黄金分割法

黄金分割法

试用黄金分割法求函数f(x)=(x-1)^2的最优解,并用matlab 编程计算。已知区间为[-1,1],取迭代精度为0.0001。

算法简要说明:

(1) 初始化搜索区间a,b,搜索精度ε;

(2) 若ε<-a b ,则停止计算;

(3) )(618.0),(382.0a b a r a b a l -+=-+=;

(4) 若)()(r f l f >,则令l a =,否则令r b =;

(5) 转(2)

(6) 令最优解a =min ;

程序实现:

function [min,min_value]=goldensection(fun,a,b,ef)

%黄金分割法:一维搜索求解无约束极值

%输入参数:

%fun 目标函数的M 文件

%a 搜索区间左端点

%b 搜索区间右端点

%ef 精度

k= 1;

while b - a > ef,

left = a + 0.382*(b-a);

right= a + 0.618*(b-a);

if feval(fun,left) > feval(fun,right),

a =left;

else

b = right;

end %if

k = k + 1;

end %while

min = a; %optx=(a+b)/2;

min_value=feval(fun,min);

编写程序testfun1实现目标函数值计算:

function r= testfun1(x)

r=(x-1)^2;

在Matlab 命令行中输入以下程序:

[min,min_value] = goldensection('testfun1',0,2,0.0001)

输出结果为:

min =0.9999

min_value =3.7056e-09

思考题

黄金分割点与牛顿法的区别?

牛顿法收敛快,但要求其一阶、二阶导数,对初始点的选择要求较高;黄金分割法比较可靠,而且完全是数值计算,不考虑函数的性态,不用求导数,但是收敛较慢。

黄金分割构图法(新)

黄金分割构图法 让我们从最基本的介绍开始这个话题——“黄金分割”是一种由古希腊人发明的几何学公式,遵循这一规则的构图形式被认为是“和谐”的,在欣赏一件形象作品时这一规则的意义在于提供了一条被合理分割的几何线段,对许多画家/艺术家来说“黄金分割”是他们在现时的创作中必须深入领会的一种指导方针,摄影师也不例外。 原理1 如图A:“黄金分割”公式可以从一个正方形来推导,将正方形底边分成二等分,取中点X,以X为圆心,线段XY为半径作圆,其与底边直线的交点为Z点,这样将正方形延伸为一个比率为5︰8的矩形,(Y’点即为“黄金分割点”), A︰C = B ︰A = 5︰8。幸运的是,35MM胶片幅面的比率正好非常接近这种5︰8的比率(24︰36 = 5︰7.5) 图A 原理2 如图B:通过上述推导我们得到了一个被认为很完美的矩形,连接该矩形左上角和右下角作对角线,然后从右上角向Y’点(黄金分割点,见图A)作一线段交于对角线,这样就把矩形分成了三个不同的部分。现在,在理论上已经完成了黄金分割,下一步就可以将你所要拍摄的景物大致按照这三个区域去安排,也可以将示意图翻转180度或旋转90度来进行对照。

图B 图B-1 三分法则 “三分法则”实际上仅仅是“黄金分割”的简化版,其基本目的就是避免对称式构图,对称式构图通常把被摄物置于画面中央,这往往令人生厌。在图C1和C2中,可以看到与“黄金分割”相关的有四个点,用“十”字线标示。用“三分法则”来避免对

称在使用中有两种基本方法,第一种:我们可以把画面划分成分别占1/3和2/3面积的两个区域。 图C1 图C1-1 天然画框 有时在我们看到的场景中有一个引人注目的被摄主体,但往往由于主体周围杂乱的环境分散了观众的注意力而削弱了主体的吸引力,使照片最终的效果令人很失望。试试寻找一个能够排除杂乱环境干扰的天然画框使观众注意力集中于被摄主体,如图D利用主体周围的树枝形成一个天然画框从而使中间的山岩更为突出。 图D

《黄金分割》教学设计

《黄金分割》教学设计 教材分析: 《黄金分割》是北师大版八年级数学下册第四章《相似图形》第2节的内容,需1课时。本节讲解了黄金分割,黄金矩形的意义;如何找一条线段的黄金分割点; 如何判断某一点是否为一条线段的黄金分割点以及黄金分割在生活中的应用价值及其丰富的文化价值. 《黄金分割》从一个崭新的角度加深同学们对比例线段和线段的比的认识,是第一节内容的延续和拓展,同时也体现了黄金分割与勾股定理、尺规作图、二次根式以及一元二方程等知识的联系。通过黄金分割在建筑、艺术等方面的实例让学生进一步体会数学与自然及人类社会的密切关系,进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括的能力和审美意识的发展。更体现了数学的文化价值。本节课主要围绕两个层面来进行设计,通过创设丰富的现实情境,让学生通过直观感受体会到黄金分割的美学价值,然后提出问题,引导学生进行探究,最后解决问题.让学生认识到数学是那样的富有魅力,0.618这个神奇的数字.只要留心,就会在生活的方方面面发现其“魅影”,从而体会其应用价值。 学生分析: 学生在本章第一节已经学习了线段的比和成比例的线段,七年级也学习了尺规作图,已经有了一定的基础,但很好的突破难点不容易。学生虽说对黄金分割比较陌生,但丰富的多媒体信息展示黄金分割的有关知识,也有助于学生对本节课的理解与应用。故采用了直观演示法、引导发现法、讨论交流法、练习法等学习的方式,让学生在做中学、在学中得。教学中充分利用黄金分割与生活的紧密联系,即帮助学生理解了知识又帮助学生感知了黄金分割的黄金价值。 教学目标: 知识技能目标: (1)掌握黄金分割的定义及黄金分割点的作法;(2)会进行黄金分割的有关计算。 过程方法目标:

优化设计黄金分割发以及迭代法

机械优化设计课程论文 院系机械工程系 专业机械设计 班级一班 姓名 学号

一、优化题目 应用所学计算机语言编写一维搜索的优化计算程序,完成计算结果和输出。 二、建立优化数学模型 1、目标函数方程式: y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10 2、变量:x 3、初始值: 初始值x1=5初始步长tt=0.01 三、所选用的优化方法 1、采用外推法确定搜索区间 2、采用黄金分割法求函数最优 3、计算框图: (1)、外推法程序框图 (2)、黄金分割法程序框图

四、计算输出内容: 五、优化的源程序文件: #include #include #define e0.0001 #define tt0.01 float f(double x) { float y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10; return(y); } void finding(float*p1,float*p2) { float x1=10,x2,x3,t,f1,f2,f3,h=tt; int n=0; x2=x1+h;f1=f(x1);f2=f(x2); if(f2>f1) { h=-h;x3=x1;f3=f1; x1=x2;f1=f2; } x3=x2+h;f3=f(x3);

n=n+1; printf("n=%d,c1=%6.4lf,x2=%6.4lf,x3=%6.4lf,f1=%6.4lf,f2=^6.4lf,f3=%6.4lf\n",n, x1,x2,x3,f1,f2,f3); while(f3f2) {a=x1;x1=x2;f1=f2;x2=a+0.618*(b-a);f2=f(x2);} else {b=x2;x2=x1;f2=f1;x1=b-0.618*(b-a);f1=f(x1);} n=n+1; printf("n=%d,a=%6.4lf,b=%6.4lf,x1=%6.4lf,x2=%6.4lf,f1=%6.4lf,f2=%6.4lf\n",n,a,b ,x1,x2,f1,f2); c=fabs(b-a); } while(c>e); xmin=(x1+x2)/2; ymin=f(xmin); printf("The min is%6.4lf and the result is%6.4lf",xmin,ymin);

黄金分割点

详细解析苹果设计中的黄金分割点 本文来源百度MUX,自黄金分割理论提出以来,被应用到了无数的工业设计、平面设计层面,此文将以苹果的设计实例做个抛砖,看看0.618是怎样嵌合到我们日常生活中的:你研究或者不研究,美就在那里,不偏不移;你发现或者不发现,黄金分割就在那里,不多不少。了解他,发现美,也给自己增加精彩,好作品不会没有依据。 掀开面纱 0.618或者1.618,这个数字是否觉得似曾相识。这其实是一个数学比例关系(说到数学,不要先着急晕哦,知道咱们做设计得对计算都不敏感,呵呵),即把一条线段分为两部分,此时短段与长段之比恰恰等于长段与整条线之比,其数值比为1:1.618或0.618:1。 这就是黄金分割律,由公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。黄金分割在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比关系。

植物叶子中黄金分割 鹦鹉螺曲线的每个半径和后一个的比都是黄金比例,是自然界最美的鬼斧神工。 动植物的这些数学奇迹并不是偶然的巧合,而是在亿万年的长期进化过程中选择的适应自身生长的最佳方案。 走的更近 黄金分割律作为一种重要形式美法则,成为世代相传的审美经典规律,至今不衰!这里我要再向你推荐一个美学利器——黄金矩形(Golden Rectangle)。它的的长宽之比为黄金分割率0.618,并且可以不断以这种比例分割下去。 黄金矩形:

斐波那契数列与黄金分割的应用研究

斐波那契数列与黄金分割 应用研究 作者姓名 院系6系 学号

摘要 “斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。斐波那契数列是一个古老而有趣的问题,由于其所具有的各种特殊属性,它与最优美的黄金分割有这密不可分的关系。在数学领域以及自然界中随处可见,而且正逐渐被应用在人们的日常生活与娱乐中。 关键词:斐波那契,黄金分割,应用 1 引言 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。假设一对成年兔子放于围栏中,每月可生下一对一雌一雄的小兔,而小兔出生一个月后便可以生育小兔,且每月都生下一对一雌一雄的小兔.问把这样一对初生的小兔置于围栏中,一年后围栏中共有多少对兔子(假定兔子没有死亡)?据此,可得月份与兔子对数之间的对应关系如下: 月份0 1 2 3 4 5 6 7 ? 大兔对数0 1 1 2 3 5 8 13 ? 小兔对数 1 0 1 1 2 3 5 8 ? 兔子总对数 1 1 2 3 5 8 13 21 ? 如果用F n 表示第n个月兔子的总对数,那么F n能构成一个数列:1,1,2,3,5,8,13,21,34,55,89?.这个数列显然有如下的递推关系: F n =F n-1 +F n-2 (n>1,n为正整数),F0 =0,F1 =1 (1) 满足(1)式的数列就叫做斐波那契数列,这是一个带有初值的用递推关系表示的数列。这个数列一问世就吸引了无数数学家的兴趣,以下是费氏数列的定义及通项公式。 费氏数列是是由一连串的数字所组成的(1、1、2、3、5、8、13、…),而且这串数字之间具有一定的规则,就是每一个数字必须是前两个数字的和( an =

【教学设计】《黄金分割与数学》教案

《黄金分割与数学》教学设计 教学目标: 1.从数学课的角度:(1)使学生了解黄金分割、黄金比、黄金矩形的意义。 (2)使学生会确定一条线段的黄金分割点,明确黄金分割的尺规作图方法,体会数形结合的思想。 2.从美学的角度:通过对大自然中美的事物鉴赏,培养学生发现美、创造美的能力,同时陶冶学生情操。 3.从史学的角度:通过对黄金分割数学史料和“斐波拉契数列”的大致介绍,让学生对学习内容的意义有清晰的定位。 教学重难点:认识黄金分割的美学价值,确定一条线段的黄金分割点。 学生学具:直尺,圆规,量角器,学生用计算器。 活动流程设计 课前交流:课前、课中猜一猜老师的专业,随时告诉大家,如: “老师,我发现你是美术老师!”“我发现你不是数学老师”等等, 看谁猜得最准! 一、创设问题情境,激发学生兴趣 1.计算几组算式(结果精确到0.001): 0.618∶1= (1-0.618)∶0.618= 1∶(1+0.618)= 问:你发现什么有趣的现象了吗? 有人说,0.618为宇宙的钥匙,真有那么神奇吗? 2. 你觉得哪张照片的构图最合理?更能体现小松鼠若 有所思地在凝视前方? 3.多媒体展示三幅图片: 芭蕾舞演员在跳舞时,频繁的掂起脚尖,为练就这项本领,演员不知要付出多少艰辛与努力,目的是什么? 中华人民共和国国旗上镶着五颗五角星,给我们庄重肃穆之感;上海东方明珠, 塔身显得非常协调、美观;春天的气温在23度左右时,我们感觉到比较舒服,这些都给人以和谐、平衡、舒适、美的感觉。 你想过这些问题吗? (美是一种感觉,本来没有什么标准,但物体形状的比例提供了在匀称和协调上的一种美感

参考,这些都与0.618有关。) 二、动态探究,导出定义。 1、动态探究: 1.1、媒体演示图片4,教师提出问题:舞台上,主持人站的位置有什么特点?(发现不是在舞台中间,而是在中间靠一侧点.主持人站在舞台中间很别扭,如果靠一侧,则会给观众很舒服、美观的感觉,声音传播的效果也较好). 1.2、 把刚才的问题抽象成数学模型,研究主持人位置的特殊性.(课件展示) (1)舞台抽象成一条线段AB ,主持人是线段上点 C.点C 将AB 分成三条线段AC 、CB 、AB.如果点C 在中点处,满足 ,如果点C 向右侧运动, 则AC 、CB 、AB 关系变为:CB < AC <AB. (2)以短、长、全命名它们。在点C 由中点向右侧移动过程中,请观察下面两个比值的变化情况(几何画板演示).让学生发现: 1.3、揭示定义: 随着点C 的移动,两个比值逐渐接近,某一瞬间它们相等,即 =0.618.这时我们称 线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割 点,AC 与AB 的比值(0.618)叫做黄金比. 对于一条线段,其黄金分割点的位置很特殊,如 果把舞台看成一条线段,主持人站在这条线段黄金分割点的位置主持节目,给观众舒服、美观的感觉,同时其声音的传播效果也达到最好. 三、师生互动、探究作法。 1 、分组探究、自主体验 五角星给人以庄重的美感,在图案中,是否也存在黄金分割呢,分四 人一组,用刻度尺分别度量课本P108页的五角星点C 到点A 、B 的距离, 量出线段AB 的长度,然后计算与 ,它们的值接近一个什么样的 数? (几何画板演示:随着正五角星大小的改变,AB 、AC 、CB 的长发生改变,但 与 始 终保持不变。) 结论1:点C 是线段AB 的黄金分割点。 启发:图中好像还有线段AB 的黄金分割点,你发现了吗?能验证吗? 结论2:点D 也是线段AB 的黄金分割点。一般地,一条线段有两个黄金分割点,这两点关于线段的中点对称。 B 全 A C 长 短 D

设计中的黄金分割

艺术设计美学概论 YI SHU SHE JI MEI XUE GAI LUN 五、设计中的黄金分割 黄金分割的金苹果 -—浅谈apple设计中的黄金分割 掀开面纱: 0.618或者1.618,这个数字是否觉得似曾相识。这其实是一个数学比例关系,即把一条线段分为两部分,此时短段与长段之比恰恰等于长段与整条线之比,其数值比为1:1.618或0.618:1。 这就是黄金分割律,由公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。黄金分割在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比关系。 植物叶子中黄金分割

艺术设计美学概论 YI SHU SHE JI MEI XUE GAI LUN 鹦鹉螺曲线的每个半径和后一个的比都是黄金比例,是自然界最美的鬼斧神工。 动植物的这些数学奇迹并不是偶然的巧合,而是在亿万年的长期进化过程中选择的适应自身生长的最佳方案。 走的更近: 黄金分割律作为一种重要形式美法则,成为世代相传的审美经典规律,至今不衰!这里我要再向你推荐一个美学利器——黄金矩形(Golden Rectangle)。它的的长宽之比为黄金分割率0.618,并且可以不断以这种比例分割下去。 黄金矩形: 黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。在很多艺术品以及建筑中都能找到它。埃及的金字塔,希腊雅典的巴特农神庙,印度的泰姬陵,这些伟大杰作都有黄金分割的影子。 泰姬陵的多出布局都能看 出黄金分割 达?芬奇的《蒙娜丽莎》中 蒙娜丽莎的脸也符合黄金矩形 (介个网上很多图此处不多说 了,呵呵),《最后的晚餐》同样 也应用了该比例布局。

数学之美——黄金分割(图形相似)汇总

数学之美——黄金分割 前 言 数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。 另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。 一、黄金分割的起源与发展 1.1 黄金分割的定义 古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。证明方法为: 设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。 设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得 x x x :1)1(:=- 即 012 =-+x x 解该二次方程:2151--= x 2 152-=x 其中1x 为负值舍掉。 所以 2 15-=AC 约为618.0.

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 1.2黄金分割的发展史 据记载黄金分割是在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边 形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多

黄金分割教学设计

黄金分割教学设计 盖州市 一、教学任务分析 学习《黄金分割》不仅实现线段比例的要求,更是体现数学的文化价值,体现黄金分割在数学与建筑学、美容医学、艺术等学科的纽带。让学生体会到数学不是孤立的,它是文化的一部分,它也促进了文化的发展,而0.168更是一个神奇的数字。教学中,通过国旗上的图案五角星引入黄金分割,使学生真正体会到其中的文化价值,为此,本节课的教学目标是: 1、知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段 的黄金分割点; 2、通过找一条线段的黄金分割点,培养学生理解与动手能力。 3、理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识教学与 人类生活的密切联系对人类历史发展的作用。 教学重点:了解黄金分割的意义并能简单运用 教学难点:找出黄金分割点 二、学情分析 学生在活动经验上经过七、八年的学习,学生初步养成自主探究的意识,有了一定的说理和作图能力;通过比和成比例的学习之后有了一定的基础,增强了学生学习数学的信心。通过比例线段的学习发展了的逻辑推理能力。 学生在知识技能上学习了基本作图之后,懂得了作图的方法。并且掌握了线段的比、成比例线段的概念,比例的基本性质,会比和比例尺的计算,坚实了基础。 三、教学过程 (一)情境导入 活动内容: 展示课件,提出问题: 问题⒈从国旗中找出共同的图案

问题⒉ 度量点C 到A 、B 的距离,AC BC AB AC 与相等吗? 教师操作课件,提出问题与共同学交流、观察 回答问题⒈ 五角星 回答问题⒉ 相等 展示课件,导入新知 在线段AB 上,点C 把线段分成两条线段AC 和BC ,如果AC BC AB AC =,那么称线段AB 被点C 分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫黄金比。 其中618.01:215:≈-= AC AB :1 即618.0≈AB AC 教师讲解,学生观察、思考、交流,并能自己画条线段找到它的黄金比例。 (二)图片欣赏 活动内容: 第一幅:蝴蝶的身长和双翅展开后的长度比值大约是0.168。 第二幅:维纳斯女神上半身和下半身的比值大约是0.168。 第三幅:文明古国埃及的金字塔,它的每面的边长与高之比接近于0.618。 第四幅:古希腊的一些神庙在建筑时的高和宽也是按黄金比例来建造的。 (三)操作感知 活动内容: 展示课件:做一做 如果已知线段AB ,按照如下方法画图: (1)经过点B 作BD ⊥AB ,使AB BD 2 1= (2)连接AD ,在DA 上截取DE=DB (3)在AB 上截取AC=AE ,则点C 为线段AB 的黄金分割点 根据上述作图回答下列问题 B C

机械优化设计黄金分割法 外推法

大学 机械优化设计部分程序

1.外推法 2.黄金分割法 3.二次插值法 4.坐标轮换法 5.随机方向法 6.四杆机构优化设计

1.外推法 源程序: #include #include #define R 0.01 double fun(double x) { double m; m=x*x-10*x+36; return m; } void main() { double h0=R,y1,y2,y3,x1,x2,x3,h; x1=0;h=h0;x2=h; y1=fun(x1);y2=fun(x2); if(y2>y1) {h=-h; x3=x1; y3=y1; x1=x2; y1=y2; x2=x3; y2=y3; } x3=x2+h;y3=fun(x3); while(y3

#include #include #define f(x) x*x*x*x-5*x*x*x+4*x*x-6*x+60 double hj(double *a,double *b,double e,int *n) { double x1,x2,s; if(fabs((*b-*a)/(*b))<=e) s=f((*b+*a)/2); else { x1=*b-0.618*(*b-*a); x2=*a+0.618*(*b-*a); if(f(x1)>f(x2)) *a=x1; else *b=x2; *n=*n+1; s=hj(a,b,e,n); } return s; } void main() { double s,a,b,e,m; int n=0; printf("输入a,b值和精度e值\n"); scanf("%lf %lf %lf",&a,&b,&e); s=hj(&a,&b,e,&n); m=(a+b)/2; printf("a=%lf,b=%lf,s=%lf,m=%lf,n=%d\ n",a,b,s,m,n); } 运行过程及结果: 输入a,b值和精度e值 -3 5 0.0001 a=3.279466,b=3.279793,s=22.659008,m =3.279629,n=21 3.二次插值法 源程序: #include #include int main(void)

设计师必看logo设计中的黄金分割比

设计师必看logo设计中的黄金分割比 金分割率作为一种数学上的比例关系,具有严格的比例性、和谐性及艺术性,蕴藏着丰富的美学价值。它是少为人知的自然界潜规ze,已被艺术家们应用到创作中,以打造最完美水平的作品。外文《Golden Ratio in logo designs》介绍了黄金分割率在著名企业Logo设计中应用。CSDN对该文进行了编译,内容如下: 从远古时代,美观与美学就开始受到人们的赞扬。但很少有人知道最有效、最平衡完美、最有视觉冲击力的创作往往和数学有着丝丝的联系。直到1860年,德国物理学家、心理学家Gustav Theodor Fechner提出一个简单比率,通过一个无理数来定义大自然中的平衡,即黄金分割率。Fechner的实验很简单:十个矩形具有不同的长宽比,请人们从中选出最美好的一个。结果显示,最受青睐的选择是具有“黄金分割率的矩形”(比例为1.618)。 黄金分割率 黄金分割率基于数字φ=1.61803398874……,该数字最早由意大利数学家Fibonacci提出。Φ是斐波那契数列1,1,2,3,5,8,13,21,……中从第二位起相邻两数之比,即2/3,3/5,5/8,8/13,13/21,...的近似值。在该数字序列中,下一个数字(从第三个开始)是前两个数字之和,即1+1=2,1+2=3,2+3=5,……。该序列中两个相邻数字相比,如5/3=1.67,21/13=1.615,所得的结果与φ(1.618)越来越接近。 这个数字了不起的地方在哪里呢?一些人认为它是最有效率的结果,自然力量的结果。一些人认为它是设计的普适常量,神的签名。无论你相信哪一种说法,我们在大自然中所发现的所有设计中,φ为其创造了平衡、和谐与美观的感觉。那么,人类在自己的艺术、架构、颜色、设计、作曲,甚至音乐创作中,利用这个在自然界中发现的比率以达到平衡、和谐、美观的目的,也就不足为奇了。从帕台农神庙到蒙娜丽莎,从埃及金字塔到信用卡,都应用了φ。

黄金分割教案设计

教案设计 北师大版数学八年级下册 学校:广东省佛山市顺德区勒流新球初级中学姓名:曾华丽

教案设计

D0%C7%BA%EC%C6%EC%CD%BC%C6%AC&in=5817&cl=2&lm=-1&st=-1&pn=12&rn=1&di=1117711363 20&ln=1995&fr=&fm=index&fmq=1330995761687_R&ic=&s=0&se=&sme=0&tab=&width=&heigh t=&face=&is=&istype=2#pn12&-1&di111771136320&objURLhttp%3A%2F%2Fwww.microfotos. com%2Fpic%2F0%2F67%2F6761%2F676150preview4.jpg&fromURLhttp%3A%2F%2Fwww.microfot https://www.360docs.net/doc/6616018171.html,%2F%3Fp%3Dhome_imgv2%26picid%3D676150&W480&H315&T9037&S16&TPjpg 们中国的国旗, 特意拿出其中的五角星

百度搜索

【百度搜索】 https://www.360docs.net/doc/6616018171.html,/i?ct=503316480&z=0&tn=baiduimagedetail&word=%BB%C6%B D%F0%B7%D6%B8%EE%CD%BC%C6%AC&in=14091&cl=2&lm=-1&st=-1&pn=0&rn=1&di=76248876825 &ln=1999&fr=&fm=index&fmq=1330996664515_R&ic=&s=0&se=&sme=0&tab=&width=&height=

高中数学史集黄金分割素材

黄金分割 (浙江省宁波市镇海区外语实验学校 315200)余满龙 在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其 中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1) 世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现: 在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比, 那么这一比值就等于…,用式子表示就是: 618.0215=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早就存在了,我们 从 Andros 神庙(公元前10000年)就可以看出,而Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论着。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中, Kheops (公元前Q C P 图1

莱奥纳多·达·芬奇 相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。 文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,着名的有帕奇欧里、丢勒、达芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。 1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子问题”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则) 1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为2 15 的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一个 正方形后,余下的矩形与原来的矩形相似,仍是 一个黄金分割形的矩形”,这使人们产生一种 “和谐”的感觉。 后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣赏的重点转到使线段构成中外比的分割,而不是中外比本身,提出了“黄金分割”这一名称。这一命名一直延用至今。 欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商

黄金分割(教学设计)

黄金分割 南京市29中黎恒涛 【设计思路】学习黄金分割不仅仅是实现线段比例学习的要求,更是体现了数学的文化价值,体现黄金分割是数学与建筑学、美容医学和艺术等一些列学科的纽带,使学生认识到数学不是孤立的、干巴巴的数学,它是文化的一部分,它也促进了文化的发展.黄金分割的价值存在于两个方面:美学价值和实用价值,本节课主要围绕这两个层面来进行设计,通过创设丰富的现实情境,让学生通过直观感受体会到黄金分割的美学价值,然后提出问题,引导学生进行探究,最后解决问题.让学生认识到数学是那样的富有魅力,0.618这个神奇的数字.只要留心,就会在生活的方方面面发现其“魅影”. 教学目标: 1. 通过建筑、艺术上的实例了解黄金分割,体会其中的文化价值. 2. 在应用中进一步理解线段的比、成比例线段等相关内容. 3. 在实际操作、思考、交流等过程中增强学生的实践意识和自信心. 教学重点: 创设情境让学生体会黄金分割的美学价值和实用价值. 教学难点: 黄金分割的数学内涵、黄金分割点的作法及作法的合理性. 教学过程: 一、情境创设: 1. 请同学们欣赏一段芭蕾舞表演. 师:请问同学们,芭蕾舞美吗? 生:美. 师:芭蕾舞在跳法上和其他舞种有什么区别吗?

生:芭蕾舞演员跳舞时要掂起脚尖. 师;你们想知道这是为什么吗? 生;想. 师:我们这堂课将会解决这个问题. 【设计说明】让学生欣赏一段芭蕾舞表演,对学生视觉上形成美的冲击,适时提出问题,让学生有了强烈的求知欲,一下子就融入了笔者预设的教学氛围. 2. 展示四个国家的国旗. 中华人民共和国新西兰 朝鲜新加坡 师:请问这四面国旗中有共同图案吗?若有,请指出来. 生:有,是五角星. 师:为什么都会选择五角星这个图案呢?除了政治因素外,还有一个非常重要的原因就是:五角星是一个非常完美的图案. 古希腊数学家毕达哥拉斯有一句名言:“凡是美的东西,都具有共同的特征,这就是部分与部分以及部分与整体之间的协调一致.”下面就让我们从数学的角度来探究五角星中部分与部分以及部分与整体之间存在着怎样的一种关系. 【设计说明】通过创设情境“四个国家的国旗中都有五角星这个图案”,就会使同学们认识到五角星这个图案不一般,也就会非常想知道五角星中部分与部分以及部分与整体之间到底蕴涵着怎样的一种关系.有了探究的欲望,就会很乐意完成下面的做一做.

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

优化设计黄金分割法实验报告

机械优化设计黄金分割法实验报告 1、黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 2 黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

产品设计的迭代与进化

产品设计的迭代与进化 在未来的产品投放中,链接产品语言和用户语言的媒介是产品设计。这里的设计概念比现阶段的图形设计概念要深刻的多。了解这一点,我们必须先了解未来的产品会以什么样的形式呈现,本文内容属于产品设计的前卫探讨。 界面的概念将由屏幕硬件转向虚拟现实,其特点是空间边界无限性 图:产品设计的虚拟现实化不可避免 从世界上有第一台显像屏开始,界面这个概念就存在了。无论它用于什么地方,电视、电脑、手机、以及各种需要显像的硬件设备等等。它们的共同点在于界面与硬件之间的不可分割性,也就是硬件承载了软件,界面是软件的外在表现形式。目前市场现有的硬件产品中,界面并没有脱离硬件在其中的承载作品,任何一个设计师都不可能越过硬件给予的范围去进行界面设计。 比如:承载与苹果相关的产品,设计师必须遵照苹果公司给予的屏幕硬件数值进行界面和版式的设计,否则最终设计效果与苹果硬件上的显示不符。在现阶段,界面的显示范围始终存在边界。而未来的产品由于物联网的实现,界面的概念会比现阶段复杂的多,或者说更为多样化,更多的数值尺寸,更多的表现形式,加上虚拟现实技术的运用,界面不会再呈现出像今天这样具有固定尺寸范围的状态,或者说界面除了X,Y轴外,还多了一个Z轴,二维平面会由虚拟三维空间代替。这种三维空间的影像投射也不在依托平面载体,而是空间载体,成为

无边界设计。 在这种环境下,如何设计用户的交互行为已经不是平面操作的范畴,它会成视觉,听觉,心理,行为等一系列的连锁反应的总和,未来的产品设计会比现在的设计纬度更高,言外之意,现阶段的产品设计其实还处于数字化表现的初级阶段。 界面所需要的图形样式将由大量的模版制作承担 图:未来竞争会以个人头脑对抗群体头脑的形式呈现。 图形定制设计会没落。现阶段绝大多数的设计师的设计层级仅仅处于图形样式的范畴,如何让产品界面更好看或更吸引人,是他们所要思考的问题。层级上一点的会处于产品的交互与结构范围,他们更关注用户对产品的操作,产品结构本身功能的表现完善度等等。但很可惜,在未来的产品设计模版运用中,图形设计会被庞大的模版资源所替代,甚至简单的架构设计也可以通过数据模版实现,大数据可以告诉开发者在什么样的需求下哪些结构的搭建用户反响最好,并且将定制设计这种行为实现模块化,这对每一个设计师而言都不是个好消息,我们可以试想一下:当有N个产品设计样式可以根据开发者的市场需求,通过数据计算自动的组成模版并且提供全套设计图形资源的时候,没有任何一个设计师可以保证自己的创意会比这N组设计更有优势,因为个人的头脑终不敌群体的智慧,设计师不可避免的会依托在模板之上成为提供图形样式的服务商,其结果是无法跨越设计的层级进入产品的高级设计阶段,简单来说只有极少数设计师会具有真正

黄金分割教案

第四章相似图形 一、学生知识状况分析 学生的知识技能基础:学生在学习了基本作图之后,懂得了作图的方法。又在学习本章第一节后,掌握了线段的比、成比例线段的概念,比例的基本性质,会进行比例尺的计算,坚实了基础。 学生的活动经验基础:学生的作图学习,强化了学生动手的能力;比的计算、比例尺的计算,感受了数学在现实生活中的作用,增强了学生学习数学的信心。通过变换的鱼来推导成比例线段、比例性质推导、变换发展了的逻辑推理能力。本章第一节例题的讲解,培养了学生灵活运用的能力。 二、教学任务分析 学习《黄金分割》不仅实现线段比例的要求,更是体现数学的文化价值,0.618的意义,体现数学与建筑、艺术等学科必然联系的纽带。教学中,通过生活中的例子、国旗上的图案五角星引入黄金分割,使学生真正体会到其中的文化价值,同时,在建筑、乐器、艺术上实例欣赏,应用中进一步强化线段的比、成比例线段、黄金分割等相关内容。为此,本节课的教学目标是: 1、知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段 的黄金分割点。 2、通过找一条线段的黄金分割点,培养学生理解与动手能力。 3、理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识教学与 人类生活的密切联系对人类历史发展的作用。 教学重点:了解黄金分割的意义并能运用 教学难点:找出黄金分割点和黄金矩形 三、教学过程分析 本节课设计了七个环节:第一个环节:情境引入;第二个环节:活动探究;第三个环节:操作感知;第四个环节:联系实际,丰富想象;第五个环节:巩固练习;第六个环节:课堂小结;第七个环节:布置作业。第八个环节:图片欣赏。 第一环节情境导入 活动内容: 展示课件,学生观察图片,提出问题:

相关文档
最新文档