中值定理设函数) (x f满足条件 (1)在闭区间] , [b a上连续; (2)在开区间) , (b a内可导. 则在区间) , (b a内至少存在一点) (b a< <ξ ξ,使得等式 ) )( ( ) ( ) (a b f a f b f- ' = -ξ成立. 推论1如果函数) (x f在区间I上的导数恒为零,那么函数) (x f在区间I上是一个常数(它的逆命题也成立). 例2.试证 2 cot arctan π = +x arc x) (+∞ < < -∞x. 证明构造函数x arc x x f cot arctan ) (+ =, 因为函数) (x f在) , (+∞ -∞上可导,且 1 1 1 1 ) ( 2 2 = + - + = ' x x x f 由推论得()arctan cot f x x arc x C =+=,(,) x∈-∞+∞,

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题] 1、 曲线的渐近线为()。 A、仅有铅直渐近线 B、仅有水平渐近线 C、既有水平渐近线又有铅直渐近线 D、无渐近线 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 本题考察渐近线计算. 因为,所以y存在水平渐近线,且无铅直渐近线。 [单选题] 2、 在区间[0,2]上使罗尔定理成立有中值为ξ为() A、4 B、2 C、3 D、1 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题] 3、 ,则待定型的类型是(). A、 B、 C、 D、

【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题] 4、 下列极限不能使用洛必达法则的是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则. [单选题] 5、 在区间[1,e]上使拉格朗日定理成立的中值为ξ=(). A、1 B、2 C、e D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】本题考察中值定理的应用。

[单选题] 6、 如果在内,且在连续,则在上(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 在内,说明为单调递增函数,由于在连续,所以在 上f(a)<f(x)<f(b). [单选题] 7、 的单调增加区间是(). A、(0,+∞) B、(-1,+∞) C、(-∞,+∞) D、(1,+∞) 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题] 8、 ().

第三章 微分中值定理与导数应用教案教学设计

第三章 微分中值定理与导数应用 第一节 微分中值定理 教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒 中值定理。 教学重点:罗尔定理、拉格朗日中值定理。 教学难点:罗尔定理、拉格朗日中值定理的应用。 教学内容: 一、罗尔定理 1. 罗尔定理 几何意义:对于在],[b a 上每一点都有不垂直于x 轴的切线,且两端点的连线与x 轴平行的不间断的曲线 )(x f 来说,至少存在一点C ,使得其切线平行于x 轴。 从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。为应用方便,先介绍费马(Fermat )引理 费马引理 设函数 )(x f 在点0x 的某邻域)(0x U 内有定义, 并且在0x 处可导, 如果对任 意)(0x U x ∈, 有)()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0'=x f . 证明:不妨设)(0x U x ∈时,)()(0x f x f ≤(若)()(0x f x f ≥,可以类似地证明). 于是对于)(00x U x x ∈?+,有)()(00x f x x f ≤?+, 从而当0>?x 时, 0 ) ()(00≤?-?+x x f x x f ; 而当0

根据函数 )(x f 在0x 处可导及极限的保号性的得 ==+)()(0'0'x f x f 0)()(lim 000≤?-?++ →?x x f x x f x ==-)()(0'0'x f x f 0)()(lim 000≥?-?+- →?x x f x x f x 所以0)(0'=x f , 证毕. 定义 导数等于零的点称为函数的驻点(或稳定点,临界点). 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即 0)('=ξf . 证明:由于)(x f 在],[b a 上连续,因此必有最大值M 和最小值m ,于是有两种可能的情形: (1)m M =,此时)(x f 在],[b a 上必然取相同的数值M ,即.)(M x f = 由此得.0)(='x f 因此,任取),(b a ∈ξ,有.0)(='ξf (2)m M >,由于)()(b f a f =,所以M 和m 至少与一个不等于)(x f 在区间],[b a 端点处 的函数值.不妨设)(a f M ≠(若)(a f m ≠,可类似证明),则必定在),(b a 有一点ξ使M f =)(ξ. 因此任取],[b a x ∈有)()(ξf x f ≤, 从而由费马引理有0)(='ξf . 证毕 例1 验证罗尔定理对32)(2--=x x x f 在区间]3,1[-上的正确性 解 显然 32)(2--=x x x f )1)(3(+-=x x 在]3,1[-上连续,在)3,1(-上可导,且 0)3()1(==-f f , 又)1(2)(-='x x f , 取))3,1(1(,1-∈=ξ,有0)(='ξf . 说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立; 2 使得定理成立的ξ可能多于一个,也可能只有一个. 例如 ]2,2[,-∈=x x y 在]2,2[-上除)0(f '不存在外,满足罗尔定理的一切条件, 但在区间]2,2[-内找不到一点能使0)(='x f . 例如 ?? ?=∈-=0 ,0]1,0(,1x x x y 除了0=x 点不连续外,在]1,0[上满足罗尔定理的一切条

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题 § 微分中值定理 1. 填空题 (1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 π π -4. (2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中. 2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且 )()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ). A . 必要条件 B .充分条件 C . 充要条件 D . 既非充分 也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A. x e x f =)( B. ||)(x x f = C. 21)(x x f -= D. ????? =≠=0 ,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ). A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξ B . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间

C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ 3.证明恒等式:)(2 cot arctan ∞<<-∞= +x x arc x π . 证明: 令x arc x x f cot arctan )(+=,则011 11)(2 2=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2 f π =, 故 )(2 cot arctan ∞<<-∞= +x x arc x π . 4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf . 证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf . 5. 证明方程06 213 2=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则03 1 )2(,01)0(<-=->=f f ,根据零点 存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在) ,(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02 112>++ηη矛盾.故方程0 62132=+++x x x 只有一个实根.

中值定理与导数的应用(包括题)

第三章 中值定理与导数的应用 一、 基本内容 (一) 中值定理 1.罗尔定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf . For personal use only in study and research; not for commercial use 2.拉格朗日中值定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得 a b a f b f f --= ') ()()(ξ 其微分形式为 x f x f x x f ??'=-?+)()()(ξ 这里10,<

(2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ; (3)) () (l i m x g x f a x ''→存在(或为无穷大),那么 ) () (lim )()(lim x g x f x g x f a x a x ''=→→ 2.法则2 如果函数)(x f 及)(x g 满足条件: (1)0)(lim =∞ →x f x , 0)(lim =∞ →x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) ) () (lim x g x f x ''∞ →存在(或为无穷大); 那么 ) ()(lim )()(lim x g x f x g x f x x ''=∞→∞ → 以上两个法则是针对00型未定式. 对∞ ∞ 型未定式,也有相应的两个法则. 对∞?0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞ ∞ 型来求. (三) 泰勒公式 1.带拉格朗日余项的泰勒公式 设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有 +-''+ -'+=200000)(2) ())(()()(x x x f x x x f x f x f ! )()(!) (00)(x R x x n x f n n n +-+ 10)1()()! 1() ()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项. (四) 函数的单调性 函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导. (1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;

北大版高等数学第四章 微分中值定理与泰勒公式答案 习题4.1

习题 4.1 3 2 12121.()32[0,1][1,2]R o lle 0,(0)(1)(2)0,()[0,1][1,2]R o lle 620,6 3 (0,1),(1,2),()()0. 332.f x x x x f f f f f x x x x x x f x f x =-+==='-+== = ''====2 验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x )=3x 讨论下列 解11 1 1 ()[1,1]R o lle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1) (1)(1)()0,(1,1),()0. 1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m m x n n x c f c m f x -----∈-'==+-=- '=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/3 2),(0). 33.()ln [1,],?11(),()(1)ln ln 11(1), 1. 4.L ag ran g e (1)|sin sin |||; (2)|tan tan |||,,(/2,/2);(3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=- =='= -=-== -=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解2 2 2 (0). (1)|sin sin ||(sin )|()||co s |||||.(2)|tan tan ||(tan )|()|sec ||||.(3) ln ln ln (ln )|()((,)). 5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-= ∈< =--证明多项式的导函数的证1,212,. ()1,2,R o lle ,,,()(2,1),(1,1),(1,2). 6.,,,:()co s co s 2co s (0,). n n P x P x c c c f x c x c x c n x π±±---=+++ 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

微分中值定理与导数应用

第三单元微分中值定理与导数应用 一、填空题 1、 lim xln x x 0 。 2、 函数f x 2x cos x 在区间 单调增 3 、 函数f x 4 8x 3 3x 4的极大值是 。 4 、 曲线y x 4 6x 2 3x 在区间 是凸的。 5 、 函数f x cosx 在x 0处的2m 1阶泰勒多项式是 6 、 曲线y xe 3x 的拐点坐标是 。 7、若fx 在含X 。的a,b (其中a b )内恒有二阶负的导数,且 则f X 。是f x 在a,b 上的最大值。 & y X 3 2x 1 在 内有 个零点。 1 1 9、 lim cot x( ) 。 sin x x 1 i 10、 lim (~2 ------------ ) __________ 。 x 0 x xta n x 11、 曲线y e"的上凸区间是 _____________ 。 12、 函数y e x x 1的单调增区间是 _______________ 。 二、单项选择 1、 函数f(x)有连续二阶导数且f(0) 0, f (0) 1,f (0) 2,则lim x 0 () (A) 不存在;(E) 0 ; (C) -1 ; (D) -2 2、 设 f(x) (x 1)(2x 1),x (,),则在(丄,1)内曲线 f(x)( f(x) x 2 x

2 (A)单调增凹的;(E)单调减凹的; (A)不可导; (B)可导,且f'(0) 0 ;

(C)单调增凸的; (D)单调减凸的 3、f(x)在(a,b)内连续,X 。 (a,b), f (X 。) f (x °) 0,则 f (x)在 x x 。处 ( ) (A)取得极大值; (E)取得极小值; (C) 一定有拐点(x o ,f(x 。)); (D)可能取得极值,也可能有 拐点。 4、设f(x)在a,b 上连续,在(a,b)内可导,则I:在(a,b)内f (x) 0与 在(a,b)上f (x) f (a)之间关系是( ) (A)无实根; (B)有唯一实根; (C) 有两个实根; (D)有三个 实根。 7、已知f(x)在x 0的某个邻域内连续,且f(0) 0 , lim f(x) 2 , x 01 cosx 则在点x 0处f(x)( ) (A) I 是H 的充分但非必要条件 分条件; (C) I 是H 的充分必要条件; 也不是必要条件。 5、 设f(x)、g(x)在a,b 连续可导, 则当a x b 时,则有( (A) f(x)g(x) f(a)g(a); (C)他他; g(x) g(a) 6、 方程x 3 3x 1 0在区间(, (B) I 是H 的必要但非充 (D) I 不是H 的充分条件, f (x)g(x) 0,且 f (x)g(x) f(x)g (x), ) (B) f(x)g(x) f (b)g(b); (D)喪起。 f(x) f(a) )内( )

第四章----中值定理与导数的应用--习题及答案(1)

第四章 中值定理与导数的应用 一、填空 1、若()x x x f -=3在[0,3]上满足罗尔定理的ξ值为 。 2、若2 1 cos 1sin lim 20=-→kx x x ,则k = 。 3、=a ,=b 时,点(1,3)为2 3bx ax y +=的拐点。 4、3+=x e x 在),(+∞-∞内的实根的个数为 。 5、函数)1ln(2 x x y +-=的单调递增区间 ,在[-1,1]中最大值为 ,最小值为 。 6、函数23 )5()(-=x x x f 的驻点为 ,其极大值为 ,极小值为 。 7、若5)(cos sin lim 0=--→b x a e x x x ,则=a ,=b 。 8、x x x y )1 1(-+=的水平渐近线为 。 二、选择 1、设R x x x x f ∈+-='),12)(1()(,则在)4 1 ,21(- 内)(x f 是( ) A 、单调增加,图形上凹 B 、单调减少,图形上凹 C 、单调增加,图形下凹 D 、单调减少,图形下凹 2、设函数)(x f 在[0,1]上可导,0)(>'x f 并且0)1(,0)0(>

微分中值定理与导数的应用练习题

题型 1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题 2.根据极限,利用洛比达法则,进行计算 3.根据函数,计算导数,求函数的单调性以及极值、最值 4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点 5.根据函数,利用极限的性质,求渐近线的方程 内容 一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则 一些类型(00、∞ ∞、∞?0、∞-∞、0 ∞、0 0、∞ 1等) 三.函数的单调性与极值 1.单调性 2.极值 四.函数的凹凸性与拐点 1.凹凸性 2.拐点 五.函数的渐近线

水平渐近线、垂直渐近线 典型例题 题型I 方程根的证明 题型II 不等式(或等式)的证明 题型III 利用导数确定函数的单调区间与极值 题型IV 求函数的凹凸区间及拐点 自测题三 一.填空题 二.选择题 三.解答题 4月13日微分中值定理与导数应用练习题 基础题: 一.填空题 1.函数12 -=x y 在[]1,1-上满足罗尔定理条件的=ξ 。 3.1)(2 -+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。 4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。 5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 . 6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中. 7. =→ x x x 3cos 5cos lim 2 π35- 8.=++∞→x x x arctan ) 1 1ln(lim

第三章中值定理与导数的应用答案

(A) 一选择 1—5 BCBDB 二计算与证明 1 .若 x 0,证明 e x 1 x 。 证明:令 F x =e x _1_x ,则 F x =e x -1 当x 0时,F'x ?0,从而Fx 在0单增 因为F0=0,故Fx ?0,即 e x 1 x 2 2 .设 x 0,证明 x - x In 1 x :: x 。 2 证明: -In 1 X ,贝u f x =1 —X-丄二二 2 因x ? 0,贝U f x ::: 0,从而f x 在0, ?::单减。 2 x 故 f x :: f 0 =0,即卩 x In 1 x 2 20:令 g x ;=ln 1 x -x ,则 g x 1 ——1 1 + x 当x 0时,g x ::: 0,从而g x 在0「::单减 故 g x : g 0 = 0,即 In 1 x < x 2 由 1°、20 知,x —亠:::l n 1 ? x :: x 2 (B ) 一选择 1— 4 CBDD 习题3.1 1°:令 f x R x -

计算与证明 arcta n arcta n — n n +1 1 1 解:令F x "「如x ,则Fx 在GJ 上连续,在占*可导,故 1 1 arctan arcta n — ,使 f n LJ v f 1 1 当n 时,贝厂> 0 1 故原式二 lim f = lim 2 = 1 2.设f x 在0,1 1上可导,且0 ::: f x ::: 1,对于任何x ?0,1 ,都有f x - 1, 试证:在0,1内,有且仅有一个数X ,使f x = x 。 证:令Fx 二fx-x ,因为Fx 在0,1上连续,且F0二f0 0, F 1二f 1 -1 :::0,则由零点存在定理在 0,1内至少存在一点 x ,使 F x 二 f x = 0,即 f x 二 x 。 下证唯一性。设在0,1内存在两个点X 1与X 2,且X 1 ::: X 2,使f X 1 = x 1, f X 2 1=X 2,在〔X 1,X 2 1上运用拉格朗日中值定理,则有 :5 1X1, X 2 ,使 得 f = f X 2 - f X 1 二 X 2 -X 1 二 1 x 2 _捲 x 2 _捲 这与题设f X =1矛盾,故只有一个X 使f X 二X 。 3 .设fx 在1,2 1上具有二阶导数f x ,且f2二f1=0,如果 F x -1 f x ,证明至少存在一点 1,2,使F 」=0。 求lim n _L :i 由拉格朗日定理知,存在一点

微分中值定理与导数的应用习题

第四章微分中值定理与导数得应用习题 §4、1 微分中值定理 1. 填空题 (1)函数在上使拉格朗日中值定理结论成立得ξ就是. (2)设,则有3个实根,分别位于区间中. 2.选择题 (1)罗尔定理中得三个条件:在上连续,在内可导,且,就是在内至少存在一点,使成立得(B ). A.必要条件 B.充分条件 C. 充要条件D.既非充分也非必要条件 (2)下列函数在上满足罗尔定理条件得就是( C ). A、B、C、D、 (3)若在内可导,且就是内任意两点,则至少存在一点,使下式成立(B). A. B. 在之间 C. D. 3.证明恒等式:. 证明: 令,则,所以为一常数. 设,又因为, 故. 4.若函数在内具有二阶导数,且,其中,证明:在内至少有一点,使得. 证明:由于在上连续,在可导,且,根据罗尔定理知,存在, 使. 同理存在,使. 又在上 符合罗尔定理得条件,故有,使得. 5. 证明方程有且仅有一个实根. 证明:设, 则,根据零点存在定理至少存在一个,使得.另一方面,假设有,且,使,根据罗尔定理,存在使,即,这与矛盾.故方程只有一个实根. 6. 设函数得导函数在上连续,且,其中就是介于之间得一个实数. 证明: 存在,使成立、 证明: 由于在内可导,从而在闭区间内连续,在开区间内可导.又因为,根据零点存在定理,必存在点,使得. 同理,存在点,使得.因此在上满足罗尔定理得条件,故存在,使成立. 7、设函数在上连续,在内可导、试证:至少存在一点, 使 证明:只需令,利用柯西中值定理即可证明、 8.证明下列不等式 (1)当时,. 证明:设,函数在区间上满足拉格朗日中值定理得条件,且, 故, 即 () 因此, 当时,. (2)当时,. 证明:设,则函数在区间上满足拉格朗日中值定理得条件,有 因为,所以,又因为,所以,从而 . §4、2 洛毕达法则 1. 填空题 (1) (2)0 (3)= (4)1 2.选择题

第四章.中值定理与导数的应用

第四章.中值定理与导数的应用 要求掌握的内容: 1、理解罗尔定理和拉格朗日中值定理 2、会用洛必达法则求函数极限 3、掌握函数单调性的判别方法 4、了解函数极值的概念,掌握函数极值、最值的求法及应用 5、会用导数判断函数图形的凹凸性,会求函数的拐点和渐近线。 6、会描绘简单函数的图形 一、罗尔定理 如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;其中a不等于b;在区间端点处的函数值相等,即f(a)=f(b),那么在区间(a,b)内至少存在一点ξ(a<ξ

《高等数学.同济五版》讲稿WORD版-第03章-中值定理与导数的应用

第三章 中值定理与导数的应用 教学目的: 1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。 2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数 最大值和最小值的求法及其简单应用。 3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐 近线,会描绘函数的图形。 4、 掌握用洛必达法则求未定式极限的方法。 5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。 6、 知道方程近似解的二分法及切线性。 教学重点: 1、罗尔定理、拉格朗日中值定理; 2、函数的极值 ,判断函数的单调性和求函数极值的方法; 3、函数图形的凹凸性; 4、洛必达法则。 教学难点: 1、罗尔定理、拉格朗日中值定理的应用; 2、极值的判断方法; 3、图形的凹凸性及函数的图形描绘; 4、洛必达法则的灵活运用。 §3. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x0) (或f (x )≥f (x0)), 那么f '(x 0)=0. 罗尔定理 如果函数y=f (x )在闭区间[a , b ]上连续, 在开区间(a , b)内可导, 且有f(a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0. 简要证明: (1)如果f (x )是常函数, 则f '(x)≡0, 定理的结论显然成立. (2)如果f (x )不是常函数, 则f (x )在(a, b)内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a, b ). 于是 0) ()(lim )()(≥--='='- →- ξξξξξx f x f f f x , 0) ()(lim )()(≤--='='+ →+ ξ ξξξξx f x f f f x ,

相关文档
最新文档