苏教版数学选修2-1:3.1 空间向量及其运算3.1.5

苏教版数学选修2-1:3.1 空间向量及其运算3.1.5
苏教版数学选修2-1:3.1 空间向量及其运算3.1.5

1.若a ,b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的____________条件.

解析:a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |?cos 〈a ,b 〉=1?〈a ,b 〉=0,当a 与b 反向时,不成立.

答案:充分不必要

2.对于向量a ,b ,c 和实数λ,下列命题中真命题是________(填序号).

①若a ·b =0,则a =0或b =0;

②若λa =0,则λ=0或a =0;

③若a 2=b 2,则a =b 或a =-b ;

④若a ·b =a ·c ,则b =c .

解析:①中若a ⊥b ,则有a ·b =0,不一定有a =0或b =0.

③中当|a |=|b |时,a 2=b 2,此时不一定有a =b 或a =-b .

④中当a =0时,a ·b =a ·c ,不一定有b =c .

答案:②

3.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________.

解析:因为a 与2b -a 互相垂直,所以a ·(2b -a )=0.

即2a ·b -a 2=0.所以2|a ||b |cos 〈a ,b 〉-|a |2=0,

所以cos 〈a ,b 〉=22

,所以a 与b 的夹角为45°. 答案:45°

4.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 解析:|a +3b |2=(a +3b )2=a 2+6a ·b +9b 2=13.

答案:13

[A 级 基础达标]

1.(2011·高考重庆卷)已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=__________. 解析:|2e 1-e 2|2=4e 21-4e 1·e 2+e 22=4-4×1×1×cos60°+1=3,∴|2e 1-e 2|= 3.

答案: 3

2.若向量a 与b 不共线,a ·b ≠0,且c =a -(a ·a a ·b )b ,则向量a 与c 的夹角为__________. 解析:a ·c =a ·[a -(a ·a a ·b )b ]=a ·a -(a ·a a ·b

)b ·a =a ·a -a ·a =0,∴a ⊥c . 答案:90°

3.已知三点A (1,-2,11),B (4,2,3),C (6,-1,4),则三角形ABC 的形状是__________.

解析:AB →=(3,4,-8),BC →=(2,-3,1),AC →=(5,1,-7).

∴|AB →|=89,|BC →|=14,|AC →|=75,

∴|AB →|2=|BC →|2+|AC →|2,

∴△ABC 是以角C 为直角的直角三角形.

答案:直角三角形

4.已知a =(x ,2,0),b =(3,2-x ,x 2),且a 与b 的夹角为钝角,则x 的取值范围是__________.

解析:cos 〈a ,b 〉=3x +2(2-x )x 2+4 9+(2-x )2+x

4,∵夹角为钝角,∴cos 〈a ,b 〉<0,且a ,b 不共线,∴3x +2(2-x )<0,∴x <-4.

答案:x <-4

5.设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为__________.

解析:a ·b =0,且a ,b ,c 均为单位向量,∴|a +b |=2,|c |=1,∴(a -c )·(b -c )=a ·b

-(a +b )·c +c 2.设a +b 与c 的夹角为θ,则(a -c )·(b -c )=1-|a +b ||c |cos θ=1-2cos θ.

故(a -c )·(b -c )的最小值为1- 2.

答案:1- 2

6.

如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E 、F 分别是AB 、

AD 的中点,计算:

(1)EF →·BA →;(2)EF →·DC →.

解:(1)EF →·BA →=12

BD →·BA → =12

|BD →|·|BA →|cos 〈BD →,BA →〉 =12×1×1×cos 60°=14

. (2)EF →·DC →=12

BD →·DC → =12|BD →|·|DC →|cos 〈BD →,DC →〉 =12×1×1×cos 120°=-14

. 7.已知向量a =(4,-2,-4),b =(6,-3,2).求:

(1)a ·b ;(2)|a |;(3)|b |;(4)(2a +3b )·(a -2b ).

解:(1)a ·b =4×6+(-2)×(-3)+(-4)×2=22.

(2)|a |=a 2=42+(-2)2+(-4)2=6.

(3)|b |=b 2=62+(-3)2+22

=7.

(4)(2a +3b )·(a -2b )=2a 2+3a ·b -4a ·b -6b 2

=2×62-22-6×72=-244.

8.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是__________.

解析:∵|a |=|b |=2,且a +b 与a -b 是以a ,b 为邻边的正方形的两条对角线,∴a +b 与a -b 的夹角为90°.

答案:90°

9.在△ABC 中,已知AB →=(2,4,0),BC →=(-1,3,0),则∠ABC =__________.

解析:∵BA →=(-2,-4,0),BC →=(-1,3,0),

∴BA →·BC →=2-12+0=-10,

|BA →|= (-2)2+(-4)2+0=25,

|BC →|=10.

∴cos 〈BA →,BC →〉=BA →·BC →|BA →||BC →|=-1025×10

=-2

2. ∴∠ABC =135°.

答案:135°

10.如图,已知E 是正方体ABCD -A 1B 1C 1D 1的棱C 1D 1的中点,试求向量A 1C 1→与DE →的

夹角的余弦值.

解:设正方体的棱长为m ,

AB →=a ,AD →=b ,AA 1→=c ,

则|a |=|b |=|c |=m ,

a ·

b =b ·

c =a ·c =0,

又∵A 1C 1→=A 1B 1→+B 1C 1→=AB →+AD →=a +b ,

DE →=DD 1→+D 1E →=DD 1→+12D 1C 1→=c +12

a , ∴A 1C 1→·DE →=(a +

b )·(

c +12a )=12

m 2, 又∵|A 1C 1|=2m ,|DE →|=5m 2, ∴cos 〈A 1C 1→,DE →〉=12m 22m ·52

m =1010. 11.(创新题)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).

(1)求以AB →,AC →为邻边的平行四边形的面积;

(2)若|a |=3,且a 与AB →,AC →均垂直,求向量a 的坐标.

解:(1)由题意,可得:AB →=(-2,-1,3),AC →=(1,-3,2),

∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|

=-2+3+614×14=12. ∴sin 〈AB →,AC →〉=32

. 所以,以AB →,AC →为邻边的平行四边形的面积为

S =|AB →||AC →|sin 〈AB →,AC →〉=14×32

=7 3. (2)设a =(x ,y ,z ).

由题意,得?????x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0.

解得?????x =1y =1z =1或?????x =-1,y =-1,z =-1.

∴a =(1,1,1)或a =(-1,-1,-1).

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

(完整版)选修21空间向量知识点归纳总结

第三章空间向量与立体几何 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的 向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 空间向量的运算。 定义:与平面向量运算一 样,空间向量的加法、减法与数乘运算如下(如图)。 ⑵加法结合律:(a b ) c ⑶数乘分配律:(a b ) 3. 共线向量。 (1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作a 〃b 。 当我们说向量a 、b 共线(或a// b )时,表示a 、b 的有向线段所在的直线 可能是同一直线,也可能是平行直线。 (2) 共线向量定理:空间任意两个向量a 、b ( b 工0 ),a// b 存在实数入, 使a =入b 。 4. 共面向量 (1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。r r (2) 共面向量定理:如果两个向量a,b 不共线,P 与向量a,b 共面的条件是 存在实数x, y 使p xa yb 。 5. 空间向量基本定理:如果三个向量a,b,c 不共面,那么对空间任一向量P , 存在一个唯一的有序实数组x, y,z ,使p xa yb zc 。 若三向量ab,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向 2. uuu r OB a b a (b c) b a

量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设O,代B,C是不共面的四点,则对空间任一点P,都存在唯一的三个 uuu uuu uuu uuur 有序实数x, y,z,使OP xOA yOB zOC。

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

选修2-1第三章空间向量与立体几何教案

第三章空间向量与立体几何 空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量向量是怎样表示的呢 [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向

量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢 [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P26~P27. Ⅱ.新课讲授 [师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢相等的向量又是怎样表示的呢[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量. [师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

创新设计高中数学苏教选修21习题:第3章 空间向量与立体几何

3.1.5 空间向量的数量积 课时目标 1.掌握空间向量的夹角及空间向量数量积的概念.2.掌握空间向量的运算律及其坐标运算.3.掌握空间向量数量积的应用. 1.两向量的夹角 如图所示,a,b 是空间两个非零向量,过空间任意一点O ,作OA →=a ,OB →=b ,则__________ 叫做向量a 与向量b 的夹角,记作__________. 如果〈a ,b 〉=π2 ,那么向量a ,b ______________,记作__________. 2.数量积的定义 已知两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作a·b . 即a·b =__________. 零向量与任一向量的数量积为0. 特别地,a·a =|a|·|a|cos 〈a ,a 〉=________. 3.数量积的运算律 空间向量的数量积满足如下的运算律: (λa )·b =λ(a·b ) (λ∈R ); a·b =b·a ; a·(b +c )=a·b +a·c . 4.数量积的坐标运算 若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 (1)a·b =________________; (2)a ⊥b ?__________?____________________________; (3)|a |=a·a =______________; (4)cos 〈a ,b 〉=____________=_________________________________________. 一、填空题 1.若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的____________条件. 2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 3.已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29且λ>0,则λ=________. 4.若a 、b 、c 为任意向量,下列命题是真命题的是____.(写出所有符合要求的序号) ①若|a |=|b |,则a =b ; ②若a·b =a·c ,则b =c ; ③(a·b )·c =(b·c )·a =(c·a )·b ; ④若|a |=2|b |,且a 与b 夹角为45°,则(a -b )⊥b . 5.已知向量a =(2,-3,0),b =(k,0,3),若a 与b 成120°角,则k =________. 6.设O 为坐标原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运 动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 7.向量(a +3b )⊥(7a -5b ),(a -4b )⊥(7a -2b ),则a 和b 的夹角为____________. 8.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为π3 ,则|a +b |=________. 二、解答题

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

苏教版数学选修2-1:3.1 空间向量及其运算3.1.5

1.若a ,b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的____________条件. 解析:a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |?cos 〈a ,b 〉=1?〈a ,b 〉=0,当a 与b 反向时,不成立. 答案:充分不必要 2.对于向量a ,b ,c 和实数λ,下列命题中真命题是________(填序号). ①若a ·b =0,则a =0或b =0; ②若λa =0,则λ=0或a =0; ③若a 2=b 2,则a =b 或a =-b ; ④若a ·b =a ·c ,则b =c . 解析:①中若a ⊥b ,则有a ·b =0,不一定有a =0或b =0. ③中当|a |=|b |时,a 2=b 2,此时不一定有a =b 或a =-b . ④中当a =0时,a ·b =a ·c ,不一定有b =c . 答案:② 3.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则a 与b 的夹角为________. 解析:因为a 与2b -a 互相垂直,所以a ·(2b -a )=0. 即2a ·b -a 2=0.所以2|a ||b |cos 〈a ,b 〉-|a |2=0, 所以cos 〈a ,b 〉=22 ,所以a 与b 的夹角为45°. 答案:45° 4.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 解析:|a +3b |2=(a +3b )2=a 2+6a ·b +9b 2=13. 答案:13 [A 级 基础达标] 1.(2011·高考重庆卷)已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=__________. 解析:|2e 1-e 2|2=4e 21-4e 1·e 2+e 22=4-4×1×1×cos60°+1=3,∴|2e 1-e 2|= 3. 答案: 3 2.若向量a 与b 不共线,a ·b ≠0,且c =a -(a ·a a ·b )b ,则向量a 与c 的夹角为__________. 解析:a ·c =a ·[a -(a ·a a ·b )b ]=a ·a -(a ·a a ·b )b ·a =a ·a -a ·a =0,∴a ⊥c . 答案:90° 3.已知三点A (1,-2,11),B (4,2,3),C (6,-1,4),则三角形ABC 的形状是__________. 解析:AB →=(3,4,-8),BC →=(2,-3,1),AC →=(5,1,-7). ∴|AB →|=89,|BC →|=14,|AC →|=75, ∴|AB →|2=|BC →|2+|AC →|2,

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

高考数学(全国文理通用)一轮复习: 考点31 空间向量及其运算

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合 适的观 看比例,关闭Word 文档返回原板块。 考点31 空间向量及其运算 一、填空题 1.(2012·四川高考文科·T14)与(2012·四川高考理科·T14)相同 如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱CD , 1CC 的中点,则异面直线1A M 与DN 所成的角的大小是 ____________. 【解题指南】建立空间直角坐标系,先求两直线的方向向量所成的角,再求两直线所成的角. 【解析】设正方体1111ABCD A B C D -的棱长为1,建立如图所示的空间直角坐标系D xyz -, 则111(0,0,0),(0,1,),(1,0,1),(0,,0)22 D N A M , 11(1,,1)2∴=--A M ,1(0,1,)2 DN =, 111cos ,0A M DN A M DN A M DN ?∴==, 1,90A M DN ∴=,∴异面直线1A M 与DN 所成的角的大小为90. 【答案】90 二、解答题 2.(2012·四川高考理科·T17)某居民小区有两个相互独立的安全

防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为 1 10 和p . (1)若在任意时刻至少有一个系统不发生故障的概率为49 50 ,求p 的值; (2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ. 【解析】(1)设“至少有一个系统不发生故障”为事件C,那么 1491()1.1050 P C p -=- ?= 解得1 .5 p = (2)由题意,0331 1 (0)(),10 1 000 === P C ξ 12 31127(1)()(1),1010 1 000==?-=P C ξ 22311243 (2)()(1),1010 1 000 ==?-=P C ξ 3 331729(3)(1).10 1 000 ==- =P C ξ 所以,随机变量ξ的概率分布列为: 故随机变量ξ的数学期望 E ξ=127243729 0123 2.71 000 1 000 1 000 1 000 ? +?+?+?=. 3.(2012·重庆高考文科·T20)如图,在直三棱柱111C B A ABC -中,,3,4===BC AC AB D 为AB 的中点.

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高二数学选修2-1空间向量试卷与答案

高二数学(选修2-1 )空间向量试题 宝鸡铁一中司婷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的 代号填在题后的括号内(每小题 5 分,共 60 分). 1.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则 AB1与 C1B 所成的角的大小为()A. 60°B. 90°C. 105°D.75° 2.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=A 1 B 1 ,则 BE1 4 与 DF1所成角的余弦值是() A.15 B. 1 172 图 8 D.3 C. 2 17 3.如图, 1 1 1—是直三棱柱,∠=90°,点1、 1 分别是 1 1、 A B C ABC BCA D F A B A1C1的中点,若 BC=CA=CC1,则 BD1与 AF1所成角的余弦值是() A.C. 301 10 B. 2 30图 15 15 D. 10 4.正四棱锥S ABCD 的高 SO 2 ,底边长AB 2 ,则异面直线BD 和 SC 之间的距离() .15.5C. 2 5 A5B55 5.已知ABC A1 B1 C1是各条棱长均等于 a 的正三棱柱, D 是侧棱 CC1的中点.点 C1到平面 AB1 D 的距离() A. 2 a B. 2 a 48A 1D. 5 C1 10B1 D A C B图

C.3 2 a D. 2 a 42 6.在棱长为 1 的正方体ABCD A1 B1C1D1中,则平面 AB1C 与平面 A1 C1 D 间的距离() A.3B.3C.2 3 D.3 6332 7.在三棱锥-中,⊥,==1,点、 D 分别是、的中点,⊥底 P ABC AB BC AB BC2PA O AC PC OP 面 ABC,则直线 OD与平面 PBC所成角的正弦值() A.21B.8 3 C210 D .210 636030 8.在直三棱柱ABC A1B1C1中,底面是等腰直角三角形,ACB 90,侧棱 AA1 2 ,D,E 分别是CC1与A1B的中点,点 E 在平面AB D 上的射影是ABD 的重心G.则A1B 与平面 AB D所成角的余弦值() A. 2 B. 7 C. 3 D. 3 3327 9.正三棱柱ABC A1 B1C1的底面边长为3,侧棱AA13 3 ,D是C B延长线上一点,2 且 BD BC ,则二面角B1AD B 的大小() A. 3B. 6 C. 5 D. 2 63 10.正四棱柱ABCD A1B1C1D1中,底面边长为 2 2 ,侧棱长为4, E,F 分别为棱AB,CD的中点,EF BD G .则三棱锥B1EFD1的体积V() A.6B.16 3C.16 D.16 633 11.有以下命题: ①如果向量 a, b 与任何向量不能构成空间向量的一组基底,那么a, b 的关系是不共线; ② O , A, B,C 为空间四点,且向量OA, OB, OC不构成空间的一个基底,则点 O, A, B,C 一定共面; ③已知向量 a, b, c 是空间的一个基底,则向量 a b, a b, c 也是空间的一个基底。其中

空间向量及其运算和空间位置关系 练习题

空间向量及其运算和空间位置关系 1.在下列命题中: ①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面; ④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y , z 使得p =x a +y b +z c. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A. 2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1 的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→ 相等的向量是( ) A .-12a +12b +c B.12a +1 2b +c C .-12a -12b +c D.12a -1 2 b +c 解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→ )=c +12(b -a)=-12a +12b +c. 3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→ (x , y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→ ,根据共面向量定理

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

选修21空间向量单元测试

空间向量单元测试(一) 本试卷分第Ⅰ卷和第II 卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是 符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则、一定不共面;③若、、三向量两两共面,则、、三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 z y x ++=.其中正确命题的个数为 ( ) A .0 B .1 C .2 D .3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 5.直三棱柱ABC —A 1B 1C 1中,若CC ===1,,, 则1A B = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 6.已知++=,||=2,||=3,||=19,则向量与之间的夹角>

相关文档
最新文档